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Abstract

Let f be a modular form of weight k > 2 and level N , let K be a quadratic imaginary
field and assume that there is a prime p exactly dividing N . Under certain arithmetic
conditions on the level N and the field K, one can attach to this data a p-adic L-function
Lp(f, K, s), as done by Bertolini–Darmon–Iovita–Spieß in [Teitelbaum’s exceptional zero
conjecture in the anticyclotomic setting, Amer. J. Math. 124 (2002), 411–449]. In the
case of p being inert in K, this analytic function of a p-adic variable s vanishes in the
critical range s= 1, . . . , k − 1, and one may be interested in the values of its derivative
in this range. We construct, for k > 4, a Chow motive endowed with a distinguished
collection of algebraic cycles which encode these values, via the p-adic Abel–Jacobi map.
Our main result generalizes the result obtained by Iovita and Spieß in [Derivatives of
p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms,
Invent. Math. 154 (2003), 333–384], which gives a similar formula for the central value
s= k/2. Even in this case our construction is different from the one found by Iovita
and Spieß.

Introduction

Fix a quadratic imaginary field K and let f be a modular form defined over Q. The goal of the
different theories of p-adic L-functions is to produce rigid-analytic functions attached to f that
interpolate the Rankin–Selberg L-function L(f/K, s) in different ways. The theory has so far
developed in two directions, which correspond to the two independent Zp-extensions of the field
K: the cyclotomic and anti-cyclotomic extensions.

The first approach to such p-adic analogues was constructed by Mazur and Swinnerton-
Dyer in [MS74], where they introduced a p-adic L-function associated to a modular form f of
arbitrary even weight n+ 2 using the cyclotomic Zp-extension of Q. Mazur, Tate and Teitelbaum
formulated in [MTT86] a conjectural formula that related the order of vanishing of this p-adic
L-function to that L(f, s) and, in [GS93], Greenberg and Stevens proved that formula in the
case of weight 2. Also, Perrin-Riou [Rio92] obtained a Gross–Zagier-type formula for the central
value using p-adic heights.

Nekovář [Nek95] extended the result of Perrin-Riou to higher weights, by using the definition
of p-adic height that he had already introduced in his earlier paper [Nek93]. Combining this
result with his previous work on Euler systems [Nek92], he obtained a result of Kolyvagin type
for the cyclotomic p-adic L-function.
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Bertolini and Darmon, in a series of papers [BD96, BD98, BD99], constructed another p-
adic L-function which depends instead on the anti-cyclotomic Zp-extension of a fixed quadratic
imaginary field K. One important feature of this construction is that it is purely p-adic, unlike
its cyclotomic counterpart. Bertolini and Darmon formulated the analogous conjectures to those
of Teitelbaum [Tei90], and proved them in the case of weight 2.

Assume in the introduction that the level N of f is the product of an even number of distinct
primes, and let K be a quadratic imaginary number field on which all prime divisors of N are
inert. Choose a prime p dividing N .

In [BDIS02], taking ideas from the work of Schneider in [Sch84], the four authors constructed
under these restrictions the anti-cyclotomic p-adic L-function attached to the rigid modular form
f and the quadratic imaginary field K, and obtained a formula which computes the derivative of
this p-adic L-function at the central point in terms of an integral on the p-adic upper half-plane,
using the integration theory introduced by Coleman in [Col85]. Assume for simplicity that the
ideal class number of K is 1. Using their techniques, one can easily show that, when p is inert
in K, the anti-cyclotomic p-adic L-function vanishes at all the critical values. Moreover, one
computes a formula for the derivative at all the values in the critical range: if f is a modular
form of even weight n+ 2, and we denote by Lp(f, K, s) the anti-cyclotomic p-adic L-function
attached to f and K, then, for all 0 6 j 6 n, one has

L′p(f, K, j + 1) =
∫ z0

z0

f(z)(z − z0)j(z − z0)n−j dz, (1)

where z0, z0 ∈Hp(K) are certain conjugate Heegner points on the p-adic upper half-plane.
In 2003, Iovita and Spieß [IS03] interpreted the quantity appearing in the right-hand side of
formula (1), in the case of j = n/2, as the image of a Heegner cycle under a p-adic analogue
to the Abel–Jacobi map. This paper gives a similar geometric interpretation of the quantity
appearing in the right-hand side of the previous formula, for all values of j.

Let Mn+2(X) denote the space of modular forms on a Shimura curve X, of weight n+ 2 > 4.
The case of weight 2 is excluded for technical reasons, and because it has already been studied
by other authors. Let K be a quadratic imaginary field in which p is inert, and fix an elliptic
curve E with complex multiplication. In this setting, we construct a Chow motive Dn over X,
and a collection of algebraic cycles ∆ϕ supported in the fibers over CM-points of X, indexed by
isogenies ϕ : E→ E′, of elliptic curves with complex multiplication. The motive Dn is obtained
from a self-product of a certain number of abelian surfaces, together with a self-product of the
elliptic curve E. The cycles ∆ϕ are essentially the graph of ϕ, and are expected to carry more
information than the classical Heegner cycles.

The étale p-adic Abel–Jacobi map, denoted AJK,p, assigns to a null-homologous algebraic
cycle an element in the dual of the de Rham realization of the motive Dn. This motive has
precisely been constructed so that this realization is

Mn+2(X)⊗Qp Symn H1
dR(E/K).

One can choose generators ω and η for the group H1
dR(E/K), and it thus makes sense to

evaluate AJK,p(∆ϕ) on an element of the form f ∧ ωjηn−j . By explicitly computing this map,
and combining the result with the formula in (1), we obtain the following result (see Corollary 7.7
for a more precise and general statement).

Theorem. There exist explicit isogenies ϕ and ϕ as above and a constant Ω ∈K× such that
for all 0 6 j 6 n,

AJK,p(∆ϕ −∆ϕ)(f ∧ ωjηn−j) = Ωj−nL′p(f, K, j + 1).
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This result is to be regarded as a p-adic Gross–Zagier-type formula for the anti-cyclotomic
p-adic L-function. Note however that instead of heights it involves the p-adic Abel–Jacobi map.
It can also be seen as a generalization of the main result of Iovita and Spieß in [IS03] to all values
in the critical range.

The paper is structured as follows: in Section 1, we recall concepts from rigid-analytic
geometry and p-adic integration. Section 2 deals with the theory of Shimura curves, their p-adic
uniformization and modular forms defined on them. Section 3 recalls Fontaine’s theory of filtered
Frobenius monodromy modules and their relationship with semistable Galois representations. In
Section 4, we describe the extra structure of certain de Rham cohomology groups as done by
Coleman and Iovita in [CI10], and describe pairings in certain cases. In Section 5, we recall
the definition of the anti-cyclotomic p-adic L-function Lp(f, K, s), and prove a formula for
its derivative in terms of integration on the p-adic upper half-plane. Section 6 contains the
construction of the Chow motive Dn and the computation of its realizations. In Section 7, we
state and prove the main result of this paper. We also give some concluding remarks and future
directions of research.

An expanded, mostly self-contained version of this paper can be found in the ArXiv [Mas11].

1. Integration on quotients of Hp

In this section, we describe the integration theory constructed initially by Coleman in [Col82,
Col85, Col89], and further developed by Coleman–Iovita in [CI10] and by de Shalit in [dS89],
among others. In fact, we will specialize Coleman’s integration theory to those rigid spaces which
allow a covering by a certain type of open subsets of P1(Cp), called basic wide opens. The p-adic
upper half-plane Hp as described below admits such a covering, and hence we will obtain a theory
of integration on Hp and on Mumford–Schottky curves.

We are in fact interested in the integration of general vector bundles over the spaces mentioned
in the previous paragraph. It turns out, however, that the bundles that we will encounter in this
work have a basis of horizontal sections, and therefore one can integrate component-wise, thus
reducing to integration with trivial coefficients. For more details of rigid-analytic geometry, the
reader is invited to refer to [BGR84] or [FV04]. Here we will use the notation of this latter
reference.

Fix a rational prime p, and denote by Cp the topological completion of the algebraic closure
of Qp. On the projective line over Cp, denoted P1(Cp), we consider the strong G-topology [FV04,
Definition 2.6.7]. We proceed to define a certain analytic subspace of P1(Cp), the p-adic upper
half-plane Hp defined over Qp. It can be defined as a formal scheme over Zp, but we are only
interested in the rigid-analytic space associated to its generic fiber, which is a subset of P1(Cp),
together with a collection of affinoids that define its rigid-analytic structure. One can find more
details of its construction in [DT08, § 3]. We also need to fix a branch of the p-adic logarithm,
which is a locally analytic homomorphism logp : C×p → C+

p such that (d/dz) logp(1) = 1. It can
be easily shown that logp(z) is analytic on the ball with center x and radius |x|, for all x ∈ C×p .

Denote by T the Bruhat–Tits tree of GL2(Qp), as explained in [Dar04]. It is an unoriented
(p+ 1)-regular tree T , with a natural action of PGL2(Qp) by continuous graph automorphisms.
Fix an ordering of the edges of T , and denote by ~E(T ) the set of ordered edges. If the ordered
edge e connects the vertices v1 and v2, we write v1 = o(e) and v2 = t(e). We also write ē for the
opposite edge, which has o(ē) = v2 and t(ē) = v1. The Bruhat–Tits tree T has a distinguished
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vertex, written v0, which corresponds to the homothety class of the standard lattice Z2
p inside Q2

p.
The edges e with o(e) = v0 correspond to the p+ 1 sublattices of index p in Z2

p, which in turn
are in bijection with the points t of P1(Fp) = {0, 1, . . . , p− 1,∞}. For such a point t, we denote
by et ∈ ~E(T ) the corresponding edge. Since T is locally finite, it can be endowed with a natural
topology, and it thus becomes a contractible topological space. Given an edge e ∈ E(T ), we write
[e]⊂ T for the closed edge, which contains the two vertices that e connects, and ]e[ for the
corresponding open edge.

As a set, the p-adic upper half-plane is defined as Hp(Cp) := P1(Cp)\P1(Qp). The group
GL2(Qp) acts on Hp(Cp) by fractional linear transformations. We describe a covering by basic
affinoids and annuli, using the Bruhat–Tits tree. Let

red : P1(Cp)→ P1(Fp)

denote the natural map given by reduction modulo mOCp , the maximal ideal of the ring of integers
of Cp. Given a point x̃ in P1(Fp), the residue class of x̃ is the subset red−1({x̃}) of P1(Cp).

Define the set A0 to be red−1(P1(Fp)\P1(Fp)). This is the prototypical example of a standard
affinoid . Define also a collection of annuli Wt, for t ∈ P1(Fp), as

Wt :=
{
τ ∈ P1(Cp) |

1
p
< |τ − t|< 1

}
, 0 6 t6 p− 1, W∞ := {τ | 1< |τ |< p}.

