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Matching of Weighted Orbital Integrals for
Metaplectic Correspondences
Paul Mezo

Abstract. We prove an identity between weighted orbital integrals of the unit elements in the Hecke
algebras of GL(r) and its n-fold metaplectic covering, under the assumption that n is relatively prime
to any proper divisor of every 1 ≤ j ≤ r.

1 Introduction

In order to successfully compare trace formulas of two groups, one must match or-
bital integrals of functions in the two corresponding Hecke algebras. The basic step
in this endeavour is the matching at the units of the Hecke algebras. This is, for in-
stance, the basic step in proving Langlands’ “fundamental lemma”. When comparing
the Arthur-Selberg trace formulas of two groups, one requires an additional match-
ing. The truncation process involved in the Arthur-Selberg trace formula leads to the
matching of weighted orbital integrals.

The two groups considered here are GL(r) and an n-fold metaplectic covering
thereof [11]. The matching of invariant orbital integrals at the units has been com-
pletely solved through the combined work of Flicker, Kazhdan, Patterson and Wald-
spurger (see the Appendix of [5]). We prove a matching of weighted orbital integrals
at the units, under the assumption that for any 1 ≤ j ≤ r and any proper divisor i
of j, n and i are relatively prime. Our proof relies heavily on the work of the above
authors. Given more information about metaplectic coverings, one should be able
remove the assumption by using an inductive trace formula argument as in [12].

The author would like to thank James Arthur for his encouragement and the Max-
Planck-Institut für Mathematik for their generous support.

2 Statement of Theorem

Let r ≥ 2 and n be positive integers. Let F be a p-adic field which contains the group
µn of n-th roots of unity. We also assume that |n| = 1. Set R to be the ring of integers
of F and q to be the cardinality of its residual field.

Put G = GL(r, F) and K = GL(r,R). We follow the definition in [6, Section 2] of
an n-fold metaplectic covering,

1→ µn
i
→ G̃

p→←s G→ 1,
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Weighted Orbital Integrals 483

using the 2-cocycle τmv, for fixed 0 ≤ m ≤ n − 1. The maps in this short exact
sequence of topological groups are given by

i(ζ) = (1, ζ), p(γ, ζ) = γ, and s(γ) = (γ, 1),

where γ ∈ G and ζ ∈ µn. Given a subgroup H of G, we write H̃ in place of p−1(H).
The cocycle τmv is trivial on K ×K. This implies that K̃ is equal to the group K × µn.

We define a map, G0
′
→ G̃, on a dense subset G0 of G as in [6, Section 4]. This

map preserves conjugacy classes and is the “orbit map” which affords a comparison
of G with G̃. If n is odd then G = G0 and this map is given by

γ ′ = s(γ)n, γ ∈ G.

If n is even then the map satisfies

γ ′ = i(±1)s(γ)n, γ ∈ G0.

Fix a Haar measure on G such that K has measure 1. The centralizer of γ̃ ∈ G̃ in
G̃ is denoted by G̃γ̃ . Fix Haar measures on Gγ for γ ∈ G. To K̃ and G̃γ̃ we assign
the Haar measures which, when composed with s, coincide with those of K and Gp(γ̃)

respectively.
We take M0 to be the diagonal subgroup of G. The set of Levi subgroups of G con-

taining M0 is denoted by L. Throughout, M denotes an element in L. All remaining
notation, such as L(M), P(M), aM , etc. is adopted from [3, Sections 1–2]. Of course,
we specialize this notation to the case G = GL(r, F).

Define the function f 0
M̃

on M̃ by

f̃ 0
M(γ, ζ) =

{
0, if γ /∈ K ∩M
ζ−1, otherwise

}
, γ ∈ M, ζ ∈ µn.

In particular f 0
M is just the characteristic function of M ∩ K. The weighted orbital

integral, JL̃
M̃(γ̃, f 0

L̃
) at γ̃ ∈ M̃, is defined as

∣∣DL
(

p(γ̃)
) ∣∣ 1/2

∫
L̃γ̃\L̃

f 0
L̃ (x−1γ̃x)vL

M

(
p(x)
)

dx, L ∈ L(M).

