
XIII

Hadron spectroscopy

Studies of hadron masses, and of both strong and electromagnetic decays of
hadrons, provide insights regarding QCD dynamics over a variety of distance scales.
Among various possible theoretical approaches, the potential model has most heav-
ily been employed in this area. We shall start our discussion by considering heavy-
quark bound states, which begin to approximate truly nonrelativistic systems and
for which the potential model is expected to provide a suitable basis for discussion.

XIII–1 The charmonium and bottomonium systems

Quarkonium is the bound state of a heavy quark Q with its antiparticle. Two
such systems, charmonium (cc̄) and bottomonium (bb̄) have been the subject of
much experimental and theoretical study; a comprehensive overview is provided by
[Br et al. 11]. Due to weak decay of the top quark, the t t̄ system has rather different
properties from these, and thus constitutes a special case (cf. Sect. XIV–2).

Since the quarkonium systems are quark–antiquark composites, we shall employ
the set of quantum numbers n,L, S, J introduced in Sect. XI–2. One generally
refers to the individual quarkonium levels with the nomenclature of Table XIII–1,

Table XIII–1. Nomenclature for S-wave and P -wave states
in the cc̄ and bb̄ systems.

L S Charmonium Bottomonium

0 1 ψ(nS)a ϒ(nS)
0 ηc(nS) ηb(nS)

1 1 χcJ (nP ) χbJ (nP )
0 hc(nP ) hb(nP )

aFor historical reasons, the spin-one charmonium ground state is
called J/ψ .
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Fig. XIII–1 The low-lying spectrum of charmonium.

although the nL identification is sometimes replaced by either the degree of excita-
tion or the mass, e.g., ψ(2S) is called ψ ′ or ψ(3686). The n2S+1LJ spectroscopic
notation is also invoked on occasion.

Figs. XIII–1,2 give a summary of the lightest observed cc̄ and bb̄ states. Most of
these states, as well as their transitions have been detected both in the charmonium
and bottomonium systems [Br et al. 11]. The largest set of observed excitations
comes from the ψ(nS) and ϒ(nS) radial towers, reaching up to n = 6 for the ϒ
system. Excitation energies are relatively small on the scale of the bottomonium
reduced mass μb � 2.5 GeV, but not that of charmonium μc � 0.8 GeV.

Phenomenological potentials: Historically, the success of potential models in
charmonium was of major importance in convincing the community that quarks
were simple dynamical objects and that QCD provides a manageable theory of the
strong interactions. Because of this success, we describe the states by the spec-
troscopic classification of nonrelativistic quantum mechanics. Thus, quarkonium
mass values are often expressed as

m[nLSJ ] = 2MQ + E[nLSJ ], (1.1)
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Fig. XIII–2 The low-lying spectrum of bottomonium.
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Fig. XIII–3 Energy levels of various potential functions.

where E[nLSJ ] is obtained by solving the Schrodinger equation for a particle of
reduced mass μQ = MQ/2 moving in the field of an assumed potential energy
function. The shape of the potential is chosen via a combination of theoretical and
phenomenological considerations.

The spectra of quarkonium states already hints at the radial dependence of
the QQ̄ potential, with the progression in nL levels suggesting an interaction
which lies ‘between’ Coulomb and harmonic oscillator potentials, as depicted in
Fig. XIII–3. Conceptually, the simplest potential that matches QCD to this
behavior is

V (r) = br − a

r
+ V0, (1.2)

where a, b, V0 are constants and the color dependence between quark and antiquark
is that in Eq. (XI–2.4). The Coulomb-like 1/r component is designed to reproduce
one-gluon exchange at short distance. The confining linear ‘br’ term models a
color-flux tube of constant energy density, as noted in Sect. XI–2. The coefficient
b is commonly described in the literature as the string tension, in reference to the
string model of hadrons, and its value is estimated from a string model relation
involving the typical slope α′ of a hadronic Regge trajectory (cf. Table XIII–2),

b = (2πα′)−1 � 0.18 GeV2. (1.3)

This is equivalent to a restoring force of about 16 tons!
In practice, phenomenological studies of quarkonium can be carried out by adopt-

ing the potential of Eq. (1.2) or another assumed potential energy functions. Exam-
ples include the following, e.g.,1

V (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 64π2

27 F
{[
q2 ln

(
1+ (q2/2)

)]−1
}
{ � 0.4 GeV} ,

br − a/r
{
b� 0.18 GeV2

a� 0.52

}
,

crd
{
c� 6.87 GeV
d � 0.1

}
,

(1.4)

1 The second and third potentials provide fits only up to an additive constant.
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Table XIII–2. Regge trajectories.

Trajectory N Slopea J -intercept

N 3 0.99 −0.34
� 3 0.92 0.07
 3 0.94 −0.64
� 3 1.1 −1.2
�∗ 2 0.91 −0.24
π 3 0.72 −0.05
ρ 4 0.84 0.54
K 4 0.69 −0.22
K∗ 4 0.86 0.29

aIn units of GeV−2

where F{. . . } denotes a Fourier transform. The first two of the potentials in Eq. (1.4)
are commonly called the ‘Richardson’ [Ri 79] and ‘Cornell’ [EiGKLY 80] poten-
tials, respectively. They are constructed to mimic QCD by exhibiting a linear con-
fining potential at long distances and single gluon exchange at short distances.
The Richardson potential even incorporates the asymptotic freedom property for
the strong interaction coupling. The third is a power-law potential [Ma 81] which,
although not motivated by QCD, can be of use in analytical work or in obtain-
ing simple scaling laws. The power-law potential also serves as a reminder of
how alternative forms can achieve a reasonable success in fitting bb̄ and cc̄ spec-
tra, which, after all, are primarily sensitive to the limited length scale 0.25 ≤
r(fm) ≤ 1.

From the viewpoint of phenomenology, it is ultimately more useful to appreciate
the general features of the QQ̄ static potential than to dwell on the relative virtues
and shortcomings of individual models.

Effective field theories: The full theory of QCD is richer than can be captured in a
single potential function. Gluon degrees of freedom can be dynamically active, and
field-theoretic corrections introduce subtle modification to masses and couplings.
Effective field theory techniques provide a modern way of understanding both the
perturbative and nonperturbative properties of heavy-quark systems.

There are various scales associated with quarkonium systems. The heavy-quark
mass sets a hard scale. Degrees of freedom associated with this scale may be treated
perturbatively. Scales connected to the momentum transfer in the bound state,
p ∼ mv, are related to the typical spatial extent, 〈 r 〉, of the bound state. The
time scales involved for quarkonium dynamics are related to the nonrelativistic
kinetic energy E ∼ mv2/2. For large quark mass, the velocity, typically of order
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370 Hadron spectroscopy

v2 ∼ 0.1 → 0.3, can be treated as a small parameter such that each of these scales
is technically distinct, with

mQ 
 mQv 
 mQv
2. (1.5)

Different versions of effective field theories can be invoked to treat the different
scales [BrPSV 05].

In Non-Relativistic QCD, abbreviated as NRQCD, degrees of freedom of order
mQ are integrated out from the theory [CaL 86]. This leaves the light degrees of
freedom being the full set of particles of QCD. The gluons (and light quarks)
are included dynamically, but are treated with an ultraviolet cut-off of order mQ

because their high-momentum components have been integrated out.2 The heavy
quark itself is treated nonrelativistically. Because the hard modes have been inte-
grated out, there appear higher-order gauge-invariant interactions with Wilson coef-
ficients that parameterize the strength of the new terms. The effective lagrangian
then starts out as

L = L0G + L0Q + L(h.o.)Q (1.6)

where L0G is the usual lagrangian for gluons and L0Q is the lowest-order lagrangian
for nonrelativistic quarks

L0Q = ψ†

[
iD0 + Ck

2mQ

D2

]
ψ (1.7)

where D0, D give the coupling of the heavy quarks to gluons. To lowest order in
the both the QCD coupling constant and in the heavy-quark expansion one can set
the Wilson coefficient Ck = 1, but perturbative corrections lead to different defini-
tions of the heavy-quark mass (see Sect. XIV–1) and Ck can account for matching
onto these definitions. Operators that are higher order in the 1/mQ expansion also
emerge. Examples are

L(h.o.)Q = ψ†

[
C4

8m3
Q

D4 + g3CG

2mQ

σ · B
]
ψ + C0

m2
Q

ψ†ψψ†ψ + · · · (1.8)

The first two terms here describe higher-order interactions with gluons, while the
last term is a contact interaction which mimics the effect of a potential. In effective
field theory, the contact interaction is appropriate because it comes from the higher-
momentum modes above the scale p ∼ mv. The gluonic Coulomb interaction is
still treated perturbatively. There will be further contact interactions for different
spin and color combinations.

2 See the discussion of Sec. IV–7.
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XIII–1 The charmonium and bottomonium systems 371

Because this effective theory includes gluons, there are perturbative corrections
also to the heavy-quark mass. These are discussed more fully in Sect. XIV–1. For
the purposes here, we will note that the definition of the quark mass is tied up with
an overall energy shift in the potential, previously denoted by V0 in Eq. (1.2). Def-
initions of the mass which are perturbatively well-behaved are those that are tied
to physical thresholds [HoSSW 98]. Effectively, this absorbs V0 into the definition
of the quark mass within some specific prescription. Because this prescription may
vary, the appropriate kinetic energy mass in Eq. (1.7) may have a different value,
leading to Ck �= 1.

