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A New Class of Representations of EALA
Coordinated by Quantum Tori in Two
Variables

To Professor R. V. Moody on his sixtieth birthday

S. Eswara Rao and Punita Batra

Abstract. We study the representations of extended affine Lie algebras s``+1(Cq) where q is N-th prim-

itive root of unity (Cq is the quantum torus in two variables). We first prove that
⊕

s``+1(C) for a

suitable number of copies is a quotient of s``+1(Cq). Thus any finite dimensional irreducible module

for
⊕

s``+1(C) lifts to a representation of s``+1(Cq). Conversely, we prove that any finite dimensional

irreducible module for s``+1(Cq) comes from above. We then construct modules for the extended

affine Lie algebras s``+1(Cq)⊕Cd1⊕Cd2 which is integrable and has finite dimensional weight spaces.

Introduction

Extended Affine Lie Algebras (EALA) are higher-dimensional generalizations of affine

Kac-Moody Lie algebras introduced in [HKT]. They have been further studied in
[AABGP], [BGK] and [ABGP]. Toroidal Lie algebras which are universal central ex-

tensions of
◦
g⊗C[t±1 , . . . , t

±
n ] (

◦
g is a simple finite dimensional Lie algebra) are prime

examples of EALAs which are studied by [F], [W], [MEY] [Y], [EF], [EM], [BS] and
[BC]. There are many EALAs which allow not only the Laurent polynomial algebra

C[t±1 , . . . , t
±
n ] as coordinate algebra but also quantum tori, Jordon tori and the octo-

nion tori as coordinate algebra depending on the type of Lie algebra (see [AABGP],
[BGK], [BGKN], [AG] and [Y0]). For example EALAs of type A` are tied up with
the Lie algebra g``+1(C)⊗Cq where Cq is a quantum torus (see Section 2). Quantum

tori defined in [M] are non-commutative analogues of Laurent polynomials. In this
paper we will study representations of EALA s``+1(Cq) ⊆ g``+1(C) ⊗ Cq and its uni-
versal central extension (see (5.2)) where Cq is quantum torus in two variables. Thus
Cq is defined as algebra Cq[s±1 , s

±
2 ] with the relation s1s2 = qs2s1. We will also add

derivations d1 and d2 for s``+1(Cq), which is our prime object of study. See [BS], [G1]
and [G2] for some interesting representation theory via vertex operator theory.

We will first develop (in Section 1) a one to one correspondence between irre-
ducible modules for s``+1(Cq) and s``+1(Cq)⊕Cd1⊕Cd2 (see Theorem 1.6) which is
very general and works for universal central extension.

So we construct modules for s``+1(Cq) (which can be lifted to s``+1(Cq) ⊕ Cd1 ⊕
Cd2) where q is an N-th root of unity. In this case the s``+1(Cq) have some very
interesting ideals. In [G2], [Z], it is proved that g`N (C) is a quotient of Cq. We
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will generalize this to prove that
⊕

g`N (C) is a quotient of Cq so that the Lie alge-
bra g``+1(C) ⊗ Cq has

⊕

g``+1(C) ⊗ g`N (C) ∼=
⊕

g`N(`+1)(C) as a quotient (Corol-

lary 2.17). We will also note that g``+1(C) ⊗ Cq = s``+1(Cq) ⊕ Z where Z is central
and a direct summand (see 2.11). Now any irreducible module for

⊕

g`N(`+1)(C) is
an irreducible module for s``+1(Cq). Conversely we prove in Theorem 3.13 that any
finite-dimensional irreducible module for s``+1(Cq) comes from above.

1

We will fix some notation first. All our vector spaces are over the complex numbers C.
For a fixed integer n, let An = C[t±1 , . . . , t

±
n ] be Laurent polynomials in n commuting

variables. For r = (r1, . . . , rn) ∈ Z
n, let t r

= t r1

1 · · · t
rn
n ∈ An. For any vector space V

let v(r) = v ⊗ t r ∈ V ⊗ An. Denote Z, Z+ and N for integers, positive integers and

non-negative integers respectively. For a Lie algebra g1 let U (g1) denote the universal
enveloping Lie algebra of g1.

Let4 be a root system coming from Kac-Moody Lie algebra.

Definition 1.1 A Lie algebra g̃ is called graded by (4,Z
n) if the following holds:

(1)

g̃ =

⊕

α∈4∪{0}
r∈Z

n

g(α, r)

(2) Let h̃ = g(0, 0) = h⊕ D, where D is the linear span of d1, . . . , dn and4 ⊆ h∗.

g(α, r) = {X ∈ g̃ | [h,X] = α(h)X and [di ,X] = riX for all h ∈ h and 1 ≤ i ≤ n}.

