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Continued Fractions, Jacobi Symbols,
and Quadratic Diophantine Equations
R. A. Mollin and A. J. van der Poorten

Abstract. The results herein continue observations on norm form equations and continued fractions begun
and continued in the works [1]–[3], and [5]–[6].

1 Notation and Preliminaries

Let D0 > 1 be a square-free positive integer and set: σ0 =

{
2 if D0 ≡ 1 (mod 4),

1 otherwise.
Define

ω0 = (σ0 − 1 +
√

D0)/σ0,

and
∆0 = (ω0 − ω

′
0)2 = 4D0/σ

2
0 ,

where ω ′0 is the algebraic conjugate of ω0, namely ω ′0 = (σ0 − 1−
√

D0)/σ0. The value∆0

is called a fundamental discriminant or field discriminant with associated radicand D0, and
ω0 is called the principal fundamental surd associated with∆0. Let

∆ = f 2
∆∆0

for some f∆ ∈ N. If we set g = gcd( f∆, σ0), σ = σ0/g,

D = ( f∆/g)2D0,

and
∆ = 4D/σ2,

then∆ is called a discriminant with associated radicand D. Furthermore, if we let

ω∆ = (σ − 1 +
√

D)/σ = f∆ω0 + h

for some h ∈ Z, then ω∆ is called the principal surd associated with the discriminant∆ =
(ω∆ − ω ′∆)2. This will provide the canonical basis element for certain rings that we now
define.

Let [α, β] = αZ + βZ be a Z-module. Then

O∆ = [1, ω∆],
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is an order in K = Q(
√
∆) = Q(

√
D0) with conductor f∆. If f∆ = 1, then O∆ is called the

maximal order in K.
Now we bring ideal theory into the picture. Let I = [a, b + cω∆], with a > 0. The

following tells us when such a module is an ideal (see [4, Exercise 1.2.1(a), p. 12]).

Proposition 1.1 (Ideal Criterion) Let∆ be a discriminant, and let I �= (0) be a Z-submod-
ule of O∆. Then I has a representation of the form

I = [a, b + cω∆],

where a, c ∈ N and b ∈ Z with 0 ≤ b < a. Furthermore, I is an ideal of O∆ if and only if
this representation satisfies c | a, c | b, and ac | N(b + cω∆). (For convenience, we call I an
O∆-ideal.) If c = 1, then I is called primitive, and I has a canonical representation as

I = [a, (b +
√
∆)/2],

with−a ≤ b < a.

If I = [a, b + ω∆] is a primitive O∆-ideal, then a is the least positive rational integer in
I, denoted N(I) = a called the norm of I.

An O∆-ideal I is called reduced if there does not exist any element α ∈ I such that both
|α| < N(I) and |α ′| < N(I), where α ′ denotes the algebraic conjugate of α ∈ O∆, namely
if α = (x + y

√
∆)/2, then α ′ = (x − y

√
∆)/2. On the other hand, the conjugate of the

ideal I is I ′ = [a, b + ω ′∆].
It is convenient to have easily verified conditions for reduction (see [4, Corollaries 1.4.2–

1.4.4, p. 19]).

Theorem 1.1 Suppose that ∆ > 0 is a discriminant and I = [a, b + ω∆] is an O∆-ideal.
Then each of the following hold.

1. If N(I) <
√
∆/2, then I is reduced.

2. If I is reduced, then N(I) <
√
∆.

3. If 0 ≤ b < a <
√
∆ and a >

√
∆/2, then I is reduced if and only if

a− ω∆ < b < −ω ′∆.

Now we give an elucidation of the theory of continued fractions as it pertains to the
above. Continued fraction expansions will be denoted by

〈a0; a1, a2, . . . , al, . . . 〉,

where ai ∈ R are called the partial quotients of the continued fraction expansion. If ai ∈ Z,
and ai > 0 for all i > 0, then the continued fraction is called an infinite simple continued
fraction (which is equivalent to being an irrational number), whereas if the expression ter-
minates, then it is called a finite simple continued fraction (which is equivalent to being a
rational number).
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We will be discussing quadratic irrationals which are real numbers γ associated with a
radicand D such that γ can be written in the form

γ = (P +
√

D)/Q,

where P,Q,D ∈ Z, D > 0, Q �= 0, and P2 ≡ D (mod Q). The following is a setup for our
discussion of the continued fraction algorithm.