One can go further and integrate out degrees of freedom between p ∼ mv and
E ∼ mv2. Since these modes are below the spatial scale of the bound state,
contact interactions are no longer appropriate, but they must be replaced by a
spatially dependent potential [PiS 98]. Such an effective field theory is labeled
pNRQCD, with the ‘p’ referring to the potential. This starts to make closer contact
with the phenomenological potential models. However, it remains a field theory
and there are controlled perturbative modifications from the so-called ‘ultra-soft’
modes which remain dynamical at this scale [HoS 03].

The effective field theory treatments put many of the early successes of phe-
nomenological potential models onto a firmer footing. Moreover, they have also
been successful at helping to connect lattice calculations to the phenomenology of
quarkonium.

Lattice studies: Lattice-gauge theory is well suited to the exploration of the
heavy-quark potential [DeD 10, GaL 10, Ro 12]. In the heavy-quark limit, the
quarks become static and their interaction energy can be measured by numerical
methods. Such studies confirm the general picture of a ‘Coulomb plus linear’ inter-
action. However, the lattice calculations can also provide the connection between
the physical values of the parameters to the underlying scale of QCD, QCD.

In general, the static interaction can be described by a function

V (r) = −
∫

d3q

(2π)3
eiq·r

a
(
q2
)

q2
(1.9)

At large q, the coefficient a(q) is determined by the perturbative expansion of
QCD, which has now been accomplished to three-loop order [AnKS 10]. Numeri-
cal studies must then match on to the perturbative results at short distance, and this
can be accomplished.3 In doing so, the residual interactions can be mapped onto
the operators of NRQCD and/or the potential of pNRQCD. While the state of the
art continues to advance, the present connection between theory and experiment in
the quarkonium spectrum is impressive [Br et al. 11].

3 See, e.g., [Le 98]
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Transitions in quarkonium

All quarkonium states are unstable. Among the decay mechanisms are annihilation
processes, hadronic transitions, and radiative transitions. Roughly speaking, the
lightest quarkonium states are relatively narrow, but those lying above the heavy-
flavor threshold, defined as twice the mass of the lightest heavy-flavored meson
and depicted by dashed lines in Figs. XIII–1 and XIII–2, are broader. This pattern
is particularly apparent for the 3S1 states – below the heavy-flavor threshold, widths
are typically tens of keV, whereas above, they are tens of MeV. The primary reason
for this difference is that above the heavy-flavor threshold, quarkonium can rapidly
‘fall apart’ into a pair of heavy-flavored mesons, e.g., ϒ[4S] → BB̄, whereas
below, this mode is kinematically forbidden.

In the following, we shall describe only decays which occur beneath the heavy-
flavor threshold, and shall limit our discussion to annihilation processes and
hadronic decays. Radiative electric and magnetic dipole transitions are adequately
described in quantum mechanics textbooks.

Annihilation transitions: To motivate a procedure for computing annihilation
rates in quarkonium, let us consider the simple case of a charged lepton of mass
m moving nonrelativistically with its antiparticle in a 1S0 state, and undergoing a
transition to a two-photon final state.4 First, we write down the invariant amplitude
for the pair annihilation process,

M = −ie2v̄(p+, λ+)
[
ε/∗2

i

p/− − q/1 −m
ε/∗1 + ε/∗1

i

p/− − q/2 −m
ε/∗2

]
u(p−, λ−),

(1.10)

for momentum eigenstates. In the lepton rest frame, we are free to choose the trans-
verse gauge ε∗1 · p− = ε∗2 · p− = 0, i.e. ε0

1,2 = 0. Since 3S1 states can make no
contribution to the two-photon mode, we can compute the squared-amplitude for a
1S0 transition by summing over initial state spins,∑

λ±

|M|2 = e4

2m2

[
2+ ω1

ω2
+ ω2

ω1
− 4

(
ε∗1 · ε∗2

)2]
, (1.11)

where ω1,2 are the photon energies in the lepton rest frame. Near threshold, the
photons emerge back to back, and the differential cross section is found to be

dσ

d�
= α2

2m2v+

(
1− (ε∗1 · ε∗2)2) . (1.12)

Likewise, near threshold, a sum on photon polarizations gives

4 The 1S0 (3S1) states have even (odd) charge conjugation, and can therefore give rise to even (odd) numbers
of photons in an annihilation process.
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Fig. XIII–4 Decay of quarkonium through annihilation.

∑
σ1,2

(
1− (ε∗1 · ε∗2)2)

thr
= 2, (1.13)

and upon integrating over half the solid angle (due to photon indistinguishability)
we obtain the cross section,

σ = 4α2π

m2v+
. (1.14)

This is the transition rate per incident flux of antileptons. Since the flux is just the
antilepton velocity v+ times a unit lepton density, we interpret v+σ̄ as the transition
rate for a density of one lepton per volume. For a bound state with radial quantum
number n and wavefunction �n(x), the density is |�n(0)|2 and the lowest-order
expression for the electromagnetic decay rate �(em)

γ γ [1S0] becomes

�(em)
γ γ

[
1S0
] = v+σ̄ |�n(0)|2 = 4πα2

m2
|�n(0)|2. (1.15)

The corresponding rate for γ γ emission from 1S0 states of the bb̄ (ϒ) system is
obtained from Eq. (1.15) by including a factor e4

b = 1/81, which accounts for the
b-quark charge, and a color factor of three. Determination of the two-gluon emis-
sion is found similarly (cf. Fig. XIII–4(a)) provided the gluons are taken to be
massless free particles, and is left for a problem at the end of the chapter. Including
also the effects of QCD radiative corrections, referred to a common renormaliza-
tion point μR = mb, we have [KwQR 87]

�ϒ→γ γ

[
n1S0

] = 48πα2|�n(0)|2
81(2mb)2

[
1− 3.4

αs(mb)

π

]
,

�ϒ→gg

[
n1S0

] = 32πα2
s (mb)|�n(0)|2
3(2mb)2

[
1+ 4.4

αs(mb)

π

]
. (1.16)

Decays can also occur from the n3S1 states.5 The single-photon intermediate
state of Fig. XIII–4(b) leads to emission of a lepton pair, whereas Fig. XIII–4(c)
describes final states consisting of three gluons, two gluons and a photon, or three

5 There are annihilations from higher partial waves as well. These involve derivatives of the wavefunction at
the origin.
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374 Hadron spectroscopy

photons. For such a three-particle final state, there are six Feynman diagrams per
amplitude and three-particle phase space to contend with. Upon including QCD
radiative corrections, the results are [KwQR 87]

�ϒ→

̄[n3S1] = 16πα2|�n(0)|2
9(2mb)2

[
1− 16

3

αs(mb)

π

]
,

�ϒ→3g[n3S1] = 160
(
π2 − 9

)
α3
s (mb)|�n(0)|2

81(2mb)2

[
1− 4.9

αs(mb)

π

]
,

�ϒ→3γ [n3S1] = 64
(
π2 − 9

)
α3|�n(0)|2

2187(2mb)2

[
1− 12.6

αs(mb)

π

]
,

�ϒ→ggγ [n3S1] = 128
(
π2 − 9

)
αα2

s (mb)|�n(0)|2
81(2mb)2

[
1− 1.7

αs(mb)

π

]
. (1.17)

The QCD contributions in Eq. (1.17) are of interest in several respects. They con-
tribute, on the whole, with rather sizeable coefficients and can substantially affect
the annihilation rates. Also, they have come to be used as one of several stan-
dard inputs for phenomenological determinations of αs . To eliminate the model-
dependent factors |�n(0)|2, one works with ratios of annihilation rates,

�ϒ→ggγ

[
n3S1

]
�ϒ→3g

[
n3S1

] = 4

5

α

αs(mb)

(
1− 2.6

αs(mb)

π

)
,

�ϒ→3g
[
n3S1

]
�ϒ→μμ̄

[
n3S1

] = 10

9

(π2 − 9)α3
s (mb)

πα2

(
Mϒ

2mb

)2 (
1+ 0.43

αs(mb)

π

)
. (1.18)

In reality, there are a number of theoretical and experimental concerns which make
the extraction of αs(mb) a rather more subtle process than it might at first appear:
(i) the contribution of |�n(0)|2 in Eqs. (1.16), (1.17) as a strictly multiplicative
factor is a consequence of the nonrelativistic approximation and may be affected by
relativistic corrections; (ii) there is no assurance that O(αs)2 terms are negligible;
particularly in the light of the large first-order corrections; (iii) experiments see not
gluons but rather gluon jets, and at the mass scale of the upsilon system, jets are
not particularly well defined; and (iv) the γ spectrum observed in the γgg mode is
softer than that predicted by perturbative QCD, implying the presence of important
nonperturbative effects. Nevertheless, determinations of this type lead to the central
value (and its uncertainties) (4)