Note that [g(α, r), g(β, s)] ⊆ g(α + β, r + s) and h commutes with g(0, r) for all
r ∈ Z

n.

Examples 1.2

(1) Let g1 be a Kac-Moody Lie algebra with root system4. Then g1⊗An is a graded

by (4,Z
n). The Lie bracket is given by [X(m),Y (n)] = [X,Y ](m + n) and

[di ,X(m)] = miX(m).
(2) The toroidal Lie algebra τ (as defined in [EM]), the universal central extension

of g1 ⊗ An is also graded by (4,Z
n). g1 is simple finite dimensional Lie algebra.

(3) The Extended Affine Lie Algebra (EALA) coordinated by quantum torus (see
Definition 2.7) as given in [G1] and [G2].

Given a graded Lie algebra g̃, define g =
⊕

(α,r)6=(0,0) g(α, r)⊕h, so that g̃ = g⊕D.

Let g
+
=
⊕

α>0
r∈Z

n
g(α, r), g

−
=
⊕

α<0
r∈Z

n
g(α, r) and H =

⊕

r 6=0 g(0, r) ⊕ h and H̃ =

H ⊕ D. Then clearly g = g
− ⊕H ⊕ g

+.

The purpose of this section is to develop a correspondence between g modules
and g̃ modules which are also highest weight modules.
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Most often g̃ is “simple” but g is not. The existence of ideals of g will allow us to
construct modules for g. Then by the following theory one can lift them to g̃.

We will first construct induced modules for g̃. Let W̃ be irreducible H̃ modules
which is also the weight module for h̃. Let g

+ act trivially on W̃ . Then consider the

induced module

M(W̃ ) = U (g̃)⊗H̃⊕g+ W̃ .

Lemma 1.3

(1) M(W̃ ) is a weight module for h̃.

(2) M(W̃ ) has a unique irreducible quotient called V (W̃ ).

Proof (1) is standard.

(2) Let W1 and W2 be the proper g̃ submodules for M(W̃ ). Since W̃ is irreducible
it is clear that Wi ∩ W̃ = {0} for i = 1, 2.

Claim (W1⊕W2)∩W̃ = {0}. Since h commutes with H̃ and W̃ is an H̃ irreducible

weight module, it follows that h acts on W̃ by a single linear function, say λ. Further
M(W )λ =W . Let w = w1 + w2 for w ∈ W̃ and wi ∈Wi for i = 1, 2. Then w1 and
w2 are λ weight. But W1 and W2 have no λ weights. Thus w1 = 0 = w2. This proves
the claim.

Hence we proved that sum of two proper submodules is also proper. So M(W̃ )
has a unique maximal submodule, and hence a unique irreducible quotient.

We will now define a similar notion for g. Let W be an irreducible module for H.
Then define an inducible g module M(W ), where g

+ acts trivially in W . As in the
earlier case, M(W ) has a unique irreducible quotient, say V (W ).

For an irreducible module W of H, define an H̃ module on W⊗An in the following
way:

X · v(s) = (Xv)(r + s)(1.4)

for all X ∈ g(0, r), r 6= 0 and for all X ∈ h. div(r) = riv(r). Note · denotes the ∼
action.

Assumption 1.5 We will make the following assumptions on the H̃ module W ⊗ A

throughout this section.

(1) W ⊗ A =
⊕k

i=1 Wi as H̃ modules.

(2) Each Wi is an irreducible H̃ module.
(3) The sum in (1) is direct.

See [E1] for example where W is one dimensional.

Let us start with an irreducible module W of H which is a weight module for h. Let
V (W ) be the irreducible module for g considered earlier. Define g̃ module structure
on V (W )⊗ An similar to (1.4). Now we will state our main theorem of this section.
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Theorem 1.6

(1) V (W )⊗ An =
⊕k

i=1 U (g̃)Wi as g̃ modules.

(2) Each U (g̃)W j is an irreducible g̃ module.

(3) The sum in (1) is direct.

(4) V (W j) ∼= U (g̃)W j as g̃ modules.

Proof First note that U (g̃)W j = U (g
−)W j , which is clear because g

+ kills W j and H̃

leaves W j invariant.

