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Abstract

In a discrete-time single-type Galton–Watson branching random walk {Zn, ζn}n≥0, where
Zn is the population of the nth generation and ζn is a collection of the positions on
R of the Zn individuals in the nth generation, let Yn be the position of a randomly
chosen individual from the nth generation and Zn(x) be the number of points in ζn that
are less than or equal to x for x ∈ R. In this paper we show in the explosive case
(i.e. m = E(Z1 | Z0 = 1) = ∞) when the offspring distribution is in the domain
of attraction of a stable law of order α, 0 < α < 1, that the sequence of random
functions {Zn(x)/Zn : − ∞ < x < ∞} converges in the finite-dimensional sense to
{δx : − ∞ < x < ∞}, where δx ≡ 1{N≤x} and N is an N(0, 1) random variable.
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1. Introduction

A branching random walk is a branching tree such that with each line of descent a random
walk is associated.

Let {Zn}n≥0 be a discrete-time single-type Galton–Watson branching process with offspring
distribution {pj }j≥0. Let Z0 = 1. Then there is a unique probability measure on the space of
family trees initiated by this ancestor.

On this family tree, we impose the following movement structure. If an individual is located
at x in the real line R, and, upon death, produces k children, then these k children move to x+Xkj

for 1 ≤ j ≤ k, where (Xk1, Xk2, . . . , Xkk) is a random vector with a joint distribution πk on
R

k for each k. The random vector Xk ≡ (Xk1, Xk2, . . . , Xkk) is stochastically independent of
the history up to that generation as well as the movement of the offspring of other individuals.

Let ζn ≡ {xni : 1 ≤ i ≤ Zn} be the positions of the Zn individuals of the nth generation.
For each n ≥ 0, ζn is a collection of random numbers on R and, hence, is a point process.
The sequence of pairs of {Zn, ζn}n≥0 is called a branching random walk. The probability
distribution of this process is completely specified by

• the offspring distribution {pj }j≥0;

• the family of probability measures {πk}k≥1;
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• the initial population size Z0; and

• the locations ζ0 ≡ {x0i , 1 ≤ i ≤ Z0} of the initial ancestors.

It is clear that {ζn}n≥0 is a Markov chain whose state space is the set of all finite subsets of R

and that the movement along any one line of descent is that of a classical random walk. Thus, if
{Xki}k≥1,i≥1 are independent and identically distributed (i.i.d.) with mean µ and finite variance
σ 2, then the location of an individual of the nth generation should be approximately Gaussian
with mean nµ and variance nσ 2 by the central limit theorem. This suggests that if Zn → ∞
as n → ∞ and if xn = σ

√
nx + nµ, then Zn(xn)/Zn could have �(x), the standard N(0, 1)

cumulative distribution function (CDF), as its limit. Or, if Xk,1 is in the domain of attraction
of a stable law of order α, 0 < α ≤ 2, then there exist an and bn such that Zn(an + bny)/Zn

converges to a standard stable law CDF as n → ∞. This turns out to be true in the supercritical
case (1 < m = ∑∞

j=1 jpj < ∞); see [2] for the details. More results related to the central
limit theorem on branching random walks can been found in [1], [4], and [8].

2. Main results

In this paper we consider the explosive Galton–Watson branching process such that the
offspring distribution {pj }j≥0 is in the domain of a stable law of order α with 0 < α < 1 and,
hence, with m ≡ ∑∞

j=0 jpj = ∞. (See also [5], [6], and [7].)

Theorem 2.1. Let p0 = 0 and {pj }j≥0 satisfy
∑

j>x pj ∼ x−αL(x) as x ↑ ∞, where 0 <

α < 1 and L(·) is slowly varying at ∞. Let {Xk,i}k≥1, 1≤i≤k be identically distributed. Let
EXk,1 = 0 and EX2

k,1 = σ 2 < ∞. Then, for any fixed y ∈ R,

(a) P(Yn ≤ √
nσy) → �(y) as n → ∞;

(b) Zn(
√

nσy)/Zn
d−→ δy as n → ∞, where δy is Bernoulli(�(y)), i.e. P(δy = 1) = �(y) =

1 − P(δy = 0).

The result in Theorem 2.1(b) can be strengthened to the joint convergence of

Zn(
√

nσyi)

Zn

, i = 1, 2, . . . , k,

for y1, y2, . . . , yk ∈ R.
We have the following theorem.

Theorem 2.2. Under the hypothesis of Theorem 2.1,

(a) for any −∞ < y1 < y2 < ∞,(
Zn(

√
nσy1)

Zn

,
Zn(

√
nσy2)

Zn

)
d−→ (δy1 , δy2),

which takes the values (0, 0), (0, 1), and (1, 1) with probabilities 1 − �(y2), �(y2) −
�(y1), and �(y1), respectively;

(b) for any −∞ < y1 < y2 < · · · < yk < ∞,(
Zn(

√
nσyi)

Zn

: 1 ≤ i ≤ k

)
d−→ (δy1 , . . . , δyk

),
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where each δyi
is 0 or 1, and, furthermore,

δyi
= 1 ⇒ δyj

= 1 for j ≥ i

and

P(δy1 = 0, δy2 = 0, . . . , δyj−1 = 0, δyj
= 1, . . . , δyk

= 1) = P(δyj−1 = 0, δyj
= 1)

= �(yj ) − �(yj−1).