Define µM
n to be the group of those matrices in the center of M whose diagonal

entries all lie in µn. It is simple to see that

JL
M(ηγ, f 0

L ) = JL
M(γ, f 0

L ), η ∈ µL
n,

as vL
M is left-invariant under M and µL

n is contained in both K and M.
We have the following matching of weighted orbital integrals.

Theorem Suppose γ ∈ M is semisimple and γn is regular in G. Suppose further that,
for any 1 ≤ j ≤ r and any proper divisor i of j, n and i are relatively prime. Then

JL̃
M̃(γ ′, f 0

L̃ ) =
∑

η∈µM
n /µ

L
n

JL
M(ηγ, f 0

L ), L ∈ L(M).

As mentioned in the introduction, the case M = L of this theorem has been
proven for all positive integers n. We shall therefore take this case for granted and
mention it no further. The proof of this theorem shall consume the rest of this paper.
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3 At the Regular Elliptic Elements

We first recall some results of Kazhdan in [7, Section 3]. According to [7, Lemma 2,
Section 3], any element γ of K has a topological Jordan decomposition. That is, there
exist unique commuting elements s and u in K and an integer c, relatively prime to
q, such that sc = 1, limN→∞ uqN

= 1 and γ = su. We call s topologically semisimple
and u topologically unipotent. [7, Lemma 3, Section 3] states that

{x ∈ G : x−1γx ∈ K} ⊂ GsK.

This lemma is of great consequence for the Theorem in the case L = G. For G-
regular semisimple γ ∈ M ∩ K, the integrand of JM(γ, f 0

G) vanishes outside of the
subset above. It therefore suffices to consider the integral over Gγ \ Gs.

We proceed by considering the case L = G and examining the structure of Gs.
For the remainder of this section, we take γ to belong to K ∩M, to be elliptic in M
and assume that γn is regular in G. It is well-known that M may be decomposed as a
product of subgroups,

M1 × · · · ×Mk,

where Mi
∼= GL(ri , F), 1 ≤ i ≤ k and

∑k
i=1 ri = r. We will often identify Mi

with GL(ri, F). Accordingly, we represent the elements γ, s and u by the respective
ordered k-tuples, (γ1, . . . , γk), (s1, . . . , sk) and (u1, . . . , uk). Clearly, the topological
Jordan decomposition of γi is siui , 1 ≤ i ≤ k.

Lemma 1 Suppose that s1 = · · · = sk, and n is relatively prime to r1. Then Gs = Gsn ,
and there exists an extension F ′1 of F and an integer r ′1 such that Gs

∼= GL(kr ′1, F
′
1).

Proof Clearly, s1u1, . . . , s1uk are regular and elliptic in GL(r1, F). We know that s1

commutes with these elements, hence it too is elliptic in GL(r1, F). In particular
s1 and sn

1 are semisimple. According to [9, pp. 164–165], the centralizer of sn
1 in

GL(r1, F) is isomorphic to
∏	

i=1 GL(r ′i , F
′
i ), where F ′1, . . . , F

′
	 are extensions of F and∑	

i=1 r ′i [F ′i : F] = r1. Since this group contains an elliptic torus of GL(r1, F), we
must have 	 = 1. In particular, sn

1 may be regarded as an element of F ′1. We re-
peat the above procedure with s1 in place of sn

1 to obtain a field extension F ′ ′1 such
that the centralizer of s1 in GL(r1, F) is isomorphic to GL(r ′ ′1 , F

′ ′
1 ). Clearly, F ′ ′1 is the

field obtained from F ′1 by adjoining an n-th root of sn
1. That is, F ′ ′1 = F1(s). By [10,

Theorem 6.2 (ii) Chapter VI], [F ′ ′1 : F ′1] divides n. At the same time,

r1 = r ′′1 [F ′ ′1 : F ′1][F ′1 : F].