1.7 Note that U (g̃)W j ∩W ⊗ An =W j .

(1) Let v(r) ∈ V (W ) ⊗ An, v ∈ V (W ), r ∈ Z
n. Let w ∈ W . Then there exists

X ∈ U (g) such that Xw = v. Let X =
∑

Xri
such that [d j ,Xri

] = (ri) jXri
. Consider

∑

Xri
w(−ri + r) =

∑

(Xri
w)(r) = v(r). Thus v(r) ∈

∑k
j=1 U (g̃)W j . This proves (1).

(2) Let Xw(r) ∈ U (g̃)W j where w(r) ∈ W j and X ∈ U (g)(β,s). It is sufficient
to prove that there exists Y ∈ U (g̃) such that Y X · w(r) ∈ W j . Since V (W ) is an
irreducible g module there exists Y ∈ U (g) such that Y Xw ∈ W . Let Y =

∑

Yri

where [d`,Yri
] = (ri)`Yri

. Note that for weight reasons each Yri
w ∈ W . Consider

Yri
X · w(r) = (YrXw)(r + s + ri) belongs to W ⊗ A. At the same time Yri

X · w(r) ∈
U (g̃)W j . Hence by 1.7 Yri

X · w(r) ∈W j . So Y X · w(r) =
∑

Yri
X · w(r) ∈W j which

proves (2).
(3) Suppose U (g̃)Wi ∩

∑

j 6=i U (g̃)W j 6= {0}. Since U (g̃)Wi is irreducible, it

follows that
U (g̃)Wi ⊆

∑

j 6=i

U (g̃)W j .

By weight reasons it follows that W i ⊆
∑

j 6=i W j , a contradiction to Assumption 1.5
(3).

(4) Now each W j is an irreducible H̃ module. Both V (W j) and U (g̃)W j are

irreducible g̃ modules with the same top and hence they are isomorphic.

Theorem 1.8 V (W j) has finite dimensional weight spaces with respect to h̃ if and only

if V (W ) has finite dimensional weight spaces with respect to h.

Proof Suppose V (W ) has finite dimensional weight spaces with respect to h. Then
clearly V (W ) ⊗ An has finite dimensional weight spaces with respect to h̃. Now by

Theorem 1.6 (1) and (4) it follows that V (W j) has finite dimensional weight spaces

with respect to h̃.
For the converse, consider the g module map ϕ from V (W ) ⊗ An → V given by

ϕ
(

v(r)
)

= v. Note that ϕr := ϕ|V (W )⊗t r is a one to one and onto map and

V (W )⊗ t r
=

(

k
⊕

j=1

U (g̃)W j

)

r
.(1.9)

Suppose U (g̃)W j has finite dimensional weight space for all j. If V (W )λ is infinite

dimensional, then Φ−1
r

(

V (W )λ
)

=
(

V (ψ) ⊗ t r
)

λ
is infinite dimensional. Then by
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(1.9) at least for one j, λ weight space of
(

U (g̃)W j

)

r
is infinite dimensional which

contradicts our supposition.

1.10 Thus to complete our theorem it is sufficient to prove that, if U (g̃)W j has finite

dimensional weight space for some j, so it is for all j.

Consider the H module map from ϕ : W ⊗ An → W given by ϕ
(

w(r)
)

= w.

Then clearly Φ(W j) is a non-zero submodule of W and hence equal to W . Now
fix a non-zero vector w in W . Then there exists r j ∈ Z

n such that w(r j) ∈ W j

and ϕ
(

w(r j)
)

= w. Clearly U (H̃)w(r j) = W j . Consider the H module map from

W1 →W2 by sending w(r1) to w(r2). This induces an isomorphism H module map.
It need not be an H̃ module map. But it sends homogeneous spaces to homogeneous
spaces. For example (W1)r goes to (W )r+r2−r1

injectively. Now the same is true for
U (g̃)W1 and U (g̃)W2 by Theorem 1.6. This proves 1.10. Thus the proof of our

theorem is completed.

We need the following lemma. The notation is as above.

Lemma 1.11 Suppose V is an irreducible g (respectively g̃) module generated by h (resp.

h̃) weight vector v such that g
+v = 0. Then U (H)v (resp. U (H̃)v) is irreducible H (resp.

H̃) module.

Proof The proof is similar for g and g̃. Thus we will only prove the lemma for g.

Let w ∈ U (H)v. First note that g
+w = 0 for weight reasons. Since V is irreducible

there exists X ∈ U (g) such that Xw = v. Write X = X−h1X+ where X± ∈ U (g
±)

and h1 ∈ U (H). Then X+ has to be scalar since otherwise it kills w. Then by weight
reasons X− has to be scalar. Thus X = h1, which completes the lemma.