Suppose that I = [a, b + ω∆] is a primitive ideal in O∆, then we define the following for
the quadratic irrational γ = (b + ω∆)/a (where g and h are defined above):

(P0,Q0) =
((
σ0b + f∆(σ0 − 1) + hσ0

)
/g, aσ0/g

)
,(1.1)

and (for i ≥ 0),

D = P2
i+1 + QiQi+1,(1.2)

Pi+1 = aiQi − Pi ,(1.3)

and

ai = �(Pi +
√

D)/Qi�,(1.4)

where �x� is the greatest integer less than or equal to x, i.e., the floor of x. Therefore,
γ = 〈a0; a1, . . . , ai, . . . 〉 is the simple continued fraction expansion of γ.

Remark 1.1 The simple continued fraction expansion of a quadratic irrational γ is called
purely periodic provided that there is an integer l ∈ N such that γ = 〈a0; a1, a2, . . . , al〉 =
〈a0; a1, a2, . . . , al−1〉. The value l = l(γ) is called the period length of the simple continued
fraction expansion of γ. Furthermore, quadratic irrationals are purely periodic if and only
if they are reduced, i.e., a quadratic irrational γ is purely periodic if and only if γ > 1 and
−1 < γ ′ < 0.

In what follows we need the notion of equivalence of ideals. Two ideals I and J of O∆
are equivalent (denoted by I ∼ J) if there exist non-zero α, β ∈ O∆ such that (α)I = (β) J
(where (x) denotes the principal ideal generated by x). For a discriminant∆, the class group
of O∆ determined by these equivalence classes is denoted by C∆, with order h∆, the class
number of O∆.

In the next section the methods of proof require results on the following well-known
pair of sequences. For a quadratic irrational γ = 〈a0; a1, . . . 〉, define two sequences of
integers {Ai} and {Bi} inductively by:

A−2 = 0, A−1 = 1, Ai = aiAi−1 + Ai−2 (for i ≥ 0),(1.5)

B−2 = 1, B−1 = 0, Bi = aiBi−1 + Bi−2 (for i ≥ 0).(1.6)

The first result for these sequences comes from [4, Exercise 2.1.2(c), p. 54],

AkBk−1 − Ak−1Bk = (−1)k−1,(1.7)
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for any k ∈ N.
If γ =

√
D, and � = �(

√
D), where D > 0 is a radicand, then by [4, Exercise 2.1.2(g)(iv),

p. 55],

A2
k−1 − B2

k−1D = (−1)kQk.(1.8)

There is also another useful fact that we will exploit in the next section.

Theorem 1.2 Suppose that D > 0 is a radicand, and �(
√

D) = � with the Q j defined for the
simple continued fraction expansion of

√
D as in Equations (1.1)–(1.4). Then Q j | 2D with

Q j > 1 if and only if j = �/2. Furthermore, if D is even, then Q j | D with Q j > 1 if and
only if j = �/2. In either case, a�/2 = 2P�/2/Q�/2. Furthermore, if I is a principal, reduced
O∆-ideal, then N(I) = Qk for some natural number k ≤ �.

Proof See [4, Theorem 6.1.4, p. 193], and [4, Theorem 2.1.2, pp. 44–47].

2 Results

In this section, we generalize some notions developed in [3], which in turn generalized the
results in [1]–[2], and [6]. In particular, the main feature that underlies the results of [3] is
generalized in the following.

Theorem 2.1 Suppose that ∆ = 4D is a discriminant with associated odd radicand D,
I ∼ 1 is a primitive O∆-ideal with 1 < N(I) <

√
∆, and N(I) | ∆. If D = ab for some

a, b ∈ N, with ac < b, then the Diophantine equation

|ax2 − by2| = c,(2.1)

where c ∈ {1, 2, 4}, has a solution x, y ∈ Z with gcd(x, y) = 1 if and only if ac = N(I) =
Q 1

2 �
for c = 1, 2, and 4a = N(I) = Q f where f is roughly a sixth of the way along the period

in the simple continued fraction expansion of
√

D (see Example 2.2 following Theorem 2.3).