Note that A0 and the annuli Wt are mutually disjoint. It is easy to see [Dar04, Proposition 5.1]
that there is a unique GL2(Qp)-equivariant ‘reduction map’ r :Hp(Cp)→T which maps A0 to
v0 and Wt to et, where we recall that we labeled the edges with origin v0 as et, with t ∈ P1(Fp).
For each vertex v ∈V(T ), let Av := r−1({v}). For each edge e ∈ E(T ), write A[e] := r−1([e]) and
A]e[ := r−1(]e[). Then the collection {A[e]}e∈E(T ) gives a covering ofHp(Cp) by standard affinoids,
and their intersections are

A[e] ∩ A[e′] =

{
∅ if [e] ∩ [e′] = ∅,
Av if [e] ∩ [e′] = {v}.

This covering endowsHp(Cp) with the structure of a rigid-analytic space, and its nerve is precisely
the Bruhat–Tits tree T .

The boundary of Hp is the set P1(Qp), which has been removed from P1(Cp) in order to
obtain Hp(Cp). An end of T is an equivalence class of sequences {ei}i>1 of edges ei ∈ ~E(T ), such
that t(ei) = o(ei+1), and such that t(ei+1) 6= o(ei). Two such sequences are identified if a shift of
one is the same as the other, for large enough i. Write E∞(T ) for the space of ends, which can
be identified with P1(Qp), thus endowing E∞(T ) with a topology. There is a basis of P1(Qp) of
compact open sets indexed by ~E(T ): given an oriented edge e, the corresponding compact open
is the set U(e) of ends passing through e. Moreover, one can compactify T by adding to it its
ends: writing T ∗ for this compactification, one can extend the reduction map to r : P1(Cp)→T ∗.

Let Γ be a discrete cocompact subgroup of SL2(Qp). Suppose for simplicity that Γ contains
no elliptic points, and consider the topological quotient π :Hp→XΓ := Γ\Hp. The space XΓ can
be given a structure of a rigid-analytic space in a way so that π is a morphism of rigid-analytic
spaces. An admissible covering is indexed by the quotient graph Γ\T , in the same way that was
done for Hp. One thus obtains a complete curve called a Mumford–Shottky curve. In § 2, we will
explain how these curves are related to Shimura curves.

A wide open is a set of the form

U := {z ∈ P1(Cp) | |f(z)|< ef , f ∈ S},
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where S a finite set of rational functions over Cp containing at least one non-constant function,
and ef ∈ {1,∞} for all f . For example, the open balls B(a, r) and the open annuli A]e[ are all
wide open sets. In [Col82, p. 177], Coleman defined a basic wide open. The main example is

X1 :=A0 ∪
( ⋃
t∈P1(Fp)

Wt

)
, (2)

as well as its translates by the action of GL2(Qp). These basic wide opens can always be written
as the disjoint union of a connected affinoid (in our example A1) and a finite number of wide
open annuli (the Wt in our example).

Given any open subset X of P1(Cp), we will denote by O(X) (respectively L(X)) the ring
of rigid-analytic functions (respectively of locally analytic functions) on X. Coleman defined
in [Col82] the notion of a logarithmic F -crystal on C for any basic wide open C. This is a certain
type of O(C)-submodule of L(C) satisfying several technical conditions (see [Col82, p. 184,
conditions A–F]). One of these conditions is the uniqueness property: if M is a logarithmic F -
crystal on C, then any element f ∈M that vanishes in a non-empty open subset of C must be
zero. The ringO(C) is the simplest example of a logarithmic F -crystal on C. Coleman defined also
in [Col82, pp. 177–179] the modules OLog(X) and ΩM (X). Write φ for the Frobenius morphism.

Lemma 1.1 [Col82, Lemma 4.4]. Let M be a logarithmic F -crystal on a basic wide open space
C, and let ω be an element of ΩM (C). There exists a locally analytic function Fω ∈ L(C), unique
up to an additive constant, which satisfies:

(i) dFω = ω;

(ii) there is a wide open neighborhood V of C such that φ∗Fω − bFω ∈M(V ), for some b ∈ Cp

which is not a root of unity; and

(iii) the restriction of Fω to the underlying affinoid X of C is analytic in each residue class of
X, and the restriction to each of the open annuli V is in OLog(V ).

Define A1(C) as the unique minimal logarithmic F -crystal on C which contains M and such
that dA1(C)⊇ ΩM (C). It can be described as

A1(C) =O(C) +
∑

ω∈ΩM (C)

FωO(C).

In [Col82, Theorem 5.1], Coleman showed that, given ω ∈ Ω1(C), there exists a unique (up to a
constant) function Fω ∈A1(C) such that dFω = ω.

Let Y be a rigid-analytic space which can be covered by a family C of basic wide opens,
which intersect at basic wide opens, and such that the nerve of the covering is simply connected.
Let A1 be the sheaf of OY -modules defined by A1(U) :=A1(U) for each U ∈ C. The following
corollary is an easy consequence of the results stated so far.

Corollary 1.2. There is a short exact sequence

0→ Cp→H0(Y,A1) d−→H0(Y,A1)⊗OY (Y ) Ω1(Y )→ 0.

2. Shimura curves and modular forms

In this section, we introduce the different ways in which Shimura curves appear in this work. A
good exposition of the theory of Shimura curves and their p-adic uniformization can be found
in [BC91]. Here we just recall the basic facts.
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Fix for the rest of the paper an integer N which can be factored as N = pN−N+, where p
is a prime which will remain fixed, N− is a positive square-free integer with an odd number of
prime divisors none of which equals p and N+ is a positive integer relatively prime to pN−. Let
B be the indefinite rational quaternion algebra of discriminant pN−. Fix a maximal order Rmax

in B, and an Eichler order R of level N+ contained in Rmax.

Definition 2.1. Let S be a Q-scheme. An abelian surface with quaternionic multiplication (by
Rmax) and level-N+ structure over S is a triple (A, i, G), where:

(i) A is a (principally polarized) abelian scheme over S of relative dimension 2;

(ii) i :Rmax ↪→ EndS(A) is a ring homomorphism;

(iii) G is a subgroup scheme of A which is étale-locally isomorphic to (Z/N+Z)2 and is stable
and locally cyclic under the action of R.

When no confusion may arise, such a triple will be called an abelian surface with QM .

The Shimura curve X :=XN+,pN−/Q is the coarse moduli scheme representing the moduli
problem over Q:

S 7→ {isomorphism classes of abelian surfaces with QM over S}.

Proposition 2.2 (Drinfel’d [BC91, § III]). The Shimura curve XN+,pN− is a smooth, projec-
tive and geometrically connected curve over Q.

We will need to work with a Shimura curve which is actually a fine moduli space. For that,
we need to rigidify the moduli problem, as follows.

Definition 2.3. Let M > 3 be an integer relatively prime to N . Let S be a Q-scheme. An abelian
surface with QM and full level-M structure (QM by Rmax and level-N+ structure is understood)
is a quadruple (A, i, G, ν), where (A, i, G) is as before and ν : (Rmax/MRmax)S →A[M ] is a
Rmax-equivariant isomorphism from the constant group scheme (Rmax/MRmax)S to the group
scheme of M -division points of A.

The Shimura curve XM =XN+,pN−,M is defined to be the fine moduli scheme classifying the
abelian surfaces with QM and full level-M structure. It is still a smooth and projective curve
over Q. However, it is not geometrically connected. In fact, as we will see below, it is the disjoint
union of #(Z/MZ)× components. Note that forgetting the level-M structure yields a Galois
covering XM →X with Galois group

(Rmax/MRmax)×/{±1} ∼= GL2(Z/MZ)/{±1}.

We proceed to define Heegner points on the Shimura curve XM . Let F be a field of
characteristic 0. An abelian surface A defined over F (with i :Rmax ↪→ EndF (A) and level-
N structure) is said to have complex multiplication (CM) if EndRmax(A) 6= Z. In that case,
O := EndRmax(A) is an order in an imaginary quadratic number field K, and one says that A
has CM by O.

Definition 2.4. A point on the Shimura curve XM is called a CM point if it can be represented
by a quadruple (A, i, G, ν) such that A has complex multiplication by O. A Heegner point is a
CM point for which the subgroup G is O-stable.
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Remark 2.5. Suppose that A has QM by Rmax and CM by OK . Suppose that OK splits Rmax.
Then

EndF (A)∼=OK ⊗ Rmax ∼=M2(OK).
By EndF (A), we mean the endomorphisms of A as an algebraic variety over F . Fixing an
isomorphism End(A)∼=M2(OK) yields an isomorphism A∼= E × E, where E is an elliptic curve
defined over H, the Hilbert class field of F , with EndH(E)∼=OK . In particular, E is an elliptic
curve with complex multiplication.

We use crucially a uniformization result due to Čerednik and Drinfel’d, which gives an explicit
realization of the Shimura curves X and XM as quotients of the p-adic upper half-plane. Let B
be the definite rational quaternion algebra of discriminant N−, and let R be an Eichler Z[1/p]-
order of level N+ in B. Write R×1 for the group of units of reduced norm one in R, and fix an
isomorphism ιp :B ⊗Q Qp

∼−→M2(Qp).
In [Shi94, Proposition 9.3], it was shown that ιp identifies the group R×1 with a discrete

cocompact subgroup Γ of SL2(Qp), and therefore one may consider the quotient XΓ := Γ\Hp.
The celebrated result of Čerednik–Drinfel’d gives a deep relationship of the Shimura curves X
and XM defined above, with XΓ. Although the result is originally by Čerednik and Drinfel’d, a
more detailed exposition of the proof can be found in [BC91, ch. III, 5.3.1].

Theorem 2.6 (Čerednik–Drinfel’d). There is an isomorphism of rigid-analytic varieties:

(XQur
p

)an ∼=XΓ := Γ\Hp.
Moreover, for any integer M > 3, let ΓM be the subgroup of units of reduced norm congruent to
1 modulo M . There is an isomorphism of rigid-analytic varieties:

(XM )an
Qur
p

∼= Γ\(Hp × (R/MR)×)∼=
∐

(Z/MZ)×

ΓM\Hp,

which exhibits XM as a disjoint union of Mumford curves, and hence it is semistable.

Let n> 0 be an even integer. We first define modular forms as global sections of certain
sheaves associated to the Shimura curve X :=XN+,pN− . Let B,Rmax,R be as in the definition
of X, and choose an auxiliary Eichler order R̃ ⊆ R with the property that the group of units of
norm one R̃×1 is a finite-index free subgroup of R×1 . Let X̃ be the Shimura curve associated to
the order R̃, and let G be the finite group R×1 /R̃

×
1 corresponding to the cover pr : X̃ →X.