Remark 2.1. Theorem 2.2 suggests that{
Zn(y) = Zn(

√
nσy)

Zn

, −∞ < y < ∞
}

converges in the Skorokhod space D(−∞, ∞) weakly to

{X(y) ≡ 1{N≤y}, −∞ < y < ∞},
where N is an N(0, 1) random variable.

Since we have the finite-dimensional convergence (by Theorem 2.2), only tightness needs
to be established.

3. Proofs of the main results

Let {Zn}n≥1 be a discrete-time single-type Galton–Watson branching process with offspring
distribution {pj }j≥0 and initiated size Z0. Pick two individuals from the population in the nth
generation (assuming that Zn ≥ 2) by simple random sampling without replacement and trace
their lines of descent backward in time until they meet for the first time. Call this common
ancestor the last common ancestor or the most recent common ancestor of these two randomly
chosen individuals. Let τn,2 be the generation number of this common ancestor.

The following has been shown in [3].

Theorem 3.1. Let p0 = 0, and let m = ∑∞
j=1 jpj = ∞. Furthermore, for some 0 < α < 1

and a function L : (1, ∞) → (0, ∞) slowly varying at ∞, let∑
j>x pj

xαL(x)
→ 1 as x → ∞.

Then, for almost all trees T and k = 1, 2, . . ., as n → ∞,

P(τn,2 < k | T ) → 0,

P(n − τn,2 < k) → π2(k) exists,

and π2(k) ↑ 1 as k ↑ ∞.

To prove Theorem 2.1, we need the following result whose proof is straightforward and thus
omitted.

Lemma 3.1. If {Xn}n≥1 is a sequence of random variables with values in [0, 1] such that

lim
n→∞ EX2

n = lim
n→∞(EXn)

2 = λ, 0 < λ < 1,

then Xn converges in distribution to a Bernoulli random variable X with P(X = 0) = 1 − λ

and P(X = 1) = λ.
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3.1. Proof of Theorem 2.1

(a) Recall that the ζn ≡ {xni : 1 ≤ i ≤ Zn} are the positions of the Zn individuals of the nth
generation. For any fixed y ∈ R, let

δn,i =
{

1 if xn,i ≤ √
nσy,

0 otherwise.

Then we have

Zn(
√

nσy) =
Zn∑
i=1

δn,i .

So,

E

(
Zn(

√
nσy)

Zn

)
= E

(
1

Zn

Zn∑
i=1

δn,i

)

= E

(
1

Zn

Zn∑
i=1

E(δn,i | Zn)

)

= E

(
1

Zn

Zn∑
i=1

E(δn,1)

)

= E(δn,1)

= P(xn,1 ≤ √
nσy)

= P(x0,1 + Sn ≤ √
nσy)

= P(Sn ≤ √
nσy − x0,1),

where Sn = ∑n
i=1 ηi , {ηi}i≥1 are i.i.d. copies with distribution π1, and x0,1 is the location of the

initial ancestor of the nth generation individual located at the position xn,1. Since EXk,1 = 0
and EX2

k,1 = σ 2 < ∞, by the central limit theorem we have

P

(
Sn√
nσ

≤ y − x0,1√
nσ

)
→ �(y) as n → ∞.

Hence, as n → ∞,

P(Yn ≤ √
nσy) = E(P(Yn ≤ √

nσy | Zn)) = E

(
Zn(

√
nσy)

Zn

)
→ �(y).

(b) From (a), we already know that, for any fixed y ∈ R,

E

(
Zn(

√
nσy)

Zn

)
→ �(y) as n → ∞.

By Lemma 3.1, it suffices to show that, for any fixed y ∈ R, we also have

E

(
Zn(

√
nσy)

Zn

)2

→ �(y) as n → ∞.
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Recall that, for any fixed y ∈ R,

δn,i =
{

1 if xn,i ≤ √
nσy,

0 otherwise.

Then

E

(
Zn(

√
nσy)

Zn

)2

= E

(
1

Z2
n

Zn∑
i=1

δ2
n,i

)
+ E

(
1

Z2
n

Zn∑
i �=j=1

δn,iδn,j

)
.

Firstly, it is known that, in the explosive case under the assumption that p0 = 0, P(Zn →
∞) = 1. Also, we have

P

(
0 <

1

Z2
n

Zn∑
i=1

δ2
n,i <

1

Zn

)
= 1.