Proof Suppose that Equation (2.1) has a solution x, y ∈ Z. Since ac < b, then a <
√
∆.

Set
α = ax + y

√
D.

Then α ∈ O∆, and

|N(α)| = |a2x2 − y2D| = a|ax2 − by2| = ac.

Therefore, the OD-ideal I = (α) is principal and primitive, since gcd(ax, y) = gcd(x, y) =
1, given that D is odd. Also, |N(I)| = ac divides ∆. By Theorems 1.1–1.2, ac = Q�/2 =
N(I), if c = 1, 2, and N(I) = 4a = Q f for some f < �.

Conversely, suppose that I is a primitive ideal with ac = N(I) = Qk | ∆, where k = �/2
if c = 1, 2, and k = f if c = 4. Then I = (α) is principal, so there are z, y ∈ Z with
gcd(z, y) = 1 such that α = z + y

√
D, and N(α) = ±ac. Therefore, z2 − y2D = ±ac, so

|a(z/a)2 − by2| = |ax2 − by2| = c,

with gcd(x, y) = 1, as required.
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Theorem 2.2 Suppose that ∆ = 4D is a discriminant with radicand D = ab, with b ≡
3 (mod 4), a, b ∈ N. Then �(

√
D) = � is even. Furthermore, if 2a = Q 1

2 �
in the simple

continued fraction expansion of
√

D, then the following Jacobi symbol equality holds:

(2a

b

)
= (−1)

1
2 �.

Proof By Equation (1.8),
A2
�−1 − B2

�−1D = (−1)�.

If � is odd, then A2
�−1 ≡ −1 (mod b), a contradiction since b ≡ 3 (mod 4). Thus, � is even.

From Equation (1.8) again,

A2
�/2−1 − DB2

�/2−1 = (−1)�/2Q�/2.(2.2)

Now we show that Q�/2 | A�/2−1. By Equation (2.2), Q�/2 | A�/2−1A�/2−2, since Q�/2 =
a | D. However, by Equation (2.2) any prime that divides Q�/2 must divide A�/2−1, so by
Equation (1.7), Q�/2 | A�/2−1. By setting x = A�/2−1/a and y = B�/2−1, we get

ax2 − by2 = (−1)�/2.(2.3)

Hence,

(a

b

)
=
(ax2

b

)
=
(ax2 − by2

b

)
=

(
(−1)�/2

b

)
=
(−1

b

)�/2
= (−1)�/2,

where the last equality follows from the fact that b ≡ 3 (mod 4).

Example 2.1 Let D = 1891 = 31 · 61 = a · b. Then � = 36, and Q�/2 = 2 · a = 62, and

(−1
b ) = (−1

61 )�/2 = 1.

Theorem 2.3 Let ∆ = 4ab be a discriminant with associated odd radicand D = ab. Then
if

ax2 − by2 = ±4(2.4)

has a solution x, y ∈ Z with gcd(x, y) = 1,

aX2 − bY 2 = ±1(2.5)

also has a solution X,Y ∈ Z, with gcd(X,Y ) = 1. Moreover, if Equation (2.4) has a solution,
and 4a < b, then Q f = 4a for some natural number f < �/2 where � is the period length of
the simple continued fraction expansion of

√
D. If Equation (2.5) has a solution, and a < b,

then Q 1
2 �
= a. Hence, (−1

b

) f
=
(a

b

)
=
(−1

b

) 1
2 �

.
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Proof Assume that Equation (2.4) has a solution in integers x, y. Set

X =
(ax2 ∓ 3)x

2
, and Y =

(ax2 ∓ 1)y

2
.

Claim 2.1
aX2 − bY 2 = ±1.

Let z = ax. Then

(z2 − Dy2)3 =
(
z(z2 + 3Dy2)

)2
− D
(

y(3z2 + Dy2)
)2
= ±64a3.

But
z(z2 + 3Dy2) = z

(
4z2 − 3(z2 − Dy2)

)
= z(4z2 ∓ 12a) = 8a2X.

Thus,
y(3z2 + Dy2) = y

(
4z2 − (z2 − Dy2)

)
= y(4z2 ∓ 4a) = 8aY.