2

We first recall the definition of quantum torus from [BGK]. Fix a positive integer n ≥
2. Let q = (qi j) be a matrix of n× n order where qi j are non-zero complex numbers
and qii = 1 and qi j = q−1

ji . Let Jq denote the ideal of the non-commutative Laurent

polynomials ring S[n] = C[s±1 , . . . , s
±
n ] generated by the elements sis j − qi js j si . We

let Cq be the factor ring S[n]/ Jq. We again write si ∈ Cq for the image of si in S[n]. So
we have sis j = qi j s j si . Then Cq is called the quantum torus associated to q. We define

the following maps σ, f : Z
n × Z

n → C
∗ by

σ(a, b) =
∏

i≤i< j≤n

q
a j bi

ji(2.1)

f (a, b) = σ(a, b)σ(b, a)−1 for all a, b ∈ Z
n.(2.2)

Then it is easy to check that

f (a, b) =

n
∏

i, j=1

q
a j bi

ji f (a, b) = f (b, a)−1 and f (a, a) = f (a,−a) = 1.
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We also have the following.

σ(a + b, c) = σ(a, b)σ(a, c)σ(a, b + c) = σ(a, b)σ(a, c) f (a + b, c)

= f (a, c) f (b, c) f (a, b + c) = f (a, b) f (a, c).

Further

tatb
= σ(a, b)ta+btatb(ta)−1(tb)−1

= f (a, b).(2.4)

We define the radical f denoted by

rad( f ) = {a ∈ Z
n | f (a, b) = 1, ∀b ∈ Z

n}.(2.5)

Note that rad( f ) is a subgroup of Z
n.

Proposition 2.6 [BGK] Let Cq be as above.

(1) The center Z(Cq) has basis consisting of monomials ta, a ∈ rad f .

(2) The Lie algebra [Cq,Cq] has basis consisting of monomial ta, a /∈ Rad( f ).

(3) Cq = [Cq,Cq]⊕ Z(Cq).

Clearly Cq is Z
n graded with each graded component to be one dimensional. Let

M`+1(C) be the matrix algebra with basis Ei j and multiplication Ei jEk` = δ jkEi`.
We denote the corresponding Lie algebra as g``+1(C). Let s``+1(C) be the simple
subalgebra of trace zero matrices.

Define the Extended Affine Lie Algebra (EALA) coordinated by the quantum torus:

s``+1(Cq) = {X ∈ M`+1(Cq) | trace X ∈ [Cq,Cq]}.(2.7)

Here M`+1(Cq) is the full matrix algebra with entries in Cq. Trace X =
∑

Xii

where X = (Xi j).

Consider a new Lie algebra I[Cq,Cq] ⊕ s``+1(C) ⊗ Cq where I(s) =
∑`+1

i=1 Eii(s)
and Ei j(s) is the matrix with (i, j) entry as s and zero every where. The Lie bracket is

given by

[X ⊗ ta,Y ⊗ tb] = B(X,Y )I[ta, tb] + [X,Y ]⊗
taotb

2
+ (XoY )⊗

[

ta, tb

2

]

(2.8)

where

[X,Y ] = XY − Y X

XoY = XY + Y X −
2

(` + 1)
Tr(XY )I(1)

[ta, tb] = tatb − tbta

ta0tb
= ta · tb + tb · taB(X,Y ) =

1

` + 1
Tr(XY )

[

I[ta, tb],X ⊗ t c
]

= X ⊗
[

[ta, tb], t c
]

[

I[ta, tb], I[t c, td]
]

= I
[

[ta, tb], [t c, td]
]

.

One can check that the above defines a Lie algebra.

Lemma 2.9 [BGK] s``+1(Cq) ∼= I[Cq,Cq]⊕ s``+1(C)⊗ Cq.
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Now consider the M`+1(C)⊗ Cq as an associative algebra with associative product

X ⊗ ta · Y ⊗ tb
= XY ⊗ ta · tb.(2.10)

The corresponding Lie algebra is denoted by g``+1(C)⊗ Cq.

Lemma 2.10 I[Cq,Cq]⊕ s``+1(C)⊗Cq is a Lie subalgebra of g``+1(C)⊗Cq by the map

I(ta) = I ⊗ ta, X ⊗ ta
= X ⊗ ta, a ∈ Z

n, X ∈ s``+1(C).

Proof By direct check the Lie brackets are compatible.

2.11 Also note the following g``+1 ⊗ Cq = s``+1(Cq)⊕ I ⊗ Z(Cq) and I ⊗ Z(Cq) is a

direct summand and central.