Definition 2.7. Let K be a field of characteristic 0. A modular form of weight n+ 2 on X

defined over K is a global section of the sheaf pr∗ Ω⊗(n+2)/2

X̃K/K
on XK which is invariant under the

action of G. We denote by Mn+2(X, K) the space of such modular forms.

A simple argument shows that this definition does not depend on the choice of the auxiliary
Eichler order R̃. Let K be either Qur

p or any complete field contained in Cp which contains
Qp2 . Using the result of Čerednik–Drinfel’d stated in Theorem 2.6, we can give a more concrete
description of Mn+2(X, K).

Definition 2.8. A p-adic modular form of weight n+ 2 for Γ is a rigid-analytic function
f :Hp(Cp)→ Cp, defined over K, such that

f(γz) = (cz + d)n+2f(z) for all γ =
(
a b
c d

)
∈ Γ.

Denote the space of such p-adic modular forms by Mn+2(Γ) =Mn+2(Γ, K).
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The map f 7→ ωf := f(z) dz⊗(n+2)/2 induces a canonical isomorphism Mn+2(Γ, K)∼=
Mn+2(X, K). In order to justify our interest in modular forms over Shimura curves, we would
like to relate them to more familiar objects. Let T be the abstract Hecke algebra generated by
the Hecke operators T` for ` -N and U` for ` |N . The Hecke algebra T acts naturally on the
space Mn+2(X, K), on which also act the Atkin–Lehner involutions.

Theorem 2.9 (Jacquet–Langlands). Let K be a field. There is an isomorphism

Mn+2(X, K) ∼−→ Sn+2(Γ0(N), K)pN
−-new,

which is compatible with the action of T and the Atkin–Lehner involutions on each of the spaces.

Therefore, to a classical modular pN−-new eigenform f∞ on the modular curve X0(N), there
is associated an eigenform f on the Shimura curve X, which is unique up to scaling. In § 5, we
will consider a p-adic L-function attached to f which interpolates special values of the classical
L-function associated to f∞.

3. Filtered (φ, N)-modules

Let K be a field of characteristic 0, which is complete with respect to a discrete valuation and has
perfect residue field κ, of characteristic p > 0. Let K0 ⊆K be the maximal unramified subfield
of K. Concretely, K0 is the fraction field of the ring of Witt vectors of κ. Let σ :K0→K0 be
the absolute Frobenius automorphism.

Consider the category of filtered Frobenius monodromy modules (or filtered (φ, N)-modules
for short) over K, denoted by MF

(φ,N)
K . Its objects are quadruples (D, Fil•, φ, N), where D

is a finite-dimensional K0-vector space, Fil• = Fil•D is an exhaustive and separated decreasing
filtration on the vector space DK :=D ⊗K0 K over K (called the Hodge filtration), φ= φD :D→
D is a σ-linear automorphism, called the Frobenius on D, and N =ND :D→D is a K-linear
endomorphism, called the monodromy operator , which satisfies Nφ= pφN . Sometimes we write
D to refer to the tuple (D, Fil•D, φD, ND). For a precise definition of this category, please refer
to [Fon94] or to the lecture notes [BC09].

Forgetting the monodromy action or, equivalently, setting N = 0 gives a full subcategory of
MF(φ,N)

K , called the category of filtered F-isocrystals over K. The full subcategory obtained by
additionally forgetting the filtration is the category of isocrystals over K0, which were studied
and classified by Dieudonné and Manin.

The category MF
(φ,N)
K is an additive tensor category which admits kernels and cokernels.

Also, if D = (D, F •D, φD, ND) is a filtered (φ, N)-module, and j is an integer, we define another
filtered (φ, N)-module D[j], the jth Tate twist of D, as D[j] = (D, F •−jD , p jφD, ND), where, by
F •−iD , we mean

F i(D[j]K) = F i−j(DK) for all i ∈ Z.

Consider the category RepQp(GK) of p-adic representations of GK , whose objects are finite-
dimensional Qp-vector spaces with a continuous linear GK-action. It is an abelian tensor category,
with twists given by tensoring with powers of the Tate representation Qp(1) := (lim←−n µµpn)⊗Zp Qp.

The functors Dst and Vst of Fontaine, constructed originally in [Fon94], are functors relating
the category of p-adic representations of GK with that of filtered Frobenius monodromy
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modules:

RepQp(GK)
Dst //

MF(φ,N)
K .

Vst

oo

The functors Dst and Vst induce an equivalence of categories between certain full subcategories
of those on which they are defined, and we wish to recall here this result. Let X/K be a proper
variety with a semistable model. Consider the étale cohomology groups

H i
et(X,Qp) :=

(
lim←−
n

H i
et(X, Z/pnZ)

)
⊗Zp Qp.

These vector spaces are naturally finite-dimensional continuous GK-representations. In the
category of Rep(GK), one has the notion of semistability, and results of Fontaine–Messing,
Hyodo–Kato, Faltings and Tsuji imply that these representations are semistable. They constitute
in fact the main source of semistable representations.

In general, write Repst(GK) for the full subcategory of Rep(GK) of semistable objects. Also,
call a filtered (φ, N)-module D admissible if it is in the essential image of the restriction of
the functor Dst to Repst(GK). One also has an intrinsic notion of admissibility (called weak
admissibility), but we will not use this notion here. Write MFad,(φ,N)

K for the full subcategory of
admissible filtered (φ, N)-modules.

Theorem 3.1 [CF00, Theorem A]. The functors Dst and Vst give an equivalence of categories

between Repst(GK) and MFad,(φ,N)
K , which is compatible with exact sequences, tensor products

and duality.

The main use that we have for this fact is the following corollary.

Corollary 3.2. Let V, W be two objects in Repst(GK). The functors Dst and Vst induce a
canonical group isomorphism

Ext1
Repst(GK)(V, W )∼= Ext1

MF
ad,(φ,N)
K

(Dst(V ),Dst(W )),

where Ext1
C denotes the extension-group bi-functor in the category C.

Next we study the extensions of filtered (φ, N)-modules. Let D be an object in this category.
Given a rational number λ= r/s, where r, s ∈ Z are such that (r, s) = 1 and s > 0, define Dλ

to be the largest subspace of D which has an OK0-stable lattice M satisfying φs(M) = prM .
The subspace Dλ is called the isotypical component of D of slope λ. The slopes of D are the
rational numbers λ such that Dλ 6= 0, and D is called isotypical of slope λ0 if D =Dλ0 . The
Dieudonné–Manin classification gives a slope decomposition of isocrystals:

D =
⊕
λ∈Q

Dλ.

Note also that N(Dλ)⊆Dλ−1 for all λ ∈Q. The following result appears in [IS03, Lemma 2.1],
although its proof is mostly omitted. For completeness, we present here a fully detailed proof.

Lemma 3.3. Let D be a filtered (φ, N)-module, n an integer and assume that N induces an
isomorphism between the isotypical components Dn+1 and Dn. There is a canonical isomorphism

Ext1

MF
(φ,N)
K

(K[n+ 1], D)∼=D/ Filn+1 D
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mapping the class of an extension

0→D
ι−→ E

π−→K[n+ 1]→ 0

to (s1(1)− s2(1)) + Filn+1 DK , where:

(i) s1 :K[n+ 1]→ E is a splitting of π which is compatible with the Frobenius and monodromy
operators, but not necessarily with filtrations; and

(ii) s2 :K[n+ 1]→ E is a splitting of π compatible with the filtrations, but not necessarily with
the Frobenius and monodromy operators.

Proof. First, note that by applying the snake lemma to the following diagram with exact rows:

0 // Filn+1 DK
//

� _

��

Filn+1 EK
//

� _

��

Filn+1 K // 0

0 // DK
// EK // K // 0

we get an isomorphism DK/ Filn+1 DK
∼= EK/ Filn+1 EK , and hence we just need to find an

element in EK/ Filn+1 EK . Explicitly, once we get s1(1) ∈ EK , we can consider s1(1)− s2(1),
where s2 is a splitting of the extension which is compatible with the filtrations. Such a splitting
s2 exists because the category of K-vector spaces is semisimple. Since π(s1(1)− s2(1)) = 0, we
can view s1(1)− s2(1) as an element of DK (via ι), thus making the isomorphism explicit.

The filtered (φ, N)-module K[n+ 1] is pure of slope n+ 1, and the hypothesis on the
monodromy action N on D gives a commutative diagram with exact rows.

0 // Dn+1
//

N∼=
��

En+1

N
��

// K0
//

��

0

0 // Dn
// En // 0 // 0

An application of the snake lemma and the fact that the left vertical arrow is an isomorphism
yields another isomorphism

π| : ker(En+1
N−→ En) ∼−→K0,

and we define s1 :K→ EK as its inverse. Then s1 is compatible with the action of φ and N , by
construction.

We check that the assignment of s1(1) + Filn+1 EK to an extension 0→D→ E→K[n+ 1]
→ 0 is well defined: if the extension is trivial, then s1 can be chosen to be compatible with Fil,
and we then get

s1(1) ∈ s1(Filn K[n+ 1])⊆ Filn+1 EK .

Conversely, given d+ Filn+1 DK ∈DK/ Filn+1 DK , we construct a filtered (φ, N)-module
E(d) as an extension of K[n+ 1] by D. We define E(d)

0 =D0 ⊕ (K0[n+ 1]), as (φ, N)-modules.
The filtration on E

(d)
K = E

(d)
0 ⊗K0 K is defined as follows:

Filj E(d)
K := {(x, t) ∈DK ⊕K | t ∈ Filj−n−1 K, x+ td ∈ Filj D}.

Consider the isomorphism class of the extension

Ξ : 0→D
ι−→ E(d) π−→K[n+ 1]→ 0,
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where the map ι is the canonical inclusion, and the map π is the canonical projection. Note that
this sequence is exact and well defined, since

π(Filj E(d)
K ) = Filj−n−1 K = Filj K[n+ 1].

Moreover, if d ∈ Filn+1 DK , then the map 1 7→ (0, 1) splits the extension Ξ in the category of
filtered (φ, N)-modules. Hence, the map

DK/ Filn+1 DK → Ext1(K[n+ 1], D),

which assigns the extension Ξ to d ∈D/ Filn+1 D, is well defined.
To end the proof, we need to check that the two assignments are mutually inverse. Starting

with d+ Filn+1 DK , the vector space splitting 1 7→ (0, 1) is compatible with the Frobenius and
monodromy actions. Also, the vector space splitting 1 7→ (−d, 1) is compatible with the filtrations.
We obtain the class of d in DK/ Filn+1 DK , as wanted.

Conversely, start with an arbitrary extension

0→D
ι−→ E

π−→K[n+ 1]→ 0.

Choose s1 and s2 two splittings of π as before, and define d ∈DK such that ιK(d) = s1(1)− s2(1).
Consider now the map E(d)→ E sending

(x, t) 7→ ι(x) + s1(t) = ι(x+ td) + s2(t).