MS
= 296± 10 MeV as extracted from upsilon data

and cited earlier in Table II–2. This example indicates how demanding a task it is
to obtain a precise experimental determination of αs(q2).
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Hadron transitions: The transitions V ′ → V + π0 and V ′ → V + η involving
the decay of an excited 3S1 quarkonium level (V ′) down to the 3S1 ground state
(V ) are interesting because they are forbidden in the limits of flavor-SU(2) and
flavor-SU(3) symmetry, respectively. Their rates are therefore governed by quark
mass differences, and a ratio of such rates provides a determination of quark mass
ratios. There is a modest theoretical subtlety in extracting the rates, as degenerate
perturbation theory must be used [IoS 80]. The leading-order effective lagrangian
for these P -wave transitions must be linear in the quark mass matrix m,

LVVM = −i c

2
√

2
Fπ Tr

(
m
(
U − U †

))
εμναβ∂μVν∂αV

′
β

= c

[
(md −mu)

π3√
2
+ (2ms −md −mu)

η8√
6
+ · · ·

]
εμναβ∂μVν∂αV

′
β,

(1.19)

where c is a constant. Here, π3 and η8 are the pure SU(3) states which appear prior
to mixing

π0 = cos θ π3 + sin θ η8, η = − sin θ π3 + cos θ η8, (1.20)

where tan θ � θ = √3(md − mu)/[2(2ms −md − mu)] describes the quark mix-
ing. Upon calculating the transition amplitudes and then substituting for the small
mixing angle θ , we obtain

MV ′→Vπ0 = M0√
2

[
md −mu + 2ms −md −mu√

3
θ

]
= 3M0

2
√

2
(md −mu),

MV ′→V η0 = M0√
2

[
(md −mu)θ + 2ms −md −mu√

3

]
= 2M0√

6
(ms − m̂)+O

(
(md −mu)

2

ms

)
, (1.21)

where M0 ≡ ic εμναβkμε
∗
ν k
′
αεβ . The ratio of decay rates is found to be

� ≡ �V ′→Vπ0

�V ′→V η

= 27

16

∣∣∣∣md −mu

ms − m̂
∣∣∣∣2∣∣∣∣pπpη

∣∣∣∣3. (1.22)

We can extract a quark mass ratio from charmonium data involving ψ(2S) →
J/ψ transitions. From the measured value� = 0.0396±0.0033 [RPP 12], we find

md −mu

ms − m̂ = 0.0354 ± 0.0015, (1.23)

which is rather larger than the value in Eq. (VII–1.19) extracted from pion and
kaon masses.
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XIII–2 Light mesons and baryons

In the quark model, the light baryons and mesons are Q3 and QQ̄ combinations
of the u, d, s quarks. The resulting spectrum is very rich, containing both orbital
and radial excitations of the L = 0 ground-state hadrons. For mesons, the Q and
Q̄ spins couple to the total spins S = 0, 1, and each (L,S) combination occurs
in the nine flavor configurations of the flavor-SU(3) multiplets 8, 1. Analogous
statements can be made for baryon states.

In the face of such complex spectra, we are mainly interested in the regulari-
ties that allow us to extract the essential physics. A tour through the database in
[RPP 12] reveals some general patterns.6 Both radial and orbital excitations of the
light hadrons appear 0.5 → 0.7 GeV above the ground states. As pointed out in
Sect. XI–1, this indicates that the light quarks move relativistically. Other strik-
ing regularities are (i) the existence of quasi-degenerate supermultiplets of parti-
cles with differing flavors and equal (or adjoining) spins, and (ii) excitations of a
given flavor having increasingly large mass (M) and angular momentum (J ) val-
ues, which obey J = α′M2 + J0.

SU(6) classification of the light hadrons

To the extent that the potential is spin-independent and we work in the limit of
equal u, d, s mass, the quark hamiltonian is invariant under flavor-SU(3) and spin-
SU(2) transformations. To lowest order, hadrons are thus placed in irreducible
representations of SU(6), and quarks are assigned to the fundamental representa-
tion 6,

6 = (u↑ d ↑ s ↑ u ↓ d ↓ s ↓). (2.1)

We can also write the SU(6) quark multiplet in terms of the SU(3) flavor represen-
tation and the spin multiplicity as 6 = (3, 2). Although the SU(6), invariant limit
forms a convenient basis for a classification of the meson and baryon states, it can-
not be a full symmetry of Nature since the spin is a spacetime property of particles
whereas SU(3) flavor symmetry is not. Thus, it is impossible to unite the flavor
and spin symmetries in a relativistically invariant manner [CoM 67]. Although we
shall avoid making detailed predictions based on SU(6), it is nonetheless useful in
organizing the multitude of observed hadronic levels.

Meson supermultiplets: The L=0 QQ̄ composites are contained in the SU(6)
group product 6× 6∗ = 35⊕ 1, where the representations 35, 1 have flavor–spin
content

6 Our discussion will focus on hadron masses. Strong and electromagnetic transitions are described in
[LeOPR 88].
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Fig. XIII–5 Spectrum of the light mesons.

35 = (8, 3)⊕ (8, 1)⊕ (1, 3), 1 = (1, 1). (2.2)

The L = 0 ground state consists of a vector octet, a pseudoscalar octet, a vector
singlet, and a pseudoscalar singlet. For excited states, the meson supermultiplets
constitute an SU(6) × O(3) spectrum of particles. The O(3) label refers to how
the total angular momentum is obtained from J = L+ S, giving rise to the pattern
of rotational excitations displayed previously in Table XI–3. Roughly speaking,
mesons occur in mass bands having a common degree of radial and/or orbital exci-
tation.

Fig. XIII–5 provides a view of the mass spectrum for the lightest mesons. The
SU(6) × O(3) structure of the ground state and a sequence of orbitally excited
states are observed to the extent that sufficient data are available for particle assign-
ments to be made. Note that the S-wave QQ states are all accounted for, but gaps
appear in all higher partial waves. Even after many years of study, meson phe-
nomenology below 2 GeV is far from complete!

Baryon supermultiplets: The SU(6) baryon multiplet structure arises from the
Q3 group product (6 × 6) × 6 = (21 ⊕ 15) × 6 = 56 ⊕ 70 ⊕ 70 ⊕ 20, and has
flavor–spin content
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Fig. XIII–6 The low-lying baryon spectrum.

56 = (10, 4)⊕ (8, 2),

70 = (8, 4)⊕ (10, 2)⊕ (8, 2)⊕ (1, 2),

20 = (8, 2)⊕ (1, 4). (2.3)

A three-quark system must adhere to the constraint of Fermi statistics. Each baryon-
state vector is thus antisymmetric under the interchange of any two quarks. A
Young-tableaux analysis of the above group product reveals that the spin–flavor
parts of the 56, 70 and 20 multiplets are, respectively, symmetric, mixed, and anti-
symmetric under interchange of pairs of quarks. Since the color part of any Q3

color-singlet-state vector is antisymmetric under interchange of any two quarks,
the 56-plet has a totally symmetric space wavefunction, with zero orbital angular
momentum between each quark pair. The 70 and 20 multiplets require either radial
excitations and/or orbital excitations. Recall the characterization of the baryon
spectrum in terms of the basis defined by an independent pair of oscillators
(cf. Eq. (XI–2.12)). In this context, a standard notation for a baryon supermulti-
plet is (R, LP

N), where R labels the SU(6) representation, P is the parity, N labels
the number of oscillator quanta and L is the orbital angular momentum quantum
number (cf. Sect. XI–2).

Like meson masses, baryon masses tend to cluster in bands having a com-
mon value of N . The first three bands are shown in Fig. XIII–6, and effects of
SU(6) breaking are displayed for the first two. The lowest-lying SU(6) × O(3)
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supermultiplet is the positive-parity (56, 0+0 ), having content as in Eq. (2.3). Next
comes the negative-parity (70, 1−1 ) supermultiplet. This contains more states than
the 70-plet shown in Eq. (2.3) because the extension from L = 0 to L = 1 requires
addition of angular momenta,

(10, 2)→ (10, 4)⊕ (10, 2),
(1, 2) → (1, 4)⊕ (1, 2),

(8, 4)→ (8, 6)⊕ (8, 4)⊕ (8, 2),
(8, 2)→ (8, 4)⊕ (8, 2).

(2.4)

The number of supermultiplets grows per unit of excitation thereafter. There are
five SU(6)multiplets in theN = 2 band, (56, 2+2 ), (56, 0+2 ), (70, 2+2 ), (70, 0+2 ), and
(20, 1+2 ). Recall that the baryonic inter-quark potential was expressed in Eq. (XI–
2.10) as V = Vosc + U , where Vosc is the potential energy of a harmonic oscillator
and U ≡ V − Vosc. If the potential energy were purely Vosc, the supermultiplets
within the N = 2 band would all be degenerate. In the potential model, assuming
that the largest part of U is purely radial, this degeneracy is removed by the first-
order perturbative effect of U , and the splittings in the N = 2 band are shown at
the top of Fig. XIII–6. Aside from choosing the (56, 0+2 ) supermultiplet to have
the lowest mass, one finds the pattern of splitting to be as shown in Fig. XIII–6,
independent of the particular form of U .

