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A Characterization of Bipartite Zero-divisor
Graphs
Nader Jafari Rad and Sayyed Heidar Jafari

Abstract. In this paper we obtain a characterization for all bipartite zero-divisor graphs of commuta-
tive rings R with 1 such that R is finite or |Nil(R)| 6= 2.

1 Introduction

For graph theory terminology in general we follow [10]. Specifically, let G = (V, E)
be a graph with vertex set V of order n and edge set E. We denote the degree of
a vertex v in G by dG(v), which is the number of edges incident to v. A graph G
is complete if there is an edge between every pair of the vertices. A subset X of the
vertices of a graph G is called independent if there is no edge with two endpoints
in X. A graph G is called bipartite if V (G) is the union of two disjoint (possibly
empty) independent sets called partite sets of G. A graph G is said to be star if G
contains one vertex in which all other vertices are joined to this vertex and G has no
other edges. Two graphs G1 and G2 are said to be isomorphic if there is a bijective map
between the vertex set of G1 and the vertex set of G2 such that the adjacency relation
is preserved. The complement G of G is the graph with vertex set V (G) = V (G), and
E(G) = {uv : uv /∈ E(G)}. A path of length n is an ordered list of distinct vertices
v0, v1, . . . , vn such that vi is adjacent to vi+1 for i = 1, 2, . . . , n − 1. A (u, v)-path
is a path with endpoints u and v. A cycle is a path v0, v1, . . . , vn with an extra edge
v0vn. For vertices x and y of G, let d(x, y) be the length of a shortest path from x to
y (d(x, x) = 0, and d(x, y) = ∞ if there is no path between x and y). The diameter
diam(G) of G is maximum number d(x, y), over all x, y ∈ V (G). A graph G is
connected if it has a (u, v)-path for each pair u, v ∈ V (G).

The study of algebraic structures using the properties of graphs has become an
exciting research topic in the last few decades, leading to many fascinating results and
questions. It is interesting to study the intersection graphs G(F) when the members
of F have an algebraic structure. For the last few decades several mathematicians
studied such graphs on various algebraic structures. These interdisciplinary studies
allow us to obtain characterizations and representations of special classes of algebraic
structures in terms of graphs and vice versa.

By the zero-divisor graph Γ(R) of a ring R we mean the graph with vertices
Z(R) \ {0} such that there is an (undirected) edge between vertices a and b if and
only if a 6= b and ab = 0. Thus Γ(R) is the empty graph if and only if R is an integral
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domain. The concept of zero-divisor graphs has been studied extensively by many
authors. For a list of references and the history of this topic the reader is referred to
[1–4, 6, 7].

Among many questions it is interesting to study bipartite zero-divisor graphs. De-
meyer et al. [7] studied the cycle structure of Γ(R) and determined the finite rings R
for which Γ(R) does not contain a cycle. They also gave a characterization for bi-
partite zero-divisor graphs of reduced and also finite rings. Akbari et al. [2] studied
bipartite zero-divisor graphs and characterized bipartite zero-divisor graphs of re-
duced rings, independently. Dancheng et al. [6] also studied bipartite zero-divisor
graphs.

In this paper we give a characterization for bipartite zero-divisor graphs of a com-
mutative ring with identity in general.

We denote by Kn and Cn the complete graph and the cycle on n vertices. Also we
denote by Km,n the complete bipartite graph.

Throughout, R will always be a commutative ring with 1 6= 0, unless we state R
does not have 1. We also let Z(R) denotes the set of zero-divisors of R. We make use
of the following.

Theorem 1.1 ([6]) A zero-divisor graph is bipartite if and only if it contains no tri-
angles.

2 Main Results

Let

T4 =
Z2[x]

(x2)
, T8 =

Z2[x]

(x3)
, T9 =

Z3[x]

(x2)
,

T ′8 =
Z4[x]

(2x, x2 − 2)
= {0, 1, 2, 3, x, x + 1, x + 2, x + 3}

(with 2 = x2 and 2x = 0, where x is the image of x). The main result of this paper is
the following characterization.