2.12 Our interest is to construct and classify finite dimensional irreducible modules
for s``+1(Cq). But we work with bigger Lie algebra g``+1 ⊗ Cq. The additional central

space acts as scalars and does not interfere with s``+1(Cq) modules.

2.13 From this point onwards we will assume that n = 2 and q12 = q. We will also
assume that q is an N-th primitive root of unity.

We will first recall a certain isomorphism from [G2] and then generalize it.
Let Ei j be the matrix of order N × N such that the (i, j) entry is one and zero

elsewhere. Let E = E12 + E23 + · · · + EN−1,N + EN1.

F = diag{1, q, q2, . . . , qN−1}.

It is easy to verify the following: EF = qFE, EN
= Id and FN

= Id. Let I be the ideal
generated by sN

1 − 1, sN
2 − 1 (as associative algebras) inside Cq.

Lemma 2.14 [G2] The map si1

1 si2

2 → Ei1 Fi2 is isomorphic as associative algebra from

Cq/I and MN (C).

We will now generalize this. Let a1, . . . , ak, b1, . . . , b` be distinct complex num-

bers such that aN
i 6= aN

j and bN
i 6= bN

j for all i 6= j. Consider the associative algebra
homomorphism.

π : Cq −→
⊕

MN (C) (k` copies)

si1

1 s
j1

2 −→ (Ei1

i F
j1

j )1≤i≤k
1≤ j≤`

.

where Ei = aiE and F j = b jF. Let P1(s1) =
∏k

i=1(sN
1 − aN

i ) and P2(s2) =
∏`

j=1(sN
2 − bN

j ). Let J be the two sided ideal generated by P1(s1) and P2(s2) inside

the Cq as associative algebras.

Proposition 2.15 The homomorphism π induces an isomorphism

Cq/ J ∼=
⊕

MN(C) (k` copies).

https://doi.org/10.4153/CMB-2002-060-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-060-9


A New Class of Representations of Extended Affine Lie Algebras 679

Proof It is easy to check that kerπ ⊇ J. Let F be the linear span of {si1

1 s
j1

2 ,
1 ≤ i1 ≤ kN, 1 ≤ j1 ≤ kN}. This is clearly a spanning set for Cq/ J. To prove

the proposition it is sufficient to prove that π is injective on F. (The subjectivity
follows from dimensional reasons). Consider

π
(

∑

1≤i1≤kN
1≤ j1≤kN

ai1 j1
si1

1 s
j1

2

)

= 0.

Then clearly we have:

2.16
∑

ai1 j1
ai1

i b
j1

j Ei1 F j1 = 0.

Let p be an integer such that 1 ≤ p ≤ N . First note that F j1 ep = e p− j1
· ( denotes

the unique positive integer≤ N modulo N) ep is the unit column with one at the p-th
place and zero elsewhere. Fix integers m, n such that 1 ≤ m, n ≤ N . Consider

Ei1 F j1 ep = q(p−n)e p−n

for i1 ≡ m(N) and j1 ≡ n(N). Then 2.16 becomes

N
∑

m=1

(

∑

i1≡m(N)
j1≡n(N)

ai1 j1
ai1

i b
j1

j

)

q(p−n)m
= 0.

The matrix (q(p−n)m)1≤n≤N
1≤p≤N

is invertible. Hence

`−1
∑

i1=0

k−1
∑

j1=0

am+Ni1,n+N j1
am

i bn
j (aN

i )i1 (bN
j ) j1 = 0.

By Lemma 3.11 of [E3] (see the Proof of the Lemma),
(

(aN
i )i1 (bN

j ) j1
)

0≤i1≤N−1
0≤ j1≤N−1

is

invertible. Hence

am+Ni1,m+N j1
= 0 ∀m, n, i1, j1.

Thus the map π is injective on F.

Corollary 2.17 M`+1(C)⊗Cq/ J ∼=
⊕

M(`+1)N (C) (k` copies) as an associative algebra.

Proof By Proposition 2.15 it is sufficient to prove that

g``+1(C)⊗MN(C) ∼= M(`+1)N (C).

But this is a well known fact [RP, Corollary 9.3 (b)].