Regge trajectories

It is natural to classify together a ground-state hadron and its rotational excita-
tions, e.g., the isospin one-half positive-parity baryons N(939)J=1/2 (the nucleon),
N(1680)J=5/2, N(2220)J=9/2 and N(2700)J=13/2. Although no higher-spin entries
have been detected in this particular set of nucleonic states (presumably due to
experimental limitations), there is no theoretical reason to expect any such sequence
to end. The database in [RPP 12] contains a number of similar structures, each
characteristically containing three or four members.

Each such collection of states is said to belong to a given Regge trajectory. To
see how this concept arises, let us consider the simplest case of two spinless parti-
cles with scattering amplitude f (E, z) (i.e. dσ/d� = |f (E, z)|2), where E is the
energy and z = cos θ is the scattering angle. It turns out that analytic properties of
the scattering amplitude in the complex angular momentum (J ) plane are of inter-
est. One may obtain a representation of f (E, z) in the complex J -plane by con-
verting the partial wave expansion into a so-called Watson–Sommerfeld transform,

f (E, z) =
∞∑

=0

(−)
(2
+ 1)a(E, 
)P
(−z)

→ 1

2πi

∮
C
dJ

π

sinπJ
(2J + 1)a(E, J )PJ (−z), (2.5)
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where P
 is a Legendre polynomial and C is a contour enclosing the nonnegative
integers. Suppose that as C is deformed away from the Re J -axis to, say, a line of
constant Re J , a pole in the partial wave amplitude a(E, J ) is encountered. Such
a singularity is referred to as a Regge pole and contributes (cf. Eq. (2.5)) to the full
scattering amplitude as

f (E, z) = β[E]Pα[E](−z)
sin(πα[E]) + · · · , (2.6)

where α[E] is the energy-dependent pole position in the complex J -plane and β[E]
is the pole residue.

The Regge-pole contribution of Eq. (2.6) can manifest itself physically in both
the direct channel as a resonance and a crossed channel as an exchanged particle.
Here, we discuss just the former case by demonstrating how a given Regge pole can
be related to a sequence of rotational excitations. Suppose that at some energy ER,
the real part of the pole position equals a nonnegative integer 
, i.e., Re α[ER] = 
.
Then, with the aid of the identity,

1

2

∫ 1

−1
dz P
(z)Pα(−z) = 1

π

sin(πα)

(
− α)(
+ α + 1)
, (2.7)

we can infer from Eq. (2.6) the Breit–Wigner resonance form,

a
(Rg.-ple.)

 = β

π

1

(α[E] − 
)(α[E] + 
+ 1)
� �/2

E − ER + i�/2 , (2.8)

provided Re α[ER] 
 Im α[ER]. A physical resonance thus appears if α[E] passes
near a nonnegative integer and, if the Regge pole moves to ever-increasing J values
in the complex J -plane as the energy E is increased, it generates a tower of high-
spin states. Except in instances of so-called exchange degeneracy, parity dictates
that there be two units of angular momentum between members of a given trajec-
tory. In this manner, a single Regge pole in the angular-momentum plane gives rise
to the collection of physical states called a Regge trajectory.

A plot of the angular momentum vs. squared-mass for the states on any meson
or baryon trajectory reveals the linear behavior,

J � α′M2 + J0. (2.9)

A compilation of slopes (α′) and intercepts (J0) appears in Table XIII–2, with each
trajectory labeled by its ground-state hadron. Such linearly rising trajectories have
been interpreted as a consequence of QCD [JoT 76]. In this picture, hadrons under-
going highly excited rotational motion come to approach color-flux tubes, where-
upon it becomes possible to relate the angular momentum of rotation to the energy
contained in the color field. This line of reasoning leads to the behavior of Eq. (2.9),
and accounts for the universality seen in the slope values displayed in Table XIII–2.
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SU(6) breaking effects

Although an SU(6)-invariant hamiltonian provides a convenient basis for describ-
ing light hadrons, the physical spectrum exhibits substantial departures from the
mass degeneracies which occur in this overly symmetric picture. In the following,
we shall consider some simple models for explaining the many SU(6)-breaking
effects observed in the real world.

The QCD Breit–Fermi model: If one ascribes the nonconfining part of the quark
interaction to single-gluon exchange, the nonrelativistic limit yields the ‘QCD
Breit–Fermi potential’ [DeGG 75]

Vone-gluon = −4kαs
3r

+ 4kαs
3

∑
i<j

[
8π

3MiMj

si · sj δ3(r)+ π

2
δ3(r)

(
1

M2
i

+ 1

M2
j

)

+ 1

MiMjr3

[
3(si · r̂)(sj · r̂)− si · sj

]
+ 1

r3

(
si · r× pi

2M2
i

− sj · r× pj
2M2

j

− sj · r× pi − si · r× pj
MiMj

)

+ 1

2MiMjr

(
pi · pj + r̂(r̂ · pi) · pj

)]
, (2.10)

where αs is the strong fine structure constant, r ≡ rij , and k denotes the color
dependence of the potential (cf. Sect. XI–2) with k = 1 (1/2) for mesons (baryons).
In keeping with the potential model, the mass parameters {Mi} are interpreted
as constituent quark masses. Although the QCD Breit–Fermi model incorporates
SU(6) breaking by means of both quark mass splittings and spin-dependent inter-
actions, it lacks a rigorous theoretical foundation. One might argue on the grounds
of asymptotic freedom that Eq. (2.10) does justice to physics at very short distances
(in the approximation that αs is constant), but there is no reason to believe that it
suffices at intermediate-length scales. It also does not account for mixing between
isoscalar mesons, so such states must be considered separately.

Meson masses: The gluon-exchange model can be used to obtain information
on constituent quark mass. In the following, we shall temporarily ignore the minor
effect of isospin breaking by working with M̂ ≡ (Mu+Md)/2. To compute meson
masses, we take the expectation value of the full hamiltonian between SU(6) eigen-
states, specifically the L = 0 QQ̄ states.7 Although the form of Eq. (2.10) implies
the presence of spin–spin, spin–orbit, and tensor interactions, the spin–orbit and

7 An analysis of spin dependence in the L = 1 states is the subject of a problem at the end of the chapter
(cf. Prob. XIII–3)).
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tensor terms do not contribute here because each quark pair moves in an S wave,
and it is the spin–spin (hyperfine) interaction which lifts the vector meson states
relative to the pseudosclar mesons. We can parameterize the nonisoscalar L = 0
meson masses as

m
(L=0)
QQ̄

= n̂M̂ + nsMs +
〈p2

Q〉
2MQ

+
〈p2

Q̄
〉

2MQ̄

+HQQ̄〈sQ · sQ̄〉, (2.11)

where n̂ and ns are the number of nonstrange (n) and strange consituents (s) respec-
tively, and HQQ̄ refers to the hyperfine interaction in the second line of Eq. (2.10).

One consequence of Eq. (2.11) is a relation involving the mass ratio M̂/Ms .
Fitting the four masses π(138), K(496), ρ(770), K∗(892) to the parameters in
Eq. (2.11) yields

mK∗ −mK

mρ −mπ

= Hns

Hnn
= M̂

Ms

� 0.63. (2.12)

The origin of this result lies in the inverse dependence of the hyperfine interaction
upon constituent quark mass, which affects the mass splitting between S = 1 and
S = 0 mesons differently for strange and nonstrange mesons. The numerical value
of M̂/Ms in Eq. (2.12) graphically demonstrates the difference between constituent
quark masses and current quark masses, the latter having a mass ratio of about
0.04. In earlier sections of this book, which stressed the role of chiral symmetry,
the pion was given a special status as a quasi-Goldstone particle. In theQQ̄model,
the small pion mass is seen to be a consequence of severe cancelation between the
spin-independent and spin-dependent contributions. However, the parameterization
of Eq. (2.11) cannot explain the large η′(960) mass.

In addition to the SU(6) symmetry-breaking effects of mass and spin, there is an
additive contribution present in the isoscalar channel, which is induced by quark–
antiquark annihilation into gluons. In the basis of u, d, s quark flavor states, this
annihilation process produces a 3× 3 mass matrix of the form⎛⎝2Mu +X X X

X 2Md +X X

X X 2Ms +X

⎞⎠ , (2.13)

where for C = +1(−1) mesons, X is the two-gluon (three-gluon) annihilation
amplitude, and for simplicity we display just the quark mass contribution (2Mi)
as the nonmixing mass contribution. The annihilation process is a short-range phe-
nomenon, so the magnitude ofX depends sharply on the orbital angular momentum
L of the QQ̄ system. For L �= 0 waves (where the wavefunction vanishes at zero
relative separation), and C = −1 channels (where the annihilation amplitude is
suppressed by the three powers of gluon coupling), we expectMs−M̂ 
 X. In this
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limit, diagonalization of Eq. (2.13) yields to leading order the set of basis states
(ūu± d̄d)/√2 and s̄s. Only the L = 0 pseudoscalar channel experiences opposite
limit X 
 Ms − M̂ , wherein to leading order the basis vectors are the SU(3) sin-
glet state (ūu+ d̄d+ s̄s)/√3 and octet states (ūu− d̄d)/√2, (ūu+ d̄d−2s̄s)/

√
6.