The first expression shows that this is a map of (φ, N)-modules. The second expression shows
that it respects the filtrations. Its inverse is the map

y 7→ (ι−1(y − s1(π(y))), π(y)) = (ι−1(y − s2(π(y)))− π(y)d, π(y)).

Again, the first expression shows that it is respects the Frobenius and monodromy actions, while
the second shows that it respects the filtrations. This concludes the proof. 2

4. The cohomology of XΓ, and pairings

Let X→ Spec(OK) be a proper semistable curve with connected fibers. Suppose that its generic
fiber X is smooth and projective, that the irreducible components C1, . . . , Cr of the special fiber
C are smooth and geometrically connected and that there are at least two of them. Assume also
that the singular points of C are κ-rational ordinary double points.

Let f : Y→ X be a smooth proper morphism and let Y be the generic fiber of Y. The relative
de Rham cohomologyHqdR(Y/X) :=Rqf∗OŶ/K

can be given the structure of a filtered convergent
F -isocrystal as explained in [CI10, Example 3.4.c]. In turn, the de Rham cohomology of X with
coefficients in HqdR(Y/X) can be given the structure of a filtered (φ, N)-module. Moreover, if S
is a finite set of points of X which are smooth (when considered as points on X), and we set
U :=X\S, one can also give this structure to H1

dR(U,HqdR(Y/X)). A detailed construction can
be found in [CI10, § 2].

The following result relates the GQ-representation H1
et(X, R

qf∗Qp) with the filtered (φ, N)-
module H1

dR(X,HqdR(Y/X)).

Theorem 4.1 (Faltings, Coleman–Iovita [CI10, Theorem 7.5]). (i) The representation H1
et(X,

Rqf∗Qp) is semistable, and there is a canonical isomorphism of filtered (φ, N)-modules

Dst(H1
et(X, R

qf∗Qp))∼=H1
dR(X,HqdR(Y/X)).
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(ii) Let S be a finite set of smooth sections of f : X→ Spec(OK), which specialize to pairwise-
different points on C. Write U =X\S, U = U ⊗K K and let Yx be the geometric fiber of
f : Y →X over x ∈ S. Then there is an exact sequence of semistable Galois representations

0→H1
et(X, R

qf∗Qp)→H1
et(U, R

qf∗Qp)→
⊕
s∈S

Hq
et(Yx,Qp(−1)),

which, after applying the functor Dst, becomes isomorphic to the sequence

0→H1
dR(X,H1

dR(Y/X))→H1
dR(U,H1

dR(Y/X))→
⊕
x∈S
H1

dR(Y/X)x[1].

The constructions above can be particularized to our setting. For that, let Γ be a discrete
cocompact subgroup of SL2(Qp), and denote by XΓ the Mumford curve over Qur

p whose associated
rigid-analytic space is Γ\Hp. Let V be an object of RepQp(GL2 ×GL2). In [IS03, § 4], the authors
associated to V a filtered convergent F -isocrystal on the canonical formal Zur

p -model of the upper
half-plane Ĥ, which is denoted E(V ). Also, for every Qp2-rational point Ψ ∈Hom(Qp2 , M2(Qp))

of Ĥ, they computed the stalk E(V )Ψ as a filtered (φ, N)-module VΨ ∈MF(φ,N)
Qur
p

. The assignment
V 7→ E(V ) is an exact tensor functor. This construction can be descended to give isocrystals on
XΓ. Denote the new filtered isocrystal on XΓ by the symbol E(V ) as well. Let E(V ) be the
coherent locally free OXΓ

-module with connection and filtration corresponding to E(V ), so that
E(V ) = E(V )an.

In [IS03], the authors gave a concrete description of the filtered (φ, N)-module
H1

dR(XΓ, E(V )) and, if U ⊆XΓ is an open subscheme as before, also of the filtered (φ, N)-
module H1

dR(U, E(V )). We may reduce to the case of Γ being torsion free as follows: choose
Γ′ ⊂ Γ a free normal subgroup of finite index. The group Γ/Γ′ acts on the filtered (φ, N)-modules
H1

dR(XΓ, E(V )) and H1
dR(U, E(V )) as automorphisms preserving the operators and the filtration.

Hence, it induces a structure of filtered (φ, N)-modules on

H1
dR(XΓ, E(V )) =H1

dR(XΓ′ , E(V ))Γ/Γ′ ,

and similarly for H1
dR(U, E(V )).

The fact that Hp is a Stein space in the rigid-analytic sense allows for the computation
of H1

dR(XΓ, E(V )) as group hypercohomology, via the Leray spectral sequence. Therefore, the
elements in H1

dR(X, E(V )) are represented by pairs (ω, fγ), where ω belongs to Ω1(Hp)⊗ V and
fγ is a OHp(Hp)⊗ V -valued 1-cocycle for Γ. They are required to satisfy the relation

γω − ω = dfγ for all γ ∈ Γ.

Let M be a Cp[Γ]-module. An M -valued cocycle on T is an M -valued function c on ~E(T ), such
that c(e) =−c(e). The Cp-vector space of M -valued cocycles is written C1(M). An M -valued
cocycle c is called harmonic if it satisfies∑

o(e)=v

c(e) = 0 for all v ∈V(T ).

The Cp-vector space of M -valued harmonic cocycles is written C1
har(M). The actions of Γ on T

and M induce a natural left action of Γ on the space C1
har(M).

Now we specialize the above discussion to a particular Cp[Γ] module. Let Pn be the
(n+ 1)-dimensional Qp-vector space of polynomials of degree at most n with coefficients in Qp.
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The group GL2(Qp) acts on the right on Pn by

P (x) · β := (cx+ d)nP
(
ax+ b

cx+ d

)
,

if β =
(
a b
c d

)
. In this way, its Qp-linear dual Vn := P∨n is endowed with a left action of GL2(Qp).

A harmonic cocycle of weight n+ 2 on T is a Vn-valued harmonic cocycle.
Define now U as the subspace of M2(Qp) given by matrices of trace 0. They have a right

action of GL2(Qp) given by

u · β := βuβ,

where β is the matrix such that ββ = det(β). There is a map Φ : U →P2 intertwining the action
GL2(Qp), given by

u 7→ Pu(x) := tr
(
u

(
x −x2

1 −x

))
= tr

(
u

(
x
1

)
(1− x)

)
= (1− x)u

(
x
1

)
. (3)

One easily checks that the map Φ induces an isomorphism of right GL2(Qp)-modules. On
U , there is a pairing defined by 〈u, v〉 :=−tr(uv), which induces a pairing on P2 by transport
of structure, and on the dual V2 of P2 by canonically identifying P2 with V2 using the pairing
itself. Furthermore, the pairing 〈·, ·〉 on V2 induces a perfect Γ-invariant symmetric pairing on
Symn V2 = V given by the formula

〈v1 · · · vn, v′1 · · · v′n〉V :=
1
n!

∑
σ∈Sn

〈v1, v
′
σ(1)〉 · · · 〈vn, v

′
σ(n)〉.

There is a natural injection

ι :H1(Γ, VQur
p

)→H1
dR(XΓ, E(V )),

and Schneider constructed a map I :H1
dR(XΓ, E(V ))→ C1

har(VQur
p

)Γ. It is called ‘Schneider
integration’ in [dS89, dS06, IS03]. Denote by ΩII

Xan
Γ

the space of meromorphic differentials of
the second kind on Xan

Γ . There is a map ΩII
Xan

Γ
⊗OXΓ

V → C1(VQur
p

):

ω 7→ (e 7→ rese(ω)),

and this map induces I. The residue theorem implies that the image of I lies in C1
har(VQur

p
)Γ.

Lemma 4.2 (Iovita–Spieß [IS03, Lemma 4.3]). Suppose that Γ is arithmetic. Then the following
sequence is exact:

0 // H1(Γ, VQur
p

) ι // H1
dR(X, E(V )) I // C1

har(VQur
p

)Γ // 0. (4)

There is a retraction P of ι, given by Coleman integration. This assigns to (ω, fγ) the 1-cocycle

γ 7→ fγ + (γFω − Fω),

where Fω is a Coleman primitive for ω as at the end of § 1. Note that the VQur
p

-valued function
γFω − Fω is constant, so that we can think of it as a well-defined element of VQur

p
.

The splitting P thus defines actions of Frobenius on the left and right terms of the exact
sequence (4), as follows: there is a natural action φ1 of Frobenius on H1(Γ, VQur

p
). Define an

action φ2 on C1
har(VQur

p
)Γ as φ2 := p(ε−1 ◦ φ1 ◦ ε), so that the following equality holds:

εφ2 = pφ1ε.

1015

https://doi.org/10.1112/S0010437X12000206 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000206


M. Masdeu

We have now all the maps needed in the definition of the Frobenius and monodromy operators.
Define first N to be the composition ι ◦ (−ε) ◦ I. Since I ◦ ι= 0, it follows that N2 = 0. Actually,
Lemma 4.2 implies that kerN = img N . Let T be the right inverse to I corresponding to P :

0 // H1(Γ, VQur
p

) ι //

φ1

��
H1

dR(XΓ, E(V )) I //

P

ww SY_ek

C1(VQur
p

)Γ/C0(VQur
p

)Γ //

T

vv UZ_di
φ2

��

0.

Define the Frobenius operator Φ on H1
dR(XΓ, E(V )) as

Φ(ω) := ιφ1(Pω) + T (φ2(Iω)).

It can easily be checked that this definition satisfies NΦ = pΦN , and that Φ is the unique such
action which is compatible with the maps P and ι.

Let S be a finite set of points of XΓ, and let U =XΓ\S be the open subscheme obtained
by removing the points in S. The space H1

dR(U, E(V )) is identified with the space of V -valued
differential forms on Xan

Γ which are of the second kind when restricted to U . The monodromy is
defined in the same way as before. The Frobenius is defined so that the Gysin sequence

0 // H1
dR(XΓ, E(V )) // H1

dR(U, E(V ))
⊕
x∈S resx //

⊕
x∈S

VΨx [1] (5)

is a sequence of (φ, N)-modules, and such that P is compatible with the Frobenii.
In [IS03], the authors applied the previous constructions to a filtered isocrystal onHp denoted

by E(M2). It was shown in [CI10, Lemma 5.10] that E(M2) is regular, and therefore one can define
a structure of a filtered (φ, N)-module on its cohomology groups.

Next we make more explicit some of the constructions carried out in [IS03, Appendix]. Let
U =X\{x}, where x is a closed point of X defined over the base field K. Write j : U →X =XΓ

for the canonical inclusion. Let z be a lift of x to Hp(K), taken inside a good fundamental
domain F . We assume that the stabilizer of z under the action of Γ is trivial. Let IndΓ(V ) be
the Γ-representation given by Maps(Γ, V ), with Γ-action

(γ · f)(τ) := γf(γ−1τ).