In other words,
64a4X2 − 64a2DY 2 = ±64a3,

which implies that
aX2 − bY 2 = ±1,

which is Claim 2.1.
Since gcd(x, y) = 1, then it follows that gcd(X,Y ) = 1.
If Equation (2.4) is solvable, then (ax)2 − Dy2 = ±4a. Since 4a < b, then the primi-

tive, principal ideal (ax + y
√

D) is reduced, since its norm is less than
√
∆/2. Hence, by

Theorem 1.2, Q f = 4a for some f ∈ N with f < �. Hence,

A2
f−1 − B2

f−1D = (−1) f 4a.

Therefore, a | A f−1 so by setting z = A f−1/a and w = B f−1, we get

az2 − bw2 = (−1) f 4.

Thus, (a

b

)
=

(
(−1) f 4

b

)
=
(−1

b

) f
.

On the other hand, as in [3], if Equation (2.5) is solvable, then

(a

b

)
=
(−1

b

) 1
2 �

.

Hence, (−1

b

) 1
2 �

=
(−1

b

) f
,

so f and 1
2� have the same parity.
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Example 2.2 Let∆ = 4 · 805 = 22 · 5 · 7 · 23. Then

5x2 − 161y2 = −4,

has the solution x = 17 and y = 3. Here a = 5, and b = 161 with � = 18, and

Q 1
2 �
= a = 5 = Q9, Q f = 4a = 20 = Q3,

where f = 1
6�, as predicted in Theorem 2.1. Also, we observe that Q6 = 4, and Q6 is

roughly (see Remark 2.1 following this example) a third of the way along the period. It is
necessarily the case that when we encounter Qk = 4, then we are a “third” of the way along
the period and this signals the fundamental unit of the maximal order. To see this, note
that by Equation (1.8),

A2
5 − B2

5 · 805 = 14472 − 512 · 805 = 4 = Q6,

and indeed
(1447 + 51

√
805)/2

is the fundamental unit of Z[(1 +
√

805)/2]. Furthermore,

(−1

b

) f
=
(−1

161

)3
= 1 =

(a

b

)
=
( 5

161

)
=
(−1

b

) 1
2 �

=
(−1

b

)9
.

Remark 2.1 Unfortunately Example 2.2 gives us exactly a sixth of the way along for Q f .
However, in general this is not the case, at least in terms of �. What we mean specifically is
the following. The ideal [Q6, P6 +

√
D] = [4, 25 +

√
805], when cubed, becomes [1,

√
D],

namely [4, 25 +
√

805]3 = (8)[1,
√

D] ∼ O∆. In a similar spirit, [Q f , P f +
√

D]6 = [20,
15 +
√

805]6 ∼ O∆. Similarly, [Q 1
2 �
, P 1

2 �
+
√

D] ∼ O∆, but unfortunately, for cube or sixth
roots, the position of the ideal in the cycle is a little more blurred. Namely it may not sit
exactly in the one-sixth or one-third position in terms of �, but nonetheless sits at a third
or a sixth in terms of raising it to a power as just described. Also, our paper [5] describes
the notion of “halfway” along the period in a similar “blurred” fashion.

Remark 2.2 The interested reader will note that Q j = 4 for some natural number j < �
in the simple continued fraction expansion of

√
D0 for a fundamental radicand D0 ≡

1 (mod 4) if and only if the ideal I = [4, 1 +
√

D0] is principal in O∆ where∆ = 4D0 (see
[4, Exercise 2.1.16, p. 61]). In turn, the principality of I is tantamount to the solvability of
Equation (2.1) with c = 4, and D0 = ab. This is related to a problem of Eisenstein, who
looked for a criterion for the solvability of the aforementioned equation when N(εD0 ) =
−1 and D0 ≡ 5 (mod 8), where εD0 is the fundamental unit of OD0 = [1, (1 +

√
D0)/2].

Equation (2.1) is known to be solvable for c = 4, and ab = D0 ≡ 5 (mod 8) if and only
if εD0 is not in Z[

√
D0] = O4D0 = O∆, which is the non-maximal order in the maximal

order OD0 , which is the ring of integers of Q(
√

D0). For further information see [4, Exer-
cises 2.1.14–2.1.16].
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