The overall picture that emerges is one of relatively unmixed light pseudoscalar
states, and heavily mixed vector, tensor, etc., states.

Baryon masses: Applying the one-gluon exchange potential to the ground-state
baryons of (56, 0+0 ) yields a mass formula analogous to Eq. (2.11),

m
(L=0)
Q3 = n̂M̂ + nsMs +

3∑
i=1

〈p2
i 〉

2Mi

+ 1

2

∑
i<j

Hij 〈si · sj 〉. (2.14)

For the system of 1/2+ and 3/2+ (iospin-averaged) baryons, there are eight mass
values and since the above mass formula contains five parameters, one should
obtain three relations. The additional perturbative assumption Hss −Hns = Hns −
Hnn for the hyperfine mass parameters yields the Gell-Mann–Okubo relation of
Eq. (XII–3.10) for the 1/2+ baryons and the equal spacing rule for 3/2+ states,

m�∗ −m� = m!∗ −m�∗ = m� −m!∗ .

(Expt. 153 MeV = 149 MeV = 139 MeV) (2.15)

A third relation which relates the 3/2+ and 1/2+ masses and is independent of
further perturbative assumptions has the form

3m −m� − 2mN = 2(m�∗ −m�)

(Expt. : 276 MeV = 305 MeV) (2.16)

In addition, one can obtain estimates for M̂/Ms , among them

M̂

Ms

= 2(m�∗ −m�)

2m�∗ +m� − 3m

� 0.62,

M̂

Ms

= m�∗ −m�

m� −mN

� 0.65, (2.17)

both in accord with Eq. (2.12).
Isospin-breaking effects: The above description of SU(6) breaking assumes

isospin conservation. In fact, hadrons exhibit small mass splittings within isospin
multiplets, arising from electromagnetism and the u − d mass difference. In the
pion and kaon systems, we were able to use chiral SU(3) symmetry to isolate each
of these separately. Unfortunately, this is not possible in general, and models are
required to address this issue.
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There are a few consequences which follow purely from symmetry considera-
tions. Since the mass difference mu −md is �I = 1, the �I = 2 combinations

m�+ +m�− − 2m�0 = 1.7± 0.1 MeV, mρ+ −mρ0 = −0.3± 2.2 MeV,
(2.18)

arise only from the electromagnetic interaction. In addition, both electromagnetic
and quark mass contributions satisfy the Coleman–Glashow relation [CoG 64],

m�+ −m�− +mn −mp +m!− −m!0 = 0

[Expt. 0.4± 0.6 MeV = 0]. (2.19)

For electromagnetism, this is a consequence of the U -spin-singlet character of the
current, whereas for quark masses it follows from the �I = 1 and SU(3)-octet
character of the current.

We proceed further by using a simple model, based on the QED Coulomb and
hyperfine effects, to describe the electromagnetic interaction of quarks,

�mcoul = Acoul

∑
i<j

QiQj ,

�mhyp = −Ahyp

∑
i<j

QiQj

MiMj

si · sj , (2.20)

where Acoul, Ahyp are constants, {Qi} are quark electric charges, and the sums are
taken over constituent quarks. In �mhyp, we shall neglect further isospin break-
ing in the masses and use Mu = Md = M̂ , and assume electromagnetic self-
interactions of a quark to be already accounted for in the mass parameter of that
quark. For any values of Acoul and Ahyp, this model contains the sum rule

(mn −mp)em = −1

3
(m�+ +m�− − 2m�0) = −0.57± 0.03 MeV, (2.21)

leaving the excess due to the quark mass difference,

(mn −mp)qm = mu −md

2
· 〈n|ūu− d̄d|n〉 − mu −md

2
· 〈p|ūu− d̄d|p〉

≡ (md −mu)(dm + fm)Z0

= (mn −mp)− (mn −mp)em = 1.86± 0.03 MeV, (2.22)

where the second line in the above uses the parameterization of hyperon mass split-
tings given in Eq. (XII–3.9). To the extent that this estimate of quark mass differ-
ences is meaningful, one obtains the mass ratio,

md −mu

ms − m̂ = (mn −mp)qm

m! −m�

� 0.015, (2.23)
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to be compared to the chiral-symmetry extraction from meson masses, which
yielded 0.023. With further neglect of terms O(α(Ms − M̂)) in the hyperfine inter-
action, this exercise can be repeated for vector mesons to yield

(mK∗0 −mK∗+)em = −2

3
(mρ+ −mρ0) = 0.2± 1.5 MeV,

(mK∗0 −mK∗+)qm = (mK∗0 −mK∗+)− (mK∗0 −mK∗+)em

= 6.5± 1.9 MeV,
md −mu

ms − m̂ = mK∗0 −mK∗+

mK∗ −mρ

= 0.053± 0.016. (2.24)

The additional assumption that the constants Acoul and Ahyp are the same in the
decuplet baryons and the octet baryons, as is true in the SU(6) limit, leads to

(m�++ −m�0)em = 5

3
(m�+ +m�− − 2m�0) = 2.8± 0.2 MeV,

(m�++ −m�0)qm = (m�++ −m�0)− (m�++ −m�0)em

= −5.5± 0.4 MeV,

md −mu

ms − m̂ = 1

2

m�0 −m�++

m�∗ −m�

= 0.018± 0.002. (2.25)

Of course, the spread of values for the mass ratios raises a concern about the valid-
ity of this simple model. However, all methods of calculation agree on the small-
ness of the ratio (md −mu)/(ms − m̂).

XIII–3 The heavy-quark limit

In the quark description, a heavy-flavored hadron contains at least one of the heavy
quarks c, b, t . An effective field theory, Heavy Quark Effective Theory (HQET),
has been developed which provides a powerful tool for heavy quark physics. This
involves a study of the limit (mQ →∞) in which the theory is expanded in powers
of m−1

Q . We describe a simple introduction to the topic and much more detail can
be found in [MaW 07].

Heavy-flavored hadrons in the quark model

The spectroscopy of heavy-flavored hadrons should qualitatively follow that of the
light hadronic spectrum, with states containing a single heavy-quark Q occurring
as either mesons (Qq̄) or baryons (Qq1q2). The lowest-energy state for a given
hadronic flavor will have zero orbital angular momentum between the quarks,
leading to ground-state spin values S = 0, 1 for mesons and S = 1/2, 3/2 for
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Fig. XIII–7 Spectrum of charmed (a) mesons, (b) baryons.

baryons. The hyperfine interaction will lower the S = 0 meson and S = 1/2 baryon
masses, and both orbital and radial hadronic excitations of the ground state will be
present.

Although it is possible to contemplate extended flavor transformations which
involve interchange of the light and heavy quarks, e.g., as in the SU(4) of the
light and charmed hadrons, such symmetries are so badly broken by the difference
in energy scales MQ 
 Mq and MQ 
 QCD as to be rendered useless. The
SU(3)- and SU(2)-flavor symmetries associated with the light hadrons are still
viable, but multiplet patterns become modified. The mesons Qq̄ will exist in the
SU(3) multiplet 3∗, whereas in the baryonic Qq1q2 configurations the two light
quarks q1, q2 will form the flavor-SU(3) multiplets 6 and 3∗. For example, the
charmed system has the meson ground state

3∗ : D+
[
cd̄
]
, D0 [cū] , Ds [cs̄] ,

which displays the mass pattern of an SU(2) doublet (D+1869, D
0
1865) and an SU(2)

singlet (Ds
1969). The charmed-baryon multiplets are

6 : �++c [uuc], �+c [udc], �0
c [ddc], !+(s)c [usc], !0(s)

c [dsc], �0
c[ssc]

3∗ : +c [udc], !+ac [usc], !0a
c [dsc].

Fig. XIII–7 displays the anticipated charmed-meson and charmed-baryon levels,
including the effect of SU(3) breaking.

Heavy-quark constituent mass values can be inferred from theD∗−D andB∗−B
hyperfine splittings. That the former splitting is about three times the latter is a
consequence of Mb � 3Mc and of the inverse dependence of the hyperfine effect
upon quark mass. Analogously to Eq. (2.17), we find

M̂

Mc

= mD∗ −mD

mρ −mπ

� 0.22,
M̂

Mb

= mB∗ −mB

mρ −mπ

� 0.08, (3.1)
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where M̂ ≡ (Mu + Md)/2. These findings depend to some extent on how the
fit is done, e.g., with mesons or with baryons, and we leave further study for
Prob. XIII–4.