Corollary 2.18 π(I ⊗ Zq) = (A1, . . . ,Ak`) where each matrix Ai is of order (` + 1)N

and scalar.
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Proof Note that from Proposition 2.6 we have Z(Cq) = {saN
1 sbN

2 , a, b ∈ Z}. Consider
π(I ⊗ saN

1 sbN
2 ) = (aa

i bb
j I`+1 ⊗ IN )1≤i≤`

1≤ j≤k

. Note that I`+1 ⊗ IN = I(`+1)N , where I j is the

identity matrix of order j, so that one inclusion follows. The other inclusion follows
from the fact that the matrix (aa

i bb
j )1≤i,a≤`

1≤ j,b≤k

is invertible. (See the proof of Lemma 3.11

of [E3]).

Corollary 2.19 π
(

s``+1(Cq)
)

=
⊕

s`N(`+1)(C), (k` copies) follows from 2.11 and

Corollary 2.17.

2.20 Thus we have a surjective map π (again denoted by π) from s``+1(Cq) to
⊕

s`(`+1)N (C) such that kerπ = s``+1(Cq)∩ J where J is the ideal generated by P1(s1)
and P2(s2) inside Cq. Let g1 =

⊕

s`(`+1)N (C) (k` copies), which is a finite dimen-
sional semisimple Lie algebra. Let

⊕

h1 be the cartan subalgebra which is direct sum

of cartan subalgebra h1 of s`(`+1)N (C).

2.21 Any h(`+1)N weight module V of g1 can be lifted to s``+1(Cq) via π given in 2.20.
By letting the center I⊗Z(Cq) act as scalars on V , we get a module for g``+1(C)⊗Cq.

3

As earlier q is an N-th primitive root of unity and Cq[s±1 , s
±
2 ] = Cq.

Fix a cartan subalgebra h1 of s``+1(C). Then h1 ⊗ 1 can be treated as Cartan sub-
algebra of s``+1(Cq). We are interested in studying irreducible modules for s``+1(Cq)
which are finite dimensional weight spaces for h1 ⊗ 1.

Let Q1 =

k
∏

i=1

(sN
1 − aN

i ) and

Q2 =

∏̀

j=1

(sN
2 − bN

j )

where a1, . . . , ak, b1, . . . , b` are non-zero complex numbers. (No condition on N-th

powers being distinct). Let j(Q1,Q2) be a two-sided ideal generated by Q1 and Q2

inside Cq. Let j1(Q1,Q2) = s``+1(Cq) ∩ g``+1 ⊗ j(Q1,Q2).

Proposition 3.1 Let V be an irreducible module for s``+1(Cq) with finite dimensional

weight spaces for h1 ⊗ 1. Then there exist polynomials Q1,Q2 in sN
1 and sN

2 such that V

is a module for s``+1(Cq)/ J1(Q1,Q2).

Proof Let Vλ be a finite dimensional weight space. Consider H = h1⊗Cq[s±N
1 , s±N

2 ]
which is an abelian subalgebra and leaves Vλ invariant. Thus there exists a common
eigenvector v for H. That is:
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3.2 h1 ⊗ saN
1 sbN

2 v = λa,b(h1)v, for all a, b ∈ Z, ∀h1 ∈ h1. Now fix integers `1, `2 such
that 0 ≤ `1 < N and 0 ≤ `2 < N . Consider the vectors for i 6= j.

Ei js
`1

1 s`2

2 sNs
2 v, for s ∈ Z.

Let α be the root of s``+1(C) corresponding to root vector Ei j . Then the above vec-
tors belong to the weight space Vλ+α which is finite dimensional. Thus there exist
polynomials P`1`2

i j in sN
2 such that

Ei j s
`1

1 s`2

2 P`1`2

i j (sN
2 )v = 0.

Now apply (Eii − E j j)sNs
1 sNt

2 to the above vector. From 3.2 we get the following:

3.3 Ei j s
`+1Ns
1 s`+2Nt

2 P`1`2

i j (sN
2 )v = 0.

Let P(sN
2 ) =

∏

i 6= j
0≤`1<N
0≤`2<N

P`1`2

i j (sN
2 ) which is a polynomial in sN

2 . Now from 3.3 we

have the following:

3.4 Ei j s
k
1s`2P(sN

2 )v = 0 for all k, ` ∈ Z and i 6= j. For any integer k, let k1 be such that

k ≡ k(N) and 1 ≤ k ≤ N .