Theorem 2.1 Let R be a commutative ring with identity such that R is finite or
|Nil(R)| 6= 2, and R is not an integral domain. Then Γ(R) contains no triangle if
and only if R satisfies one of the following.

(1) Z(R) = I ∪ J, where I, J are commutative domains as rings and I ∩ J = 0.
(2) R ∼= Z4, Z8, Z9, T4, T8, T ′8 , T9, F × T4, or F × Z4, where F is a field.

As a consequence of Theorems 2.1 and 1.1, we obtain the following.

Theorem 2.2 Let R be a commutative ring with identity such that R is finite or
|Nil(R)| 6= 2, and R is not an integral domain. Then Γ(R) is bipartite if and only
if R satisfies one of the following.

(1) Z(R) = I ∪ J, where I, J are commutative domains as rings and I ∩ J = 0.
(2) R ∼= Z4, Z8, Z9, T4, T8, T ′8 , T9, F × T4, or F × Z4, where F is field.
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3 Proof of Theorem 2.1

We begin with the following lemmas.

Lemma 3.1 If x is nilpotent, then 1− x and 1 + x are invertible.

Lemma 3.2 If |R1| = m, |R2| = n, then Γ(R1 × R2) contains Km−1,n−1.

Proof Notice that for any a ∈ R1 and b ∈ R2, (a, 0) and (0, b) are zero-divisors and
(a, 0)(0, b) = (0, 0).

Corollary 3.3 Let R1,R2 be two rings (not necessarily with 1) of orders m, n, re-
spectively. Then Γ(R1 × R2) ∼= Km−1,n−1 if and only if Γ(Ri) has no vertex for some
i ∈ {1, 2}, and Γ(R j) has no edge for j ∈ {1, 2} \ {i}.

Proof (⇐) is obvious. For (⇒), let Γ(R1 × R2) ∼= Km−1,n−1. If x ∈ V
(

Γ(R1)
)

and y ∈ V
(

Γ(R2)
)

, then (x, y) ∈ Γ(R1 × R2). But |Γ(R1 × R2)| = m + n − 2.

This is a contradiction. So Γ(R1) or Γ(R2) has no vertex. If ab ∈ E
(

Γ(R1)
)

, then

(a, 0)(b, 0) ∈ E
(

Γ(R1 × R2)
)

. We deduce that Γ(R1) has no edge. Similarly, Γ(R2)
has no edge.

Theorem 3.4 Let R = R1 × R2, where R1,R2 are two rings (not necessarily with 1) of
order at least 2. Then Γ(R) contains a C3 if and only if either E

(
Γ(R1)

)
∪E

(
Γ(R2)

)
6=

∅ or min
{∣∣V (

Γ(R1)
) ∣∣ , ∣∣V (

Γ(R2)
) ∣∣} ≥ 1.

Proof (⇒) follows from Corollary 3.3.
(⇐) If E

(
Γ(R1)

)
∪E

(
Γ(R2)

)
6= ∅, then we let ab ∈ E

(
Γ(R1)

)
. Let d ∈ R2 \ {0}.

It follows that (a, 0) (b, 0) (0, d) (a, 0) is a cycle on three vertices. So we as-
sume that E

(
Γ(R1)

)
∪ E

(
Γ(R2)

)
= ∅. If min

{∣∣V (
Γ(R1)

) ∣∣ , ∣∣V (
Γ(R2)

) ∣∣} ≥ 1,

then we let a ∈ V
(

Γ(R1)
)

and b ∈ V
(

Γ(R2)
)

. Then a2 = b2 = 0, and so
(a, 0) (a, b) (0, b) (a, 0) is a cycle on three vertices.

Corollary 3.5 For any three rings R1,R2,R3 (not necessarily with 1), Γ(R1×R2×R3)
contains a triangle.

For a nilpotent element x in a ring R, we let d(x) be the least number n such that
xn = 0.

Lemma 3.6 ([5]) The nilradical of R is the intersection of all the prime ideals of R.

Lemma 3.7 If Γ(R) contains no triangle, then for any nilpotent element x of R,
d(x) ≤ 3.