Spectroscopy in the mQ →∞ limit

In a hadron which contains a single heavy quark Q along with light degrees of
freedom, the heavy quark is essentially static. The best analogy is with atoms,
where the nucleus can in the first approximation be treated as a static, electrically
charged source. Likewise, for heavy hadrons the heavy quark is a static source
with color charge, and the light degrees of freedom provide a nonstatic hadronic
environment around Q. This scenario can be formalized by partitioning the heavy-
quark lagrangian as [CaL 86, Ei 88, LeT 88]

LQ = ψ̄
(
i /D −mQ

)
ψ ≡ L0 + Lspace

L0 = ψ̄
(
iγ0D0 −mQ

)
ψ, Lspace = −iψ̄γ · Dψ, (3.2)

where Dμψ is the covariant derivative of SU(3)c. Since the spatial γ matrices
connect upper and lower components, we see that the effect of Lspace is O(m−1

Q ).
Observe that the static lagrangian L0 of Eq. (3.2) is invariant under spin rotations

of the heavy quark Q. In the world defined by L0, with both O(QCD/MQ) effects
and O(αs(MQ)) effects (associated with hard-gluon exchange) ignored, heavy-
hadronic energy levels and couplings are constrained by the SU(2) spin symmetry.
It is helpful to visualize the situation. A heavy-flavored hadron of spin S will con-
tain a static quark Q having a constant spin vector SQ (with SQ = 1/2) and light
degrees of freedom having a constant angular momentum vector J
 ≡ S − SQ.8

For a meson of this type, we assume that J
 behaves as it does in the quark model,
with J
 = 1/2 in the ground state and J
 = L ± 1/2 for L > 0 rotational excita-
tions. From the decoupling of the heavy-quark spin, it follows that there will be a
two-fold degeneracy between mesons having spin values S = J
±1/2. The meson
L = 0 ground state will have J
 = 1/2 and thus degenerate states with S = 0, 1.
The L = 1 first rotational excitation with J
 = 1/2 will give rise to degener-
ate S = 0, 1 levels, whereas for J
 = 3/2 one obtains degenerate levels having
S = 1, 2. Moreover, the energy differences between different levels should be
independent of heavy-quark flavor. Analogous conditions hold for heavy flavored
baryons, and hadronic transitions between levels of differing L can be similarly
analyzed.

8 Although the light degree(s) of freedom in the simple quark model is an antiquark q̄ for mesons and two
quarks q1q2 for baryons, the physical (i.e. actual) light degrees of freedom could entail unlimited numbers of
gluons and/or quark–antiquark pairs.
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Let us explicitly demonstrate that the splitting between the JP = 1− and JP =
0− states of a Qq̄ meson must vanish in the limit of infinite quark mass. We note
that the mathematical condition for spin-independence is[

H0, S
Q
3

]
= 0, (3.3)

where SQ3 is the generator of spin rotations about the 3-axis for quark Q and H0 is
the hamiltonian obtained from L0. Since the action of SQ3 on a 0− state produces a
1− state, i.e., |M1−〉 = 2S Q

3 |M0−〉, we then have

H0|M1−〉 = m1−|M1−〉 = 2S Q
3 H0|M0−〉 = m0−|M1−〉 , (3.4)

implying that m1− −m0− → 0 as mQ →∞.
Another consequence of working in the static limit of L0 is that the propagator,

S∞(x, y), of the heavy quark in an external field can be determined exactly. From
the defining equations,(

iγ0D0 −mQ

)
S∞(x, y) = δ(4)(x − y) (D0 ≡ ∂0 + ig3A0 · λ/2), (3.5)

one has the solution

S∞(x, y) = −iP (x0, y0)δ
(3)(x− y)

[
θ(x0 − y0)e−imQ(x

0−y0)

(
1+ γ0

2

)
+ θ(y0 − x0)eimQ(x

0−y0)

(
1− γ0

2

)]
, (3.6)

where P(x0, y0) is the path-ordered exponential along the time direction,

P(x0, y0) ≡ P exp

[
i
g3

2

∫ x0

y0
dt λ · A0(x, t)

]
. (3.7)

In this approximation, the heavy quark is static at point x and the only time-
dependence is that of a phase.

This discussion can be generalized to a frame where the heavy quark is moving at
a fixed velocity v, described by a velocity-four vector vμ=pμ/mQ, with vμvμ= 1.
One can define projection operators

�v± = 1

2
(1± /v), (3.8)

where �2
v± = �v±, �v±�v∓ = 0, and �v++�v− = 1. The �v± generalize the usual

projection of ‘upper’ and ‘lower’ components into the moving frame. A quark mov-
ing with velocity v will have the leading description of its wavefunction contained
in the ‘upper’ component described by a field hv [Ge 90, Wi 91],

�v+ψ ≡ e−imQv·xhv(x), (3.9)
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where the main dependence on the quark mass has been factored out, and hv obvi-
ously satisfies�v+hv = hv. Substituting into the Dirac lagrangian, neglecting lower
components, and using �v+/D�v+ = v ·D yields

LQ = ψ̄
(
i /D −mQ

)
ψ � ψ̄�v+

(
i /D −mQ

)
�v+ψ = h̄viv ·Dhv, (3.10)

which generates the lowest-order equation of motion v · Dhv = 0. This approx-
imation can be systematically improved by inclusion of a ‘lower’ component for
the heavy-quark field [EiH 90, Lu 90, GeGW 90],

�v−ψ ≡ e−imQv·x
v(x), (3.11)

with �v−
v = 
v. The equations of motion allow us to solve for 
v by following
the sequence of steps,

0 = (i /D −mQ

)
ψ = (i /D −mQ

)
e−imQv·x [hv + 
v]

= e−imQv·x
(
mQ (/v − 1)+ ie−imQv·x /D) [hv + 
v]

= e−imQv·x
[
(−2mQ + i /D)
v + i /Dhv

]
, (3.12)

which yields 
v and ψ as


v = i

2mQ

/Dhv +O
(
m−2
Q

)
ψ = e−imQv·x

[
1+ i

2mQ

/D

]
hv +O

(
m−2
Q

)
. (3.13)

Inserting these forms into Eq. (3.10) and using �v+hv = hv and Eq. (III–3.50) for
/D/D yields

LQv = h̄v

[
i /D − /D/D

mQ

− /D(/v − 1)/D

4mQ

]
hv

= h̄v

[
iv ·D − 1

2mQ

(
DμD

μ + 1

4
g3λ

aσμνF a
μν

)
− (v ·D)2

2mQ

]
hv, (3.14)

which is the desired expansion in terms of the heavy-quark mass. Because the last
term in this expression is second order in v ·D and noting that v ·Dhv = 0 to lowest
order, it will not contribute to matrix elements at order 1/mQ and can be dropped.
The lagrangian of Eq. (3.14) corresponds to a quark moving at fixed velocity. Anti-
quark solutions can be constructed with the mass dependence e+imQv·x , with the
result

LQ̄v = k̄v

[
−iv ·D − 1

2mQ

(
DμD

μ + 1

4
g3λ

aσμνF a
μν

)
− (v ·D)2

2mQ

]
kv, (3.15)
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where the field kv satisfies �v−kv = kv. It is legitimate to neglect the production
of heavy QQ̄ pairs. However, one should superpose the lagrangians for different
velocities in a Lorentz-invariant fashion,

L =
∫
d4v δ

(
vμv

μ − 1
)
θ(v0)

[
LQv + LQ̄v

]
=
∫
d3v

2v0

[
LQv + LQ̄v

]
. (3.16)

The nature of the approximation at this stage is more of a classical limit rather
than a nonrelativistic limit. To be sure, for any given quark one can work in the
quark’s rest frame, in which case the quark will be nonrelativistic. However, when
external currents act on the fields, transitions from one frame to another occur for
which �v is not small. On the other hand, the result can be said to be classical
because quantum corrections have not yet been included and these can renormalize
the coefficients in LQQ̄v . Also, diagrams involving the exchange of hard gluons can
produce nonstatic intermediate states. Such corrections can be accounted for in
perturbation theory [Wi 91].

XIII–4 Nonconventional hadron states

Many suggestions have been made regarding the possibility of hadronic states
beyond those predicted by the simple quark model of QQ̄ and Q3 configurations.
The study of such states is hampered by the fact that we still have very little idea
why the quark model works. QCD at low energy is a strongly interacting field
theory, and we would expect a very rich and complicated description of hadronic
structure. That the result should be describable in terms of a simple QQ̄ and Q3

picture as even a first approximation remains a mystery. Quark models have been
popular because they seem to work phenomenologically, not because they are a
controlled approximation to QCD. This weakness becomes all the more evident
when one tries to generalize quark model ideas to new areas.

Much of the theoretical work on nonconventional states has involved the con-
cept of a constituent gluon G, analogous to a constituent quark Q, and we shall
cast our discussion with respect to this degree of freedom.9 It is clear that there
should be a cost in energy to excite a constituent gluon. The energy should not
be extremely large, else it would be difficult to understand the early onset of
scaling in deep-inelastic scattering. However, it cannot be less than the uncer-
tainty principle bound on a massless particle confined to a radius R ∼ 1 fm of
E = p>∼

√
3/R � 342 MeV (cf. Sect. XI–1). Model calculations have tended to

use a somewhat larger effective gluon ‘mass’.

9 However, it should be understood that such a concept has not been shown to follow rigorously from QCD, nor
indeed is a configuration of definite numbers of consitituent gluons a gauge-invariant entity (cf. Sect. X–2).
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Table XIII–3. Gauge-invariant color-singlet
interpolating fields.