Let ad : V → IndΓ(V ) be defined as the constant map: ad(v)(τ) := v. Consider the complex
K•(V ), concentrated on degrees zero and one, defined as

K•(V ) : V
ad−→ IndΓ(V ).

Consider also the complex C•(V ) defined as follows:

C•(V ) : OHp(Hp)⊗ V
(d,evz)−→ Ω1(Hp)⊗ V ⊕ IndΓ(V ).

The cohomology with compact support on U with coefficients in E(V ) is the hypercohomology
group:

H1
dR,c(U, E(V ))∼= H1(Γ, C•(V )).

The inclusion j induces natural maps

H1
dR,c(U, E(V ))

j∗−→H1
dR(X, E(V )), H1

dR(X, E(V ))
j∗−→H1

dR(U, E(V )).

One also has a short exact sequence

0→H1(Γ,K•(V ))
ιU,c−→ H1

dR,c(U, E(V ))
IU,c−→ C1

har(V )Γ→ 0,
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and ιU,c has a retraction PU,c defined as follows. Let F(V ) be the subspace of those V -valued
locally analytic functions on Hp which are primitives of elements of Ω1(Hp)⊗ V . One checks
that the complex

F(V )→ Ω1(Hp)⊗ V ⊕ IndΓ(V )
is quasi-isomorphic to K•. The map PU,c is the natural map:

PU,c :H1
dR,c(U, E(V )) = H1(Γ, C•)→H1(Γ,K•).

There is a surjective map δ : C1(V )→ C0(V ) defined by

δ(f)(v) :=
∑
o(e)=v

f(e).

Let v0 := red(z). Define CU (V ) to be the Γ-module

CU (Γ) = {(f, g) ∈ C1(V )⊕ IndΓ(V ) | supp(f) = Γv0, f(γv0) = g(γ)}.

The map IU :H1
dR(U, E(V ))→ CU (V )Γ is naturally induced from the map ĨU : Ω1(Hp)(log(|z|))⊗

V → CU (V ), defined by
ĨU (ω)(e, γ) := (rese(ω), resγ(z)(ω)).

Also, the map ιU is induced from the natural inclusion

V →OHp(Hp)(log(|z|))⊗ V.

Finally, the splitting PU is defined by the same formula as the one defining P .
To sum up, we have described a commutative diagram with exact split rows.

0 // H1(Γ,K•(V ))
ιU,c //

q∗

��

H1
dR,c(U, E(V ))

IU,c //

PU,c

ww
SY_ek

j∗
��

C1
har(V )Γ // 0

0 // H1(Γ, V ) ι // H1
dR(X, E(V )) I //

P

ww
SY_ek

j∗

��

C1
har(V )Γ //

���
�
�

0

0 // H1(Γ, V )
ιU // H1

dR(U, E(V ))
IU //

PU

ww
SY_ek

CU (V )Γ // 0

(6)

Here the bent arrows mean splittings of the corresponding maps, and the vertical dotted arrow
means the natural induced map on the quotient.

We end this section by describing certain pairings among the above spaces. Recall the pairing
〈·, ·〉V defined on V = Vn. It induces a pairing 〈·, ·〉Γ:

〈·, ·〉Γ : C1
har(V )Γ ⊗ H1(Γ, V )→K,

given as follows: choose a free subgroup Γ′ ⊂ Γ of finite index, and let F be a good fundamental
domain for Γ′ as in [dS89, § 2.5]. Let b1, . . . , bg, c1, . . . , cg be the free edges for F. For f ∈ C1

har(V )Γ

and [z] ∈H1(Γ, V ), the pairing is given by the formula

〈[z], f〉Γ =
1

[Γ : Γ′]

g∑
i=1

〈z(γi), f(ci)〉Vn .

The cup product induces a pairing 〈·, ·〉XΓ
on H1

dR(XΓ, E(V )), which is related to the above
by the following formula.
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Theorem 4.3 (de Shalit [dS88, dS89], Iovita–Spieß [IS03]). For any two classes x, y in
H1

dR(XΓ, E(V )) the cup product 〈x, y〉XΓ
satisfies

〈x, y〉XΓ
= 〈P (x), I(y)〉Γ − 〈I(x), P (y)〉Γ. (7)

The cup product also induces a pairing:

〈·, ·〉U :H1
dR,c(U, E(V ))×H1

dR(U, E(V ))→K,

satisfying

〈j∗y1, y2〉X = 〈y1, j
∗y2〉U .

Finally, one can obtain an explicit description of a pairing

〈·, ·〉Γ,U :H1(Γ,K•(V ))⊗ CU (V )Γ→K.

Proposition 4.4 (Iovita–Spieß [IS03, Appendix]). Let x ∈H1(Γ,K•(V )) be represented by
(ζ, f), such that

ad ◦ ζ = ∂(f),

with ζ ∈ Z1(Γ, V ) a 1-cocycle and f ∈ IndΓ(V ) satisfying

(∂f)(γ) = γf − f.

Let (g, g′) ∈ C1(V )⊕ IndΓ(V ) be an element in CU (V )Γ. Choose a free subgroup Γ′ ⊂ Γ of finite
index, and let F be a good fundamental domain for Γ′ as in [dS89, § 2.5]. Let b1, . . . , bg, c1, . . . , cg
be the free edges for F. Then

〈[(ζ, f)], (g, g′)〉Γ,U =
1

[Γ : Γ′]

g∑
i=1

〈ζ(γi), g(ci)〉+ 〈f(1), g′(1)〉.

5. The anti-cyclotomic p-adic L-function

In [BDIS02], the authors defined the anti-cyclotomic p-adic L-function which interpolates special
values of a classical L-function (see [BDIS02, § 2.5]). Assume from now on that p is inert in K,
and fix an isomorphism ι :Bp→M2(Qp).

Let f be a rigid-analytic modular form of weight n+ 2 on Γ, and denote by An the set of
Cp-valued functions on P1(Qp) which are locally analytic except for a pole of order at most n
at ∞. Note that the subspace Pn of polynomials of degree at most n is dense in An. In [Tei90],
Teitelbaum associated to f a distribution µf on An, in such a way that it vanishes on Pn. This
is done by extending to An the measure defined by

µf (P · χU(e)) :=
∫
U(e)

P (x) dµf (x) := rese(f(z)P (z) dz),

where the polynomial P belongs to Pn, and e is an edge in ~E(T ) such that∞ /∈ U(e). The p-adic
residue formula gives the following lemma.

Lemma 5.1. If P ∈ Pn, then ∫
P1(Qp)

P (x) dµf (x) = 0.

Proof. Decompose P1(Qp) =
∐p
i=0 U(ei) as a disjoint union of compact open subsets, where

e0, . . . , ep are the edges leaving the distinguished vertex v0. Then, since cf is a harmonic
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cocycle, ∫
P1(Qp)

P (x) dµf (x) =
p∑
i=0

cf (ei)(P (X)) =
( p∑
i=0

cf (ei)
)

(P (X)) = 0. 2

The group GL2(Qp) acts also on An with weight n, by the rule

(ϕ ∗ β)(x) := (cx+ d)nϕ(β · x), ϕ ∈ An, and β ∈ PGL2(Qp).

One can also recover a modular form f from its associated distribution.

Proposition 5.2 (Teitelbaum [Tei90, Theorem 3]). Let f be a rigid-analytic modular form of
weight n+ 2 on Γ, and let µf be the associated distribution on P1(Qp). Then

f(z) =
∫

P1(Qp)

1
z − t

dµf (t).

For the rest of the paper, assume that K is a number field satisfying:

(i) all primes dividing pN− are inert in K; and
(ii) all primes dividing N+ are split in K.

In particular, note that we require the discriminant of K to be coprime to N = pN−N+. An
embedding Ψ :K→B is called optimal if Ψ(K) ∩R= Ψ(O), so that Ψ induces an embedding of
O into R. The partial p-adic L-function depends on a pair (Ψ, ?), of an optimal embedding
Ψ :K→B and a base point ? ∈ P1(Qp), and it is constructed in [BDIS02, § 2] from µf . One
defines a measure on G=K×p,1 denoted µf,Ψ,?, and the partial p-adic L-function is the p-adic
Mellin transform

Lp(f,Ψ, ?, s) :=
∫
G
xs−(n+2)/2 dµf,Ψ,?(x).

An abelian extension L/K is called anti-cyclotomic if it is Galois over Q and if the involution
in Gal(K/Q) acts (by conjugation) as −1 on Gal(L/K). Let K∞ denote the maximal anti-
cyclotomic extension of K unramified outside p, and let H be the Hilbert class field of K. There
exists a tower of extensions

Q⊂K ⊂H ⊂K∞.
Assume for simplicity that O×K = {±1}. By class field theory, the p-adic group G is isomorphic

to Gal(K∞/H). Let ∆ := Gal(H/K), and write also G̃ := Gal(K∞/K). These fit into an exact
sequence

1→G→ G̃→∆→ 1,
and in [BDIS02, Lemma 2.13] it was shown how the natural action of ∆ := Pic(O) on the set of
(oriented) optimal embeddings emb(O, R) lifts to an action of G̃ on the same set. The logarithm
logp extends uniquely to G̃, and thus one can define xs for s ∈ Zp and x ∈ G̃. One also defines
what it means for a function ϕ : G̃→ Cp to be locally analytic and, by averaging over the finite
set ∆, one defines another distribution µf,K on the space of analytic functions on G̃. Finally,
Lp(f, K, s) is defined as

Lp(f, K, s) :=
∫
G̃
αs−(n+2)/2 dµf,K(α), s ∈ Zp.

Let as before p be an inert prime. By the very definition of µf,K as above, the anti-cyclotomic
p-adic L-function Lp(f, K, s) vanishes at the values s= 1, . . . , n+ 1 (see Lemma 5.1). One is
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then interested in the first derivative. Write first

L′p(f, K, j + 1) =
∫
G̃

log(α)αj−n/2 dµf,K(α) =
h∑
i=1

L′p(f,Ψi, j + 1),

where

L′p(f,Ψi,∞, j + 1) :=
∫
G

log(α)αj−n/2 dµf,Ψi,∞(α).

The following formula is a generalization of [BDIS02, Theorem 3.5], which, although
immediate, is not currently present in the literature.

Theorem 5.3. Let Ψ be an optimal oriented embedding. For all j with 0 6 j 6 n, the following
equality holds:

L′p(f,Ψ,∞, j + 1) =
∫ z0

z0

f(z)(z − z0)j(z − z0)n−j dz,

where the right-hand side is to be understood as a Coleman integral on Hp.