Proof If d(x) ≥ 4, then by Lemma 3.1, xd(x)−1 6= xd(x)−2. Now

xd(x)−1 xd(x)−2 (xd(x)−1 + xd(x)−2) xd(x)−1

forms a triangle, a contradiction.

Lemma 3.8 Let Γ(R) contain no triangle. If A = {x : x 6= 0, x2 = 0}, then |A| ≤ 2.
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Proof Suppose that |A| ≥ 3, and let x ∈ A. We show that A = {0, x,−x}. Let y
be any nonzero element of A distinct from x such that x + y 6= 0. If xy = 0, then
x (x + y) y x forms a cycle, a contradiction. If xy 6= 0, then by Lemma 3.1,
x, xy, y are mutually distinct. Then x xy (x + xy) x is a triangle, a contradiction.
This implies that |A| ≤ 2.

Lemma 3.9 Let Γ(R) contain no triangle. If B = {x : x3 = 0, x2 6= 0}, then |B| ≤ 2.

Proof Without loss of generality assume that B 6= ∅. Let x ∈ B. Let A be the
set introduced in Lemma 3.8. If char(A) 6= 2 then x x2 (−x2) x is a triangle, a
contradiction. So char(A) = 2, and A = {0, x2}. Let y ∈ B \ {x}. Since (x2)2 =
(y2)2 = 0, by Lemma 3.8 x2 = y2. On the other hand (xy)2 = 0, and so either
xy = 0 or xy = x2. Then (y ± x)2 = 0. We deduce that y + x = x2 = y − x, and
thus 2x = 0. So char(B) = 2. Also for any z ∈ B \ {x}, (x + z)2 = (x + y)2 = 0. Then
y = z, and |B| = 2.

Corollary 3.10 If Γ(R) contains no triangle, then Nil(R) is in one of the following
forms:

(1) 0,
(2) {0, x}, where 2x = 0,
(3) {0, x,−x}, where 3x = 0,
(4) {0, x, x2, x + x2}, where 2x = 0.

We proceed with the possiblities for Nil(R).

Theorem 3.11 Let R be a ring (not necessarily with 1) with at least one nonzero zero-
divisor, and Nil(R) = ∅. Then Γ(R) contains no triangle if and only if Z(R) = I ∪ J,
where I, J are commutative domains as rings and I ∩ J = 0.

Proof (⇒) Since Nil(R) = ∅, there are two distinct elements a, b in R such that
ab = 0. Let I = ann(a) and J = ann(b). It follows that a, b /∈ I∩ J. If I∩ J 6= 0, then
we let r ∈ (I ∩ J) \ {0}. Then a r b a is a triangle, a contradiction. So I ∩ J = 0
and I + J ∼= I × J. Since Γ(I + J) ≤ Γ(R), we obtain Γ(I + J) has no triangle. But
Nil(R) = ∅. By Theorem 3.4, we deduce that I and J are commutative domains, as
rings. It is obvious that I ∪ J ⊆ Z(R). Let x ∈ Z(R). There is r ∈ R \ {0} such that
rx = 0. We consider two cases.

Case 1 If x ∈ (I + J), then x = c1 + c2, where c1 ∈ I and c2 ∈ J. Then rc1 + rc2 = 0,
and so rc1 = −rc2 ∈ I ∩ J. Suppose that c1 6= 0, c2 6= 0. Since I ∩ J = 0, we obtain
rc1 = 0, rc2 = 0. Then (rb)c1 = (ra)c2 = 0. Since I and J are domains, we have
ra = rb = 0. This means that r ∈ I ∩ J = 0, and so r = 0, a contradiction. We
deduce that c1 = 0 or c2 = 0. Then x ∈ I ∪ J.