Operator Dimension JPC

q̄�q 3 0−+, 1−−, 0++, 1+−, 1++
q̄�Dq 4 2++, 2−±
FF 4 0++, 2++, 0−+, 2−+
q̄�qF 5 0±+, 0±−, 1±+, 1±−, 2±+, 2±
FDF 5 1++, 3++

The basic idea of confinement is that only color-singlet states exist as physical
hadrons. If we identify those states which are color singlets and which contain few
quark or gluon quanta, we can easily find other possible configurations besidesQQ̄
and Q3. Some of the more well-known examples are

(1) Gluonia (or glueballs) – quarkless G2 or G3 states, which we shall discuss in
more detail below,

(2) Hybrids – color-singlet mixtures of constituent quarks and gluons like QQ̄G
mesons or Q3G baryons,

(3) Dibaryons – six-quark configurations in which the quarks have similar spatial
wavefunctions rather than two separate three-quark clusters,

(4) Meson molecules – loosely bound deuteron-like composites of mesons.
(5) Tetraquark states – strongly bound states with quark structures qqq̄q̄.

A convenient framework for describing the quantum numbers of possible
hadronic states is obtained by considering gauge-invariant, color-singlet operators
of low dimension [JaJR 86], as was discussed in Sect. XI–1. Table XIII–3 lists all
such operators up to dimension five which can be constructed from quark fields,
QCD covariant derivatives, and the gluon field strength, denoted respectively by
q, Dq, DF , and F . Also appearing in Table XIII–3 is the collection of JPC quan-
tum numbers associated with each such operator. Particular spin-parity values are
obtained from these operators by choosing indices in appropriate combinations.

The first resonance – σ (440)

The lightest resonance encountered in the meson spectrum has long been one of
the most controversial states. This state is officially known as f0(500), but it is
almost universally referred to as σ . The existence of this resonance has finally
been established unambiguously. However, the interpretation remains remarkably
subtle.
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The scattering of two pions in the I = 0 and J = 0 channel becomes strong at
low energies. The amplitude is described by chiral perturbation theory, as described
in Sect. VII–3. At first order in the energy expansion, the scattering amplitude is10

T
(0)

00 ≡ t0 = s

16πF 2
π

. (4.1)

This amplitude is purely real, while under the general principle of unitarity of the
S matrix the elastic amplitude must have the form

T00 = eiδ00 sin δ00, (4.2)

and has to satisfy

Im T00 = |T00|2. (4.3)

The lowest-order amplitude of Eq. (4.1) has no imaginary part. However, in chiral
perturbation theory, the imaginary part starts at order E4, and the first contribu-
tion to this appears through one-loop diagrams. Chiral perturbation theory satisfies
unitarity order by order in the energy expansion.

The σ appears as a resonance when exact unitarity is applied to the scattering
amplitude. The pole can be seen in an exceptionally simple approximation. If one
simply iterates the lowest-order amplitude one can produce a fully unitary result

T00 = t0

1− it0 , (4.4)

which satisfies Eq. (4.3) exactly and also reproduces the chiral result to first order.
The use of Eq. (4.1) with a complex value for s as the input for Eq. (4.4) produces
a pole on the second sheet at

√
s = (1− i)√8πFπ = (460− i460) MeV. (4.5)

This is the first approximation to the σ .
The complete analysis is much more subtle, but carries a similar result. By

including not only unitarity, but also crossing symmetry and analyticity, one can
obtain a dispersive representation of the scattering amplitude [Ro 71]. When eval-
uated using chiral constraints at low energy and data at high energy, the ππ data
can be fully described [CoGL 01]. When extended into the complex plane, the real
σ pole appears at [CaCL 06]

√
s = mσ − i �σ

2
= (441− i272) MeV. (4.6)

10 In order to keep the formulas simple and physically transparent in this introductory section, we present them
with the pion mass set equal to zero.

https://doi.org/10.1017/9781009291033.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.014


XIII–4 Nonconventional hadron states 393

However, this does not appear as a typical resonance. In contrast to others, the σ
width is larger than its mass, indicating that the pole is far from the physical values
of s. Moreover, in the scattering amplitude itself, there is no sign of a resonant
bump. The phase shift rises almost linearly from δ00 = 0 at threshold to δ00 =
100o around 900 MeV. The phase shift does go through 90o, traditionally a sign
of a resonance in elastic scattering, but at an energy

√
s ∼ 850 MeV which is far

removed from the pole position. These unusual features had long created confusion
about the existence of the σ , which has been cleared up only through the rigorous
combination of chiral and dispersive techniques.

The σ is a dynamical strong-coupling resonance. The resonance does not fit nat-
urally into the quark model and it does not seem profitable to try to force the σ
into that framework. While we do expect to see quark model bound states as reso-
nances, there is no requirement that all resonant behavior must be associated with
quark model states. Indeed, there is a strong theoretical argument that the σ is dif-
ferent from the bound states of QCD [Pe 04]. Recall two features of the large Nc

limit discussed in Chap. X – that the meson bound states stay constant in mass
when the large Nc limit is taken, but scattering amplitudes fall like 1/Nc. This lat-
ter requirement is satisfied for the ππ amplitudes; in the lowest-order amplitude
of Eq. (4.1), the amplitude falls with Nc because Fπ ∼ √Nc appears squared in
the denominator. Because the ππ amplitude is smaller at larger Nc, the amplti-
tude becomes of order unity at a higher energy. If the σ is indeed connected with
the strong coupling of ππ scattering, its mass will shift to higher energy as Nc

increases. While we cannot change Nc in the scattering data themselves, there are
straightforward analytic methods, such as the inverse-amplitude method [DoP 97],
which is a variant of Padé techniques,11 to closely describe the data including chiral
perturbation theory and exact unitarity. Use of such techniques is able to reproduce
the σ found in the data, and then when Nc is varied one finds [Pe 04],

mσ ∼
√
Nc, (4.7)

as expected by the general argument. Indeed, even our simplified approximation of
Eq. (4.5) has this behavior, again due to Fπ ∼ √Nc. Because the bound states of
QCD should behave as a constant, m ∼ N0

c , the σ appears distinct from these. It
appears to be a resonance associated with the unitarity of elastic scattering.12

Some caveats and cautions about this result are appropriate. This experimen-
tal resonance does not appear to be the σ of the linear σ model. As described in
Chaps. IV and VII, the coefficients of the chiral lagrangian are sensitive to the
underlying fundamental theory, and the coefficients found for QCD do not resem-

11 Our approximation of Eq. (4.5) above is equivalent to the lowest order of the inverse amplitude method.
12 Other states that may have a related origin include the κ(800) seen in Kπ scattering and the N(1405) in πN

scattering.
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ble those of the linear σ model. Nor is the existence of this state a justification to use
a fundamental σ field in field-theoretic calculations. While the use of σ exchange
with a particular coupling may be a proxy for ππ effects in a given reaction, this
use is not necessarily valid in general. The use of a fundamental σ is much more
restrictive than the variety of pionic effects. Moreover, it is neither an accurate nor
controlled approximation, and may double-count the pionic contributions, which
must also be included.

In addition, the above discussion provides a cautionary counterexample to a
widely used argument. It is common to use the violation of tree unitarity of an
effective theory as an indication of the energy at which New Physics should be
seen [LeQT 77], with the expectation that the New Physics would restore unitar-
ity. In the situation discussed above, the usual measure of tree-unitarity violation,
Re T00 ≤ 1/2, occurs at 460 MeV, which is well below the production threshold of
the quarks and gluons of QCD. Also, the energy of tree-unitarity violation varies
as
√
Nc in units where the scale of QCD is held fixed [AyAD 12]. Thus, any ‘New

Physics’ does not have the same Nc scaling. The strongly coupled effective theory
manages to respect unitarity without new degrees of freedom. The situation above
indicates that, while the violation of tree unitarity does indicate the existence of
a strongly coupled region, its use as an indicator of New Physics must be treated
with caution.

Gluonia

The existence of a gluon degree of freedom in hadrons is beyond dispute, with
evidence from deep-inelastic lepton scattering and jet structure in hadron–hadron
collisions. However, trying to predict the properties of a new class of hadrons
whose primary ingredient is gluonic is nontrivial. Hypothetically, if quarks could
be removed from QCD the resulting hadron spectrum would consist only of gluo-
nia (or ‘glueballs’).