Proof. Start by manipulating the expression for L′p(f,Ψ, j + 1):

L′p(f,Ψ,∞, j + 1) =
∫
G

log(α)αj−n/2 dµf,Ψ(α)

=
∫

P1(Qp)
log
(
x− z0

x− z0

)(
x− z0

x− z0

)j−n/2
P
n/2
Ψ (x) dµf (x)

=
∫

P1(Qp)

(∫ z0

z0

dz

z − x

)(
x− z0

x− z0

)j−n/2
P
n/2
Ψ (x) dµf (x),

where the second equality follows from the change of variables x= ηΨ(α) and the third from the
definition of the logarithm. Note that from the defining property of µf , it follows that∫

P1(Qp)

((x− z0)/(x− z0))j−n/2Pn/2Ψ (x)
z − x

dµf (x)

=
∫

P1(Qp)

((z − z0)/(z − z0))j−n/2Pn/2Ψ (z)
z − x

dµf (x), (8)

since the difference of the integrands is a polynomial in x of degree at most n. Using (8), a change
of order of integration and Proposition 5.2, we obtain

L′p(f,Ψ,∞, j + 1) =
∫

P1(Qp)

∫ z0

z0

dz

z − x

(
x− z0

x− z0

)j−n/2
P
n/2
Ψ (x) dµf (x)

=
∫ z0

z0

(∫
P1(Qp)

dµf (x)
z − x

)(
z − z0

z − z0

)j−n/2
P
n/2
Ψ (z) dz

=
∫ z0

z0

f(z)
(
z − z0

z − z0

)j−n/2
P
n/2
Ψ (z) dz.

A justification for the validity of the change of the order of integration can be found in the
proof given in [Tei90, Theorem 4]. 2
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6. A motive

In this section, we define a certain Chow motive and calculate its realizations. We will recall
the motive described in [IS03], and modify it in the spirit of [BDP09] to define the motive Dn.
Finally, we will compute the realizations of this newly constructed motive. For the definitions
concerning the category of motives, we follow the construction given in [Kün94, § 2].

Let K be a field of characteristic 0. Let S be a smooth quasi-projective connected scheme
over K. For simplicity, assume that S is of dimension 1, as this is the only situation that we will
need in the following. Denote by Sch(S) the category of smooth projective schemes X → S. We
denote by CHi(X) the ith Chow group of X, of algebraic cycles on X of codimension i, modulo
rational equivalence. We denote by CH(X) the Chow ring of X, the product given by intersection
of cycles. Given X, Y two smooth projective S-schemes, the ring of S-correspondences is defined
as

CorrS(X, Y ) := CH(X ×S Y ).

Denote by Mot0(S) the category of relative Chow S-motives as explained in [Kün94, § 2].
It is an additive, pseudo-abelian Q-category with a canonical tensor product and coproducts.
There is also a duality theory, and a form of Poincaré duality. Its objects are triples (X, p, i),
where X/S is in Sch(S), p is an idempotent in CH(X ×S X) and i is an integer.

The importance of Chow motives lies in their universality for the realization functors. For
us, this means that given a motive (X, p, i), the correspondence p induces a projector on any
Weil cohomology H∗(X), and therefore we obtain functors H∗ from the category Mot0(S) to
the same category where H∗(X) would live, by sending (X, p, i) to pH∗(X). These functors are
called realization functors, and we will concentrate on the l-adic étale and de Rham realizations.

Fix M > 3, and let XM/Q be the Shimura curve parameterizing abelian surfaces with
quaternionic multiplication by Rmax ⊆ B and level-M structure, as described in § 2. Let π :
A→XM be the universal abelian surface with quaternionic multiplication. Consider the relative
motive h(A) as an object of Mot(XM ), where h is the contravariant functor

h : Sch(XM )→Mot0
+(XM )

from the category of smooth and proper schemes over XM to the category of Chow motives, as
explained in [Kün94, § 2]. In general, the realization functors of a motive give the corresponding
cohomology groups as graded vector spaces with extra structures, and one cannot isolate the ith
cohomology groups at the motivic level, without assuming the so-called ‘standard conjectures’.
If the underlying scheme has extra endomorphisms, then one can hope to annihilate some of
these groups and thus obtain only the desired degree. The following result establishes this for
abelian schemes.

Theorem 6.1 (Deninger–Murre [DM91, Theorem 3.1, Proposition 3.3], Künnemann [Kün94]).
The motive h(A) admits a canonical decomposition h(A) =

⊕4
i=0 h

i(A), with hi(A)∼= ∧ih1(A)
and hi(A)∨ ∼= h4−i(A)(2).

Fix an integer M > 3. In [IS03, Appendix], the authors defined a motiveM(M)
n for even n> 2.

We now recall their construction. Let e2 be the unique non-zero idempotent in End(∧2h1(A)) =
End(h2(A)) such that

x · e2 = nrd(x)e2 for all x ∈ B.
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Define ε2 to be the projector in the ring CorrXM (A,A) such that

(A, ε2) = M̃(M)
2 := ker(e2).

Set m as n/2 and define M̃(M)
n := Symm M̃(M)

2 . There is a symmetric pairing, given by the cup
product,

h2(A)⊗ h2(A)→∧4h1(A)∼= Q(−2).

Let 〈·, ·〉 be its restriction to M̃(M)
2 ⊗ M̃(M)

2 . It induces a Laplace operator

∆m : M̃(M)
n →M̃(M)

n−2(−2),

given symbolically by

∆m(x1x2 · · · xm) =
∑

16i<j6m

〈xi, xj〉x1 · · · x̂i · · · x̂j · · · xm.

In [IS03, § 10.1], it was shown that ker(∆m) exists as a motive. Therefore, there is a
correspondence εn in CorrXM (Am,Am) such that

(Am, εn) = (Mn)(M) := ker(∆m).

Fix A an abelian surface with quaternionic multiplication. Assume also that A has CM. By
Remark 2.5, A is isomorphic to E × E. Fix such an isomorphism.

Let Sn be the symmetric group on n letters, and consider the semidirect product

Ξn := (µ2)n o Sn,

with σ ∈Sn acting on (µ2)n by (x1, . . . , xn)σ = (xσ(1), . . . , xσ(n)). This is isomorphic to the
group of signed permutation matrices of degree n.

The group Ξn acts on En as follows: each of the copies of µ2 acts by multiplication by −1 on
the corresponding copy of E, and Sn permutes the n copies.

Let j : Ξn→{±1} be the homomorphism which sends −1 ∈ µ2 to −1, and which is the sign
character on Sn, and let

εE :=
1

2n(n)!

∑
σ∈Ξn

j(σ)σ ∈Q[Aut(En)],

which is an idempotent in the rational group ring of Aut(En).
By functoriality, εE induces a projector in CorrXM (En, En).

Lemma 6.2 [BDP09, Lemma 1.8]. The image of εE action on H∗(En) is Symn H1(E), where
H(−) means either Het(−,Ql) or HdR(−).

We want to generalize the construction of [IS03] in the spirit of [BDP09]. Let n be a positive
even integer, and set m := n/2.

Definition 6.3. The motive D(M)
n over XM is defined as

D(M)
n := (Am × En, ε(M)

n ) :=M(M)
n ⊗ (En, εE),

where En→XM is seen as a constant family En ×XM , with fibers En.

We descend this construction to the Shimura curve X. For that, consider the group G=
(Rmax/MRmax)∼= GL2(Z/MZ), which acts canonically (through X-automorphisms) on XM ,
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on Am and on En. Hence, we can consider the projector

pG :=
1
|G|

∑
g∈G

g ∈ CorrX(Am × En,Am × En).

The projector pG commutes with both εn and εE . In fact, pG acts trivially on En. So, the
composition of these projectors is also a projector, which will be denoted ε.

Definition 6.4. The generalized Kuga–Sato motive Dn is defined to be

Dn := (Am × En, ε) := pG(D(M)
n ) = pG(M(M)

n )⊗ (En, εE).

We now proceed to calculate the p-adic étale and de Rham realizations of the motive Dn.
Consider the p-adic étale sheaf R2π∗Qp, which has fibers at each geometric point τ →XM given
by H2

et(Aτ ,Qp). We want to work with a subsheaf of R2π∗Qp. For this, note that the action of
Rmax on A induces an action of B× on R2π∗Qp.

Consider the p-adic étale sheaf

L2 :=
⋂
b∈B×

ker(b− nrd(b) :R2π∗Qp→R2π∗Qp)⊆R2π∗Qp,

which is the subsheaf on which B× acts as the reduced norm nrd of B. It is a three-
dimensional locally free sheaf on XM . Set m to be n/2, and consider the map ∆m : Symm L2→
(Symm−2 L2)(−2) given by the Laplace operator. That is,

∆m(x1 · · · xm) =
∑

16i<j6m

(xi, xj)x1 · · · x̂i · · · x̂j · · · xm,

where (·, ·) is the non-degenerated pairing induced from the cup product and the trace:
(x, y) = tr(x ∪ y). Define Ln to be the kernel of ∆m, and set

Ln,n := Ln ⊗ Symn H1
et(E,Qp).

The following lemma gives the p-adic étale realization of the motive Dn.

Lemma 6.5. Consider Dn as an absolute motive over Q. Let Hp(−) be the p-adic realization
functor. Then

Hp(Dn)∼=H1
et(XM , Ln,n)G =H1

et(XM , Ln)G ⊗ Symn H1
et(E,Qp).

Proof. First, note that the p-adic realization of the motive D(M)
n , as thought of as in the derived

category, is the complex of Qp-sheaves

Ln[−n]⊗ Symn H1
et(E,Qp)

concentrated in degree −n. Then, we just need to compute

Hp(Dn) = (pG)∗(H∗(XM , Ln[−n]⊗ Symn H1
et(E,Qp)))

= H∗−2n
et (XM , Ln)G ⊗ Symn H1

et(E,Qp),

which follows from the cohomology of Ln being concentrated in degree one and from the Künneth
formula. 2

The Hodge filtration on H1
dR(E) :=H1

dR(E,Qp) induces a filtration on Symn H1
dR(E). The

following lemma follows easily from the definitions.
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Lemma 6.6. Write Hj for the jth step in the naturally induced filtration on Symn H1
dR(E).

Then

Hj =


Symn H1

dR(E) if j 6 0,
Symj H0(E, Ω1

E)⊗ Sym2n−j H1
dR(E) if 1 6 j 6 n,

0 otherwise.

Theorem 6.7 (Faltings, Iovita–Spieß [IS03, Lemma 5.10]). There is a canonical isomorphism
of filtered isocrystals on Hp:

π∗H1
dR(A/XM )∼= E(M2).

This isomorphism takes the B×Qur
p

-action on the left-hand side to the action by ρ2 on the right-

hand side.