Case 2 If x 6∈ I + J, then we let K = ann(x). If K ∩ (I + J) = 0, then K + (I + J) ∼=
K × I × J and, by Corollary 3.5, Γ(K × I × J) contains a triangle, a contradiction. If
K ∩ (I + J) 6= 0, by Case 1, K ∩ (I + J) ⊆ I ∪ J. This implies that K ∩ (I + J) ⊆ I
or K ∩ (I + J) ⊆ J. Then K ∩ I = 0 or K ∩ J = 0 and so KI = 0 or K J = 0. We
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deduce that aK = 0 or bK = 0. Then K ⊆ I or K ⊆ J. Suppose that K ⊆ I. If
K = I, then xI = 0 and so x ∈ ann(b) = J, a contradiction, since x /∈ I + J. Thus
K ⊂ I. On the other hand 〈x〉 ∩ I 6= 0, since xI 6= 0. Let sx be a nontrivial element
of 〈x〉 ∩ I. Suppose that t is a nontrivial element of K. If (sx)x = 0, then (sx)2 = 0
which is a contradiction. So t 6= sx. Now t sx a t is a triangle, a contradiction.
We conclude that x ∈ I + J. Similarly K ⊆ J produces a contradiction.

(⇐) Since Γ(R) = Γ(I × J), the result follows from Theorem 3.4.

Theorem 3.12 Let R be a finite ring and Nil(R) = {0, x}. Then Γ(R) contains no
triangle if and only if R = Z4, T4, F × T4, or F × Z4.

Proof Let Nil(R) = {0, x}, and r ∈ R. Then rx is nilpotent. So rx ∈ {0, x}. Then r
or r−1 belongs to ann(x). This implies that R

ann(x) has two elements. Since R is a finite
commutative ring with 1, we have R = R1 × R2 × · · · × Rt , where (Ri ,mi) is a local
ring for each i. Then Nil(R) = m1×m2× · · ·×mt . By Corollary 3.5, t ≤ 2. If t = 1,
then ann(x) = {0, x} = m1 and so |R| = 4. We conclude that R = {0, x, 1 + x, 1},
where is T4 or Z4. Assume that t = 2. Since |m1×m2| = 2, without loss of generality
we may assume that m1 = 0. Then R1 is a field. Let x = (0, b), where b ∈ R2. We
conclude that annR2 (b) = {0, b}. Hence |R2| = 4, and as before R2 ∈ {T4,Z4}.

Lemma 3.13 If char(R) = n, then R contains a subring isomorphic to Zn.

Theorem 3.14 Let Nil(R) = {0, x,−x}, where x 6= −x. Then Γ(R) contains no
triangle if and only if R = Z9 or T9.

Proof (⇐) Notice that Γ(Z9) = Γ(T9) = K2.
(⇒) If r ∈ ann(x) \ {0, x,−x}, then r x (−x) r is a triangle, a contradiction.

So ann(x) = {0, x,−x}. For any r ∈ R, rx is nilpotent. This implies that rx ∈
{0, x,−x}. Then r, r − 1 or r + 1 belong to ann(x). We deduce that | R

ann(x) | = 3, and
so |R| = 9. If char(R) = 3, then R = {0, 1,−1, x,−x, 1+x, 1−x, x−1,−1−x} ∼= T9.
If char(R) = 9, then by Lemma 3.13, R ∼= Z9.

Theorem 3.15 Let Nil(R) = {0, x, x2, x + x2}, where x3 = 2x = 0. Then Γ(R)
contains no triangle if and only if R = Z8, R = T8 or R = T ′8.

Proof (⇐) Notice that Γ(Z8) = Γ(T8) = Γ(T ′8) = K1,2.
(⇒) Let I = ann(x2), and r ∈ R. Since (rx2)2 = 0, either rx2 = 0 or rx2 = x2. We

deduce that r ∈ I or r − 1 ∈ I. This implies that |RI | = 2. We show that I = Nil(R).
If r ∈ I \ Nil(R), then rx2 = 0 and so (rx)2 = 0. By assumption we obtain rx = 0 or
rx = x2. If rx = 0, then r x x2 r is a triangle, a contradiction. So rx = x2. Then
x(r + x) = 0 and (r + x) x (x2) (r + x) is a triangle, a contradiction. We conclude
that I = Nil(R), and |R| = 8. Thus R = {0, x, x2, x + x2, 1, 1 + x, 1 + x2, 1 + x + x2}.
Then char(R) ∈ {2, 4, 8}. Now the result follows.

Now the result follows from Theorems 3.11, 3.12, 3.14, and 3.15.
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