Case 1 Let k, ` be integers such that (k, `) 6= (N,N). Let k1, `1, k2, `2 be integers
such that k1 + k2 = k and `1 + `2 = `. Let Q1

=
∏

(s,t,i1, j1)6=(k1,`1,i, j)
P`1, j1

. From 3.3 we

have Ei js
k1

1 sii
2 Pk1 `1

i j v = 0 and E jis
k1

1 s`22 Q1v = 0. Hence their commutation on v is also
zero. This will give:

q`1k2 Eiis
k
1s`2Pv − q`2k1 E j j s

k
1s`2Pv = 0.(3.5)

Choose (k1, `1) = (0, 0) in 3.5. So that we have:

(Eii s
k
1t`2P − E j j s

k
1s`2P)v = 0.(3.6)

Now multiply 3.6 by q`1k2 and subtract from 3.5 to get:

E j js
k
1s`2P(1− q`1k2−`2k1 )q`2k1 v = 0.(3.7)

Claim There exists k1, k2, `1, `2 such that k2`1 − k1`2 6≡ 0(N). Suppose not. Take

(k1, k2) = (1, 0) and (0, 1) to conclude that k ≡ 0(N) and ` ≡ 0(N) a contradiction
to our assumption that (k, `) 6= (N,N). Thus the claim is true.

Hence from 3.7 and the claim we conclude that:

E j j s
k
1s`2Pv = 0 for all `, k such that (`, k) 6= (N,N) and for all j.(3.8)

https://doi.org/10.4153/CMB-2002-060-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-060-9


682 S. Eswara Rao and Punita Batra

Case 2 (k, `) = (sN, tN). Then by an argument similar to above we have:

(Eii − E j j)sk
1s`2Pv = 0 ∀` and k.(3.9)

But we cannot get 3.8 this way.

Let gp be the liner span of Ei j s
`
1sk

2P, Eiis
`
1sk

2P−E j js
`
1sk

2P (for i 6= j and for all k, ` ∈ Z)

and E j js
k
1s`2
(

(k, `) 6= (N,N)
)

for all j. Then from 3.4, 3.6 and 3.8 we get

gpv = 0.

The same argument will produce a polynomial Q in sN
1 such that

gQv = 0.

Note that each gp and gQ are ideals in s``+1(Cq). Now consider W = {w ∈ V ; gpw =

0 = gQw} which is a non-zero submodule of V and hence V = W . This proves the
proposition.

Continuing with the notation in the above proof let

P =

k
∏

i=1

(sN
2 − bi)

ki , Q =
∏̀

j=1

(sN
1 − a j)

`i

where a1 · · · a` and b1 · · · bk are distinct complex numbers. Consider

P1
=

k
∏

i=1

(sN
2 − bi), Q1

=

∏̀

j=1

(sN
1 − a j).

3.10 Consider the quotient map

Φ : s``+1(Cq)/gp ⊕ gQ −→
s``+1(Cq)

gp1 ⊕ gQ1

.

Lemma 3.11 kerΦ is solvable.

Trivial checking is all that is necessary.

Proposition 3.12 Let V be finite dimensional module for s``+1(Cq). Then there exist

polynomials P1 and Q1 in sN
2 and sN

1 with distinct roots, such that V is a module for

s``+1(Cq)/gp1 ⊕ gQ1 .

Proof In view of Proposition 3.1 and the map at 3.10, it is sufficient to prove that
the solvable ideal kerϕ at 3.10 acts trivially on V . Since kerϕ is solvable and V is
finite dimensional there exists a vector v in V such that kerϕ acts as scalar. By the

argument similar to Proposition 2.1 of [E2] we conclude that kerϕv = 0. In any case,
the non-zero roots act trivially as can be seen from dimensional reasons.

Consider W = {v ∈ V ; kerϕv = 0} a non-zero submodule of V . Since V is
irreducible, V =W .

Theorem 3.13 Let V be a finite dimensional irreducible module for s``+1(Cq). Then V

comes from a lift of π as in 2.21. That is, V is a module for
⊕

s`(`+1)N (C).
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Proof Follows from Proposition 3.12 and Corollary 2.19.
The same can be said for an irreducible module of g``+1(C)⊗Cq as the additional

central element acts as a scalar. The restriction to s``+1(Cq) is still irreducible. The
following remarks can be made for the modules factoring through π.

Remark 3.14 (1) A highest weight module for
⊕

s`(`+1)N (C) is certainly a highest

weight module for s``+1(Cq). The converse need not be true.
(2) A weight module for

⊕

s`(`+1)N (C) with finite dimensional weight spaces need
not be a finite dimensional weight module for s``+1(Cq). The cartan of s``+1(Cq) is
too small.

We will now apply our Theorem 1.6 to the Lie algebra g̃ = s``+1(Cq)⊕ Cd1 ⊕ Cd2

which is the main object of study. Let g = s``+1(Cq). h = h1 ⊗ 1 sitting inside
s``+1(Cq) where h1 is the diagonal matrices with trace zero inside s``+1(C).