Consider the representation (Vn, ρ1) of GL2 constructed in § 4, and let ρ2 be the one-
dimensional representation of GL2 given by detm. Then the pair (Vn, ρ1, ρ2) induces a filtered
convergent F -isocrystal Vn = E(Vn{m}) as described in § 4 and in [IS03, § 4]. It turns out that it
is regular (see [IS03] after Lemma 4.3). Moreover, a simple computation using the compatibility
of the isomorphism of Theorem 6.7 with tensor products gives the following consequence.

Corollary 6.8. There is a canonical isomorphism of filtered convergent F -isocrystals⋂
x∈B×

ker((x− nrd(x)) : E(∧2M2)→E(∧2M2))∼= V2.

We believe that one has a similar result for odd n, but we refrain from formulating a precise
statement for it.

There is a map from the space of modular forms on XΓ of weight n+ 2 to Filn+1 H1
dR(XΓ, Vn),

given by f(z) 7→ ωf := f(z) evz ⊗ dz, where evz is the functional that assigns to a polynomial
R(X) its evaluation at the point z. Identifying these spaces, one obtains the filtration of
H1

dR(XΓ, Vn).

Proposition 6.9 [IS03, Proposition 6.1]. The filtration of H1
dR(XΓ, Vn) is given by

Filj H1
dR(XΓ, Vn) =


H1

dR(XΓ, Vn) if j 6 0,
Mk(Γ) if 1 6 j 6 n+ 1,
0 otherwise.

Define the filtered convergent F -isocrystal Vn,n as

Vn,n := Vn ⊗ Symn H1
dR(E).

Understanding the structure of DstQur
p

(Hp(Dn)) will allow us to compute the Abel–Jacobi map in
an explicit way. Write H2n+1

dR (Dn) for the filtered (φ, N)-module Dst,Qur
p

(Hp(Dn)). The following
key result is a consequence of the facts shown so far.

Theorem 6.10. The GQp-representation H2n+1
p (Dn) is semistable, and there is a (canonical up

to scaling) isomorphism of filtered (φ, N)-modules

Dst(H2n+1
p (Dn)) =H2n+1

dR (Dn)∼=H1
dR(XΓ, Vn,n) =H1

dR(XΓ, Vn)⊗ Symn H1
dR(E).
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Moreover, writing Filj for Filj H2n+1
dR (Dn), we have

Filj =


H1

dR(XΓ, Vn,n) if j 6 0,
H1

dR(XΓ, Vn)⊗ Hj +Mk(Γ)⊗ Symn H1
dR(E) if 1 6 j 6 n+ 1,

Mk(Γ)⊗ Hj−n−1 if n+ 2 6 j 6 2n+ 1,
0 otherwise.

In particular,

Filn+1 H2n+1
dR (Dn)∼=Mk(Γ)⊗ Symn H1

dR(E).

Proof. To prove semistability, we can extend the base to Qur
p . In this case, the curve X is

isomorphic to a disjoint union of Mumford curves, and hence it is semistable.
By Corollary 6.8, there is an isomorphism:⋂

x∈B×
ker(x− nrd(x) : E(∧2M2)→E(∧2M2))∼= V2.

Applying Theorem 4.1 and functoriality, we see that the filtered (φ, N)-module

Dst,Qur
p

(H1
et(XM , Ln)⊗ Symn H1

et(E,Qp))

is isomorphic to

H1
dR((XM )Qur

p
, Vn)⊗ Symn H1

dR(E/Qp).

This isomorphism can then be descended to Dn by taking G-invariants.
Putting together Proposition 6.9 with (6.6), we obtain the formula for the filtration. 2

7. Geometric interpretation of the values of L′
p(f, K, s)

This section contains the main result of this paper. First, we obtain a formula for the values
of the derivative of the p-adic L-function, in terms of Coleman integrals on the p-adic upper
half-plane. Next, we define a collection of cycles on the motive Dn introduced in the previous
section. Lastly, we calculate this image and give the main result.

Let K be a field of characteristic 0, and let l be a prime. Let X be a smooth projective
variety over K, and denote by CHc(X) the Chow group of X, consisting of cycles of codimension
c with rational coefficients. The Chow group has already been introduced in § 6 when discussing
a category of relative motives with arbitrary coefficients, but here we work with a simpler setting.
Consider the locally constant sheaves Fn = Z/lnZ(c) as above, and take projective limits with
respect to n, to get Zl-valued cohomology. Inverting l, we get Ql-valued cohomology, which will
be denoted with Het as well. Write X for the base change of X to K, and let CHc

0(X) be the
kernel of the cycle class map (see [Mil80, §VI.9]).

Consider the l-adic étale Abel–Jacobi map

AJet
l : CHc

0(X)→ Ext1(Ql, H
2c−1
et (X,Ql(c))),

as explained in [BDP09, Definition 4.1]. Assume that K is a p-adic field, and set l = p. Bloch and
Kato in [BK90] and Nekovář in [Nek93] have defined, for any Galois representation V of GK , a
subspace

H1
st(K, V ) := ker(H1

et(K, V )→H1
et(K, V ⊗Qp Bst)).
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This is identified with the group of extension classes of V by Qp in the category of semistable
representations of GK . The following result can be found in [Nek00].

Lemma 7.1. The image of AJet
p is contained in

H1
st(K, H

2c−1
et (X,Qp(c)))∼= Ext1

Repst(GK)(Qp, H
2c−1
et (X,Qp(c))).

As seen in § 3, the Fontaine functors Dst and Vst give a canonical comparison isomorphism:

Ext1
Repst(GK)(Qp, H

2c−1
et (X,Qp(c)))∼= Ext1

MF
ad,(φ,N)
K

(K[c],Dst(H2c−1
et (X,Qp))),

which will make the computations possible.
Consider the generalized Kuga–Sato motive Dn = (Am × En, ε) as in Definition 6.4. The

construction of the p-adic Abel–Jacobi map seen above can be easily extended to the motive
Dn, by applying the projector at the appropriate places. This can be done for each realization,
but we are specially interested in the de Rham realization of Dn, which we have computed to be
H1

dR(XΓ, Vn,n). It fits in a short exact sequence as in Theorem 4.1:

0→H1
dR(XΓ, Vn,n)→H1

dR(U, Vn,n)→
⊕
z∈S

(Vn,n)z[1], (9)

where S is a finite set of points in XΓ lying in distinct residue classes, and U is the complement
in XΓ of S. In § 7, we will define certain cycles on Am × En which are supported on a fiber above
a point P ∈X. These cycles are of codimension n+ 1, and therefore sending 1 to their cycle
class yields a map

K[n+ 1]→ (Vn,n)z[1].

Pulling back the extension (9), we obtain another extension

0→H1
dR(XΓ, Vn,n)→ E→K[n+ 1]→ 0.

Using Lemma 3.3, and the fact that the space

Filn+1 H1
dR(XΓ, Vn,n)

is self-orthogonal, we obtain

H1
dR(XΓ, Vn,n)/Filn+1 H1

dR(XΓ, Vn,n)∼= (Mn+2(Γ)⊗ Symn H1
dR(E))∨.

The composition map will be denoted AJK :

AJK : CHn+1(Dn)→ (Mn+2(Γ)⊗ Symn H1
dR(E))∨.

We proceed to define a collection of cycle classes in CHn+1(Dn), indexed by certain isogenies.
Let E be an elliptic curve with complex multiplication by O. Recall that O = EndRmax(E) is
an order in an imaginary quadratic number field K. Consider an isogeny ϕ from E to another
elliptic curve with complex multiplication E′, of degree coprime to N+M . If there is a level-N+

structure and full level-M structure on E, we obtain the same structures on E′, and also on
A′ := E′ × E′, by putting these level structures only on the first copy. Hence, we obtain a point
PA′ in XM , together with an embedding

iA′ :A′→A,

defined over K. Let Υϕ be the cycle

Υϕ := (tΓϕ)n ⊆ (E′ × E)n ∼= (A′)m × En ↪→Am × En,
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where the last inclusion is induced from the canonical embedding iA′ , and Γϕ is the graph of ϕ.
Finally, apply the projector ε defined in § 6.

Definition 7.2. The generalized Heegner cycle attached to the isogeny ϕ : E→ E′ is the cycle

∆ϕ := εΥϕ ∈ CHn+1(Dn).

Since Hp(Dn) is concentrated in degree 2n+ 1, the cycle ∆ϕ is null-homologous. Therefore,
it makes sense to study the image of ∆ϕ under the p-adic Abel–Jacobi map discussed above.
Let P̃A′ be the point of XM attached to A′ through the isogeny ϕ. The cycle ∆ϕ lies in the
(2n+ 1)-dimensional scheme Am × En, and so it has codimension n+ 1. Consider the map

AJK : CHn+1(Dn)→ (Mn+2(Γ)⊗ Symn H1
dR(E))∨,

as described above. Let ωf be the differential form associated to a modular form f ∈Mn+2(Γ)
as explained in § 2. Fix α ∈ Symn H1

dR(E). We want to compute the value

AJK(∆ϕ)(ωf ∧ α) ∈ Cp.

Write clPA′ (∆ϕ) for the cycle class of ∆ϕ on the fiber above PA′ ∈XM :

clPA′ (∆ϕ) := clA
m×En
|∆ϕ|

(∆ϕ) ∈H2n+2
|∆ϕ|

(Am × En,Qp(n+ 1)).

Consider the short exact sequence of filtered (φ, N)-modules

0→H1
dR(XΓ, Vn,n)→H1

dR(U, Vn,n)
resPA′−−−−−→ (Vn,n)PA′ [1]→ 0. (10)

Remark 7.3. Here is where we need to exclude the case of weight 2, which would correspond
to n= 0: in that case resPA′ is always zero, since the restriction map induces an isomorphism
H1

dR(XΓ)∼=H1
dR(U). However, in our situation the cokernel of the map resPA′ injects in

H2
dR(XΓ, Vn,n)∼=H0

dR(XΓ, V∨n,n),

where the isomorphism is given by Serre duality. But Vn,n (and therefore V∨n,n) does not have
Γ-invariants, since it is isomorphic to n copies of the standard representation of Γ.

We argue that the sequence in (10) is exact. Its pull-back under the map 1 7→ clPA′ (∆ϕ) yields
then a short exact sequence

0→H1
dR(XΓ, Vn,n)→ E→K[n+ 1]→ 0.

Lemma 3.3 ensures that if one forgets the filtration, the resulting sequence of (φ, N)-modules
is split, say by a map s1 :K[n+ 1]→ E. If we write ([η1], x) for s1(1), note then:

(i) for ([η1], x) to be a splitting of the given extension, necessarily x= 1, and η1 has to satisfy:

(a) NU ([η1]) = 0; and
(b) Φ([η1]) = pn+1[η1];

(ii) for ([η1], 1) to be in

E =H1
dR(U, Vn,n)×(Vn,n)PA′

[1] K[n+ 1],

necessarily resPA′ (η1) = clPA′ (∆ϕ).