Gluonic configurations should be signaled by the existence of extra states beyond
the expected nonets of QQ̄ hadrons. However, mixing with QQ̄ hadrons is gen-
erally possible (cf. Sect. X–2). Although predicted by the 1/Nc expansion to be
suppressed, such mixing effects serve to cloud the interpretation of data vis-à-vis
gluonium states. Referring to the interpolating fields mentioned above, we see that
for gluons the gauge-invariant combinations

Fa
μνF

aμν, F a
μλF

λ
aν, F a

μνF̃
aμν, F a

μλF̃
λ
aν (4.8)

can be formed out of two factors of a gluon field-strength tensor Fa
μν or its dual

F̃ aμν . The spin, parity, and charge conjugation carried by these these operators
are respectively JPC = 0++, 2++, 0−+, 2−+, and are thus the quantum numbers
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expected for the lightest glueballs,13 i.e., such operators acting on the vacuum state
produce states with these quantum numbers. Although there is no a priori guaran-
tee that one obtains a single particle state (e.g., a 2++ operator could in principle
create two 0++ glueballs in a D wave), the simplicity of the operators leads one to
suspect that this will be the case. There is one, somewhat controversial, construct
missing from the above list. Two massive spin-one particles in an S wave can have
JPC = 1−+ as well as JPC = 0++, 2++, and some models predict such a gluonium
state. However, a 1−+ combination of two massless on-shell vector particles is for-
bidden by a combination of gauge invariance plus rotational symmetry [Ya 50].
The lack of a 1−+ gauge-invariant, two-field operator is an indication of this.

Aside from a list of quantum numbers and some guidance as to relative mass
values, theory does not provide a very clear profile of gluonium phenomenology.
Lattice-gauge methods offer the best hope for future progress. Present quenched
lattice studies predict that in a quarkless version of QCD the lightest glueball is a
0++ state of mass 1.7 ± 0.1 GeV and while the 2++ and 0−+ glueballs are about
1.4± 0.1 times heavier [Ba et al. 93], [MoP 99], [Ch et al. 06].

The challenge arises when couplings to quark degrees of freedom are intro-
duced, in which case substantial mixing between quark and gluonium states must
occur. Lattice studies of the mixing with the 0++ state have yielded mixed results,
some indicating a lowering of the mass by as much as several hundred MeV
[Ha et al. 06], while others show little effect [Ri et al. 10]. It is generally agreed
that inclusion of quarks has little effect on the mass of the 2++ and 0−+ states
[Ri et al. 10], [HaT 02]. The problem has also been studied via QCD sum rules
with inclusion of instanton effects, but again there exists considerable uncertainty
[Fo 05], [Ha et al. 11].

Gluonium states would be classified as flavor-SU(3) singlets and if mixing with
quark states exist there should exist ‘extra’ such states. An example of this phe-
nomenon exists in the 1.5 GeV region where the states

f0(1370), f0(1500), f0(1710), K∗
0 (1430), a0(1450)

can be interpreted as a nonet of qq̄ states plus a glueball [AmC 96]. In this picture
the three f0 states are mixtures of the 0++ glueball and the two qq̄ states from
the nonet. The validity of this description relies on the existence of these three f0

resonances. While the f0(1500) and f0(1710) are reasonably well established and
have significant two-meson decay channels, the same is not true of the f0(1370),
which, if it does exist, has a large (>80%) decay fraction into 4π . For this
reason the interpretation in terms of three-channel mixing of these states is still

13 Gluonic operators with three field-strength tensors produce states with JPC = 0±+, 1±+, 2±+, 1±+, 2±−,
3±−. Because of the extra gluon field, one expects these states to be somewhat heavier.
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Table XIII–4. Spectroscopy of six-quark
configurations.

SU(6) of color-spin SU(3) of flavor Spin

490 1 0
896 8 1,2
280 10 1
175 10∗ 1,3
189 27 0,2
35 35 1

1 28 0

controversial. Thus, despite 30 years of work on the problem of glueballs, the situ-
ation remains confused. A recent review of the subject can be found in [Oc 13].

Additional nonconventional states

There is a widespread belief that gluonium states must appear in the spectrum of the
QCD hamiltonian, though as discussed above it has proved challenging to identify
them. For other kinds of nonconventional configurations, it is also difficult to reach
a meaningful consensus, although experimental efforts to detect such states are
ongoing. We briefly review several such possibilities.

(i) Hybrids: From Table XIII–3, we see that among the Q̄QG meson hybrids is
one with the quantum numbers JPC = 1−+. This would-be hadron is of particular
interest because comparison with Table XI–3 reveals that it cannot be a Q̄Q config-
uration. Model calculations suggest that the lightest such state should be isovector,
with mass in the range 1.5–2.0 GeV, and that such states may largely decouple
from L = 0 Q̄Q meson final states. A study of Q3G baryon hybrids reveals that
none of the states is exotic in the sense of lying outside the usual Q3 spectrum
[GoHK 83].

(ii) Dibaryons: The most remarkable aspect learned yet about the dibaryon states
is how much six-quark configurations are restricted by Fermi–Dirac statistics.
Table XIII–4 lists the possible six-quark SU(3) multiplets along with their spin
values [Ja 77]. Of this collection of states, the most attention has been given to
the spinless SU(3)-singlet state, called the H-dibaryon. This particle, which has
strangeness S = −2 and isospin I = 0, is predicted to be the lightest dibaryon,
and if bound would to be unstable to weak decay. A series of experiments has failed
to find the H, so at this time there is no evidence for the existence of dibaryons.

(iii) Hadronic molecules and tetraquarks: Particles with the quark content qqq̄q̄
also form color singlets. The literature distinguishes two types of such states:
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hadronic molecules and tetraquarks. Roughly speaking, the molecular states refer
to two separate qq̄ color-singlet states that are lightly bound. Since the binding
energy is small, such states could be expected to be found right near the threshold
for the two mesons. Tetraquarks refer to configurations where the qqq̄q̄ constituents
are more compactly intertwined, with the details of the configuration varying in
different models. Clearly, there can be a continuum interpolating between these
extremes. We will not enter into the debate about the signals for the two classes of
four-quark states.

There appears to be clear evidence for the existence of a state in this category.
The Zc(3900) [Li et al. 13] [Ab et al. 13] has mass and production properties that
indicate that it contains a cc̄ pair. However, it also carries a charge which proves
that it also contains light quarks with the ud̄ combination producing the positive
charge. The internal configuration has not been sorted out yet.

Among the particles that have been discussed as molecules are the isovector
a0(980) and isoscalar f0(975) mesons. Nominally, these particles have the quan-
tum numbers of the L = 1 sector of the QQ̄ model, and their near equality in mass
suggests an internal composition similar to that of the ρ(770) and ω(783), i.e.,
orthogonal configurations of nonstrange quark–antiquark pairs. However, among
properties which argue against this are their relatively strong coupling to modes
which contain strange quarks, their narrower-than-expected widths, and their γ γ
couplings. The proximity of the KK̄ threshold and the importance of the KK̄
modes has motivated their interpretation as KK̄ molecules [WeI 83]. However,
interpretation of scattering data near the 1 GeV region is not clear, and indeed a
strong case has been made for the alternative qqq̄q̄ picture [’tHoIMPR 08] and for
heavier states as well.

A clearer situation is provided by the X(3872), which has been interpreted in
terms of a D0–D̄∗0 hadronic molecule, which is bound by π0 exchange at long
distance and quark/color exchange at short distances. That X(3872) is not a sim-
ple charmonium state is indicated by large isospin violation seen in the data. This
occurs in the molecule interpretation because the mass of the resonance is essen-
tially identical to mD0 + mD0∗ and considerably lighter than mD+ + mD−∗ . Thus,
the molecular state would predominantly involve D0–D̄∗0 containing cc̄uū quarks,
so that this structure is a mixture of isospin states

cc̄uū = cc̄

√
1

2

[√
1

2
(uū+ dd̄)+

√
1

2
(uū− dd̄)

]
(4.9)

In this picture there should be nearly comparable decays to final states with I = 0
and I = 1, and this is indeed indicated by significant branching ratios of theX(3872)
to both J/ψρ and Jψω modes.
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Other examples of four-quark states may occur in the bb̄ system and the reso-
nances X+b (10610) and X+b (10650), which appear to be a bound states of B+–B̄0∗

and B0∗–B̄+∗, respectively. In this case the states are charged, with quark content
bb̄ud̄, so that both states are clearly exotic–they cannot be excited bottomonium.

The overall interpretation of these states is complicated by the fact that molecules
and tetraquarks have the same quark content and are distinguished only by details
of their internal configuration. In some cases, both interpretations have advocates
[AlHW 12, Du et al. 10].

Problems

(1) Power-law potential in quarkonium
Consider an interquark potential of the form V (r) = crd .
(a) Use the virial theorem to determine 〈T 〉/〈V 〉 for the ground state.
(b) Given the formE2S−E1S = f (d)M−d/(2+d), whereM is the reduced mass,

determine d from the observed mass differences in the cc̄ and bb̄ systems,
using Eq. (3.1) to supply heavy-quark mass values.

(c) Assuming this model is used to fit the spin-averaged ground-state cc̄ and
bb̄ mass values, determine v2/c2 for each system.

(2) Quarkonium annihilation from the 1S0 state
Modify Eq. (1.15) to obtain the leading-order contributions appearing in
Eq. (1.16).

(3) Mass relations involving heavy quarks
(1) Repeat the analysis of Eq. (3.1) but using the masses of the charmed/strange

mesons Ds,D
∗
s instead. Infer a value for M̂/Mc by referring to the result

obtained in Eq. (2.17). Compare with the determination of Eq. (3.1).
(2) Extend the procedure of Eqs. (2.20–2.25) to isospin-violating mass differ-

ences of c-flavored and b-flavored hadrons.
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