H =
⊕

i 6= j

(Eii − E j j)si1

1 si2

2

⊕

i1≡0(N) or
i2≡0(N)

I ⊗ si1

1 si2

2 .

Let π as defined in Corollary 2.19. Then π(h1 ⊗ si1

1 sNs
2 ) =

∑

ai1

i bNs

j Ei1 Id, which is an

element of
⊕

h(`+1)N . From [G2] it follows that

π−1
(

⊕

h(`+1)N

)

=

∑

i1∈Z

s∈Z

h⊗ si1

1 sNs
2

⊕

i1 6≡0(N)

I ⊗ si1

1 sNs

2 .

Let V be a finite dimensional irreducible module for s``+1(Cq). Then V is a module
for
⊕

s`(`+1)N (C) (Theorem 3.13 via the map π). Then V has a highest weight vector
in V . The Cartan subalgebra

⊕

h(`+1)N acts as by a linear function λ. Consider the
H submodule W = U (H)v which is irreducible from Lemma 1.11. Let W ⊗ A be an

H̃ module as defined in (1.4). Define

S1 = {i1 ∈ Z | h1 ⊗ ei1 v 6= 0 for some h1 or I ⊗ Ei1 v 6= 0 for i1 ≡ 0(N)}.

Note that i1 ∈ S1 implies i1 + kN ∈ S1 for all k. Let G be the semigroup generated

by S1.

Lemma 3.15 G is a sub group of Z.

Proof We want to show that for each i1 in G there is inverse in G. By the note we
can assume that 0 < i1 < N . Let i1 be the minimal with that property. Let k be

a positive integer such that ki1 < N and (k + 1)i1 ≥ N . Then 0 ≤ (k + 1)i1 − N

belongs to G. Suppose (k + 1)i1 − N = 0 then ki1 − N is in the inverse. Suppose
(k + 1)i1 − N > 0. Then, by the minimality of i1, (k + 1)i1 − N ≥ i1, we have
ki1 − N ≥ 0, a contradiction.

Now take j1 ∈ G such that 0 < j1 < N . Then we can see that j1 is a multiple of
i1 and hence has an inverse.

Let G̃ = G× NZ.

Lemma 3.16 v(r) ∈ U (H̃)v(s) iff r − s ∈ G̃.
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Proof Clear from the definition of G and s1.

Lemma 3.17 Let r1, . . . , rk be the coset representations of G̃ inside Z
2 then

(1) V ⊗W =
⊕k

i=1 U (H̃)v(ri);

(2) each U (H̃)v(ri) is irreducible;

(3) the sum in (1) is direct.

Proof Let w(r) ∈ U (H̃)v(ri). Suppose w is a multiple of v. Then r − ri ∈ G̃. As G̃

is group, ri − r ∈ G̃. Then again by Lemma 3.16 there exists X ∈ U (H̃) such that
X(r) = v(ri). Now suppose w is a weight vector of weight λ − β, β 6= 0. Then there

exists Y 3 Y w = v, Y =
∑

Y si where each Ysi
is of degree si . By weight argument

each Ysi
w is a multiple of v. By the earlier case (2) is proved.

(1) Let w(r) ∈ V ⊗W . There exist X 3 Xv = w. Write X =
∑

Xsi
where degree

Xsi
is si . Then

∑

Xs1
v(−si + r) =

∑

(Xsi
v)(r) = w(r)

which proves (2).
(3) Suppose U (H̃)v(ri) ∩

∑

i 6= j U (H̃)v(r j). Then by irreducibility we have

U (H̃)v(ri) ⊆
∑

j 6=i

U (H̃)v(r j).

By a weight argument v(ri) is a linear confirmation of v(s) such that s − ri ∈ G̃. But

by the choice of ri , this is not possible.

Now Assumption 1.5 for W ⊗ A is satisfied.

Theorem 3.18 Let V be a finite dimensional irreducible module for
⊕

s`(`+1)N (C).

Then V⊗W as s``+1(Cq)⊕Cd1⊕Cdi decomposes into finitely many irreducible modules

with finite dimensional weight spaces.

Proof We will apply Theorem 1.6 for g̃ = s``+1(Cq) ⊕ Cd1 ⊕ Cd2. By Lemma 3.17,
Assumption 1.5 is satisfied. By Theorem 1.8 each component of V ⊗W has finite
dimensional weight spaces.
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