Hence,

P

(
1

Z2
n

Zn∑
i=1

δ2
n,i → 0

)
= 1,

so, by the bounded convergence theorem,

E

(
1

Z2
n

Zn∑
i=1

δ2
n,i

)
→ 0 as n → ∞. (3.1)

Secondly, by the symmetry consideration conditioned on the branching tree (but not the random
walk), we have

E

(
1

Z2
n

Zn∑
i �=j=1

δn,iδn,j

)
= E

(
1

Z2
n

Zn∑
i �=j=1

E(δn,iδn,j | Zn)

)

= E

(
1

Z2
n

Zn∑
i �=j=1

E(δn,1δn,2 | Zn)

)

= E

(
Zn

(
Zn − 1

)
Z2

n

)
E(δn,1δn,2).

Note that, by the bounded convergence theorem,

E

(
Zn

(
Zn − 1

)
Z2

n

)
→ 1 as n → ∞. (3.2)

Now, let τn,2 be the generation number of the last common ancestor of any two randomly
chosen individuals in the nth generation. Then, by Theorem 3.1 we have

n − τn,2
d−→ τ̃2 as n → ∞

for some random variable τ̃2. Let xτn be the position of the last common ancestor of these two
individuals corresponding to the positions xn,1 and xn,2. Then we can write

xn,i = xτn + Yn,i , i = 1, 2,

where Yn,i is the net displacement of the individual with position xn,i from generation τn to n.
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Clearly, Yn,1 and Yn,2 are independent. Moreover, xτn , Yn,1, and Yn,2 can be written as

xτn = x0,1 +
τn,2∑
j=1

ηj and Yn,i =
n−τn,2∑
j=1

ηi,j for i = 1, 2,

respectively, where {ηj }j≥1, {η1,i}j≥1, and {η2,i}j≥1 are i.i.d. copies with distribution π1 and
are independent of each other. Therefore,

E(δn,1δn,2)

= E(E(1{xn,1≤√
nσy} 1{xn,2≤√

nσy} | n − τn,2))

= E(E(1{∑τn,2
j=1 ηj ≤√

nσy−x0,1−∑n−τn,2
j=1 η1,j } 1{∑τn,2

j=1 ηj ≤√
nσy−x0,1−∑n−τn,2

j=1 η2,j } | n − τn,2))

= E

(
P

( τn,2∑
j=1

ηj ≤ √
nσy − x0,1 − max

{n−τn,2∑
j=1

η1,j ,

n−τn,2∑
j=1

η2,j

} ∣∣∣∣ n − τn,2

))
.

Since n − τn,2
d−→ τ̃2 as n → ∞ and P(τ̃2 < ∞) = 1, we have, for i = 1, 2,

n−τn,2∑
j=1

ηi,j
d−→

τ̃2∑
j=1

ηi,j as n → ∞.

Also, τn,2
d−→ ∞ and τn,2/n

d−→ 1 as n → ∞. Hence, as n → ∞,

P

( τn,2∑
j=1

ηj ≤ √
nσy − x0,1 − max

{n−τn,2∑
j=1

η1,j ,

n−τn,2∑
j=1

η2,j

} ∣∣∣∣ n − τn,2

)

→ �(y) with probability 1.

Then, by the bounded convergence theorem,

E(δn,1δn,2) → �(y) as n → ∞. (3.3)

So, (3.1), (3.2), and (3.3) together imply that

E

(
Zn(

√
nσy)

Zn

)2

→ �(y) as n → ∞,

completing the proof.

3.2. Proof of Theorem 2.2

(a) Let −∞ < y1 < y2 < ∞ be any two fixed real numbers. Then

P

(
Zn(

√
nσy1)

Zn

≤ Zn(
√

nσy2)

Zn

)
= 1.

So,

P

(
Zn(

√
nσy1)

Zn

= 1,
Zn(

√
nσy2)

Zn

= 0

)
= 0 for any n = 1, 2, . . .,
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and, hence,

P

(
Zn(

√
nσy1)

Zn

= 1,
Zn(

√
nσy2)

Zn

= 0

)
→ 0 as n → ∞.

Also, by Theorem 2.1, we have

Zn(
√

nσyi)

Zn

d−→ δyi
as n → ∞,

where δi is a Bernoulli random variable with P(δyi
= 1) = �(yi) = 1 − P(δyi

) = 0 for
i = 1, 2. Therefore, as n → ∞,

P

(
Zn(

√
nσy1)

Zn

= 0,
Zn(

√
nσy2)

Zn

= 0

)
= P

(
Zn(

√
nσy2)

Zn

= 0

)
→ 1 − �(y2)

and

P

(
Zn(

√
nσy1)

Zn

= 1,
Zn(

√
nσy2)

Zn

= 1

)
= P

(
Zn(

√
nσy1)

Zn

= 1

)
→ �(y1).

Moreover, since (δy1 , δy2) only take values on the set {(0, 0), (0, 1), (1, 1)},

P

(
Zn(

√
nσy1)

Zn

= 0,
Zn(

√
nσy2)

Zn

= 1

)
→ �(y2) − �(y1),

completing the proof of part (a).
(b) The proof of part (b) is similar to the above and is hence omitted.
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