So, let η1 be a Vn,n-valued 1-hypercocycle on U satisfying the conditions

resPA′ (η1) = clPA′ (∆ϕ), NU ([η1]) = 0, Φ(η1) = pn+1η1 +∇G,
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where G is a Vn,n-valued rigid section over U . Consider next [η2] ∈ Filn+1 H1
dR(U, Vn,n) such

that resPA′ (η2) = clPA′ (∆ϕ). This element exists as well, because it is the image of 1 under the
splitting s2 of Lemma 3.3. Let

[η̃ϕ] := [η1 − η2] ∈H1
dR(U, Vn,n).

Then [η̃ϕ] can be extended to all of XΓ. That is, there is [ηϕ] ∈H1
dR(XΓ, Vn,n) such that

j∗([ηϕ]) = [η̃ϕ]≡ [η1] (mod Filn+1 H1
dR(U, Vn,n)).

Write [ηϕ] = ι(c) + t, with t ∈ Filn+1 H1
dR(XΓ, Vn,n). Then one can replace [η2] by [η2] + t without

changing the properties required for [η2], and hence we can assume that [ηϕ] = ι(c) for some
c ∈H1

dR(XΓ, Vn,n). Recall the maps I and PU as appearing in the diagram of (6). We can prove
the following proposition.

Proposition 7.4. With the previous notation, the following equality holds:

AJK(∆ϕ)([ωf ] ∧ α) = 〈I([ωf ] ∧ α), PU ([η2])〉Γ. (11)

Proof. Using the definition of the Abel–Jacobi map and following the recipe given in Lemma 3.3,
together with the pairings on H1

dR(X, Vn,n), we obtain the following equality:

AJK(∆ϕ)([ωf ] ∧ α) = 〈[ωf ] ∧ α, [ηϕ]〉XΓ
.

The assumption of ηϕ = ι(c) implies that I(ηϕ) is zero. So, the right-hand side can be rewritten,
using (4.3) and the diagram of (6), as

−〈IU,c([ωf ] ∧ α), PU ([ηϕ])〉Γ.

Now the result follows from observing that on U one can write [ηϕ] = [η1]− [η2], and that
PU ([η1]) = 0. 2

The following result computes a formula for the right-hand side of (11).

Theorem 7.5. Let Ff be a Coleman primitive of ωf , and let z′0 ∈Hp be a point in the p-adic
upper half-plane such that P ′A = ΓMz′0. Then

〈I([ωf ] ∧ α), PU ([η2])〉Γ = 〈Ff (z′0) ∧ α, clz′0(∆ϕ)〉Vn,n .

Proof. Observe first that the spaces

Filn+1 H1
dR,c(U, Vn,n) and Filn+1 H1

dR(U, Vn,n)

are orthogonal to each other. Therefore,

0 = 〈[ωf ] ∧ α, [η2]〉U = 〈PU,c([ωf ] ∧ α), IU ([η2])〉Γ,U − 〈I([ωf ] ∧ α), PU ([η2])〉Γ,

and hence we obtain

〈I([ωf ] ∧ α), PU ([η2])〉Γ = 〈PU,c([ωf ] ∧ α), IU ([η2])〉Γ,U .

In order to show that the right-hand side of the previous equation coincides with

〈Ff (z′0) ∧ α, clz′0(∆ϕ)〉Vn,n ,

we use the explicit formula for the pairing as found in Proposition 4.4. Since η2 has only non-zero
residue at PA′ , the right-hand side of the formula appearing in Proposition 4.4 reduces to pairing
the primitive of ωf ∧ α with that residue, at the point corresponding to PA′ , yielding the desired
formula. 2
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From here on, let z0 be a point in the p-adic upper half-planeHp such that the orbit PA := Γz0

corresponds to A= E × E in X. Consider the map

g = (IdnE , ϕ
n) : En→ En × (E′)n.

Then ∆ϕ is the projection via ε of the image g(En). The functoriality of the cycle class map
gives

〈Ff (z′0) ∧ α, clz′0(∆ϕ)〉Vn,n = 〈ϕ∗Ff (z0), α〉Vn ,
where now the pairing is the natural one in the stalk Vn = (Vn)z0 . To compute this last quantity,
we first do it on a horizontal basis for

Symn H1
dR(E/K) = (Vn)z0 .

Let {u, v} be a horizontal basis for V1, normalized so that 〈u, u〉= 〈v, v〉= 0 and 〈u, v〉=
−〈v, u〉= 1. This induces a basis {vi := uivn−i}06i6n of Vn.

Choose a global regular section ωn in the lowest piece of the filtration which transforms with
respect to ΓM as of weight n, and scale it so that ωn corresponds to

∑n
i=0(−1)i

(
n
i

)
zivi, which is

a regular section in Filn Vn. Note that ωn = (u− zv)n, and so

〈ωn, vi〉= 〈u− zv, u〉i〈u− zv, v〉n−i = zi.

We want to obtain a formula for the Coleman primitive Ff of ωf . We proceed by differentiating
the section 〈Ff , vi〉 and using that {vi} is a horizontal basis:

d〈Ff , vi〉= f(z)〈ωn, vi〉 dz = zif(z) dz.

One deduces the formula〈
Ff (ϕ(z0)),

∑
i

aivi

〉
=

n∑
i=0

ai

∫ ϕ(z0)

?
f(z)zi dz.

From now on, we concentrate on the stalk of Vn at z0. The chosen regular differential ω yields
a basis element ωz0 for H1

dR(E, K). Choose ηz0 in the line spanned by Φωz0 and additionally
satisfying 〈ωz0 , ηz0〉= 1. This yields a basis for Symn H1

dR(E/K), namely {ωjz0η
n−j
z0 }06j6n. We

express this basis in terms of the horizontal basis {vi}. By construction, we have

ωjz0η
n−j
z0 = (z0 − z0)j−n

∑
i

Pi,j,n(z0, z0)vi,

where

Pi,j,n(X, Y ) =
∑
k

(
j

k

)(
n− j

k + i− j

)
(−1)n−iXkY n−i−k.

A simple computation yields∑
i

Pi,j,n(z0, z0)zi = (z − z0)j(z − z0)n−j ,

and we obtain a formula for a primitive for ωf :

〈ϕ∗Ff (z0), ωjz0η
n−j
z0 〉= (z0 − z0)j−n

∫ ϕ(z0)

?
f(z)(z − z0)j(z − z0)n−j dz.

Note that this equality is only defined up to an ‘integration constant’ in Cp, because in Hp the
sheaf Vn,n is trivial. We can now prove the following application.
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Theorem 7.6. Let ϕ : E→ E′ be an isogeny of elliptic curves with level-N structure, and let
ϕ be the morphism E→ E

′
obtained from ϕ by applying to E′ the non-trivial automorphism

of K. Let ∆−ϕ := ∆ϕ −∆ϕ, and write z′0 ∈Hp for the point in the p-adic upper half-plane which
corresponds to the abelian surface E′ × E′. Then there exist a constant Ω ∈K× such that

AJK(∆−ϕ )(ωf ∧ ωjηn−j) = Ωj−nL′p(f,ΨPE′ , j + 1), 0 6 j 6 n.

Proof. Set Ω to be z0 − z0. Since z0 does not belong to the boundary of Hp, this quantity is
non-zero. Using the previous results, we obtain first

AJK(∆−ϕ )(ωf ∧ ωjηn−j) = 〈Ff (z′0), ωjz0η
n−j
z0 〉 − 〈Ff (z′0), ωjz0η

n−j
z0 〉.

Therefore, the second term in the previous displayed expression becomes

〈Ff (z′0), ωn−jz0 ηjz0〉= Ωj−n
∫ z′0

?
f(z)(z − z0)j(z − z0)n−j dz.

Combining this with the formula for 〈Ff (z′0), ωjz0η
n−j
z0 〉 yields

AJK(∆−ϕ )(ωf ∧ ωjηn−j) = Ωj−n
∫ z′0

z′0

f(z)(z − z′0)j(z − z′0)n−j dz.

The result follows now from Theorem 5.3. 2

Note that the integral appearing in the previous theorem coincides with the value at s= j + 1
of the derivative of the partial p-adic L-function described before. We obtain the following
corollary.

Corollary 7.7. Let H/K be the Hilbert class field of K, and consider a set of representatives
{Ψ1, . . . ,Ψh} for emb(O,R). For each Ψi, let Pi be the corresponding Heegner point on XH ,
and let ∆Ψi be the cycle corresponding to Pi. Define ∆− :=

∑
i ∆−Ψi . There exists a constant

Ω ∈K such that for all 0 6 j 6 n,

AJK(∆−)(ωf ∧ ωjηn−j) = Ωj−nL′p(f, K, j + 1).

Proof. This follows immediately from the expression given in Theorem 7.6 for the partial p-adic
L-functions:

AJK(∆−Ψi)(ωf ∧ ω
jηn−j) = Ωj−nL′p(f,Ψi, j + 1). 2

Remark 7.8. There is no canonical choice for the regular differential ω ∈ Ω1
E/K . If a given ω is

changed to ωλ := λω, with λ ∈K, we obtain

AJK(∆−)(ωf ∧ (ωjλη
n−j
λ )) = Ωj−nλ2j−nL′p(f, K, j + 1).

Note in particular that the formula at the central point j = n/2 does not depend on the choice
of the basis of the differential form ω.

If one wishes to extend the results of this paper to modular forms of odd weight, one needs
to work on the two sides of the equation: on the one hand, the motive Dn needs to be extended
to odd n. On the other hand, the anti-cyclotomic p-adic L-function as defined in [BDIS02] does
not contemplate possible nebentypes, thus restricting the construction to even-weight modular
forms. One should give a more general construction which allowed nebentypes, and these should
be incorporated in the definition of the motive Dn as well.

It would be interesting to compute the image of the Abel–Jacobi map for arbitrary cycles on
Dn supported on CM points of the Shimura curve. This is a more difficult problem than what
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has been treated in this paper, since some of the techniques used above cannot be used in the
general case. However, similar computations have been carried over in the split case in [BDP09],
and one should be able to adapt them to the setting of this work.

Finally, let us remark that, although the focus of this paper has been put on the study of
the relation of the anti-cyclotomic p-adic L-function to the image of certain cycles under the
Abel–Jacobi map, it would be interesting to instead relate the values of the L-function to p-adic
analogues of the Néron–Tate heights of the cycles. The investigation of the relation of the
p-adic Abel–Jacobi map appearing in this paper with the p-adic height pairings as in the articles
of Coleman and Gross [CG89] and of Nekovář [Nek93, Nek95] would certainly be fruitful.
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Nombres, 1987–1988 (Talence, 1987–1988), Université Bordeaux I, Talence, 1988, p. Exp. No. 47,
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