As n and r1 are relatively prime, we conclude that [F ′ ′1 : F ′1] = 1. It follows that the

F-subalgebras generated by s and sn in Matr(F) are both equal to
∏kr ′1

i=1 F ′1. Appealing
once again to [9, pp. 164–165] we obtain the lemma.

The proof of the following corollary is a detailed application of parts of [6, Sec-
tion 12] to weighted orbital integrals.
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Corollary 1 Suppose s1, . . . , sk all belong to the same conjugacy class of GL(r1, F),
and n is relatively prime to r1. Then

JM̃

(
s(γ)n, f 0

G̃

)
= |DG(γ)|1/2

∫
Gγ\Gs

f 0
G(x−1ux)vM(x) dx = JM(γ, f 0

G).

Proof As weighted orbital integrals are constant on conjugacy classes, we may as-

sume s1 = · · · = sk. [4, Lemma 2 Section 1.1] implies that G̃s(γ)n = G̃γ . We

may identify G̃γ \ G̃ with Gγ \ G as measure spaces via the map s. Consequently
JM̃

(
s(γ)n, f 0

G

)
is equal to

|DG(γn)|1/2
∫

Gγ\G
f 0
G̃

(
s(x)−1s(γ)ns(x)

)
vM(x) dx.

After applying Lemma 1 and integrating over K, we may replace this expression with

|DG(γn)|1/2
∫

Gγ\Gs

f 0
G

(
s(x)−1s(s)ns(u)ns(x)

)
vM(x) dx.

By a variant of [8, Proposition 0.1.5] (cf. [9, p. 212] also), we have

s(x)−1s(sn)s(x) = i
((

(det s)n, det x
) 1+2m

F
(sn

1, det
1

x)−1
F ′1

)
.(1)

Here (·, ·)F and (·, ·)F ′1
are the n-th Hilbert symbols of F and F ′1 respectively, and

det1 is the determinant map of GL(kr ′1, F
′
1). Since (det s)n and sn are n-th powers

in F and F ′1 respectively, the Hilbert symbols on the right have value 1. Therefore
JM̃

(
s(γ)n, f 0

G̃

)
is reduced to

|DG(γn)|1/2
∫

Gγ\Gs

f 0
G̃

(
s(x)−1s(u)ns(x)

)
vM(x) dx.

Given x ∈ Gs, then x−1ux ∈ K if and only if x−1unx ∈ K. Indeed, n and q are
relatively prime, so for any integer N , there exist integers a and b such that an+bqN =
1. Therefore,

x−1ux = (x−1unx)a(x−1uqN

x)b,

and the result follows from the topological unipotency of u. Now suppose x−1ux ∈ K
and s(x)−1s(u)s(x) = (x−1ux, ζ) for some ζ ∈ µn. Then

lim
N→∞

(x−1uqN

x, ζqN

) = lim
N→∞

(x−1ux, ζ)qN

= s(x)−1
(

lim
N→∞

s(u)qN)
s(x) = 1.

Therefore, limN→∞ ζ
qN

= 1. This implies that ζ = 1, since n and q are relatively
prime. We have shown that

f 0
G̃

(
s(x)−1s(u)ns(x)

)
= f 0

G(x−1ux).
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All that remains, is to deal with the Weyl discriminants. Taking |·|F ′1 to be the absolute
value of the extension F ′1, it is then a simple exercise to show that

|DG(γn)| = |DGs (snun)|F ′1 = |D
Gs (un)|F ′1 = |D

Gs (su)|F ′1 = |D
G(γ)|.

Lemma 2 and Corollaries 2 and 3 describe what happens when the hypothesis of
Corollary 1 does not hold.

Lemma 2 Suppose L ∈ L(M) such that L �= G and x ∈ L. Then vM(x) vanishes.

Proof Obviously, we may take L to be a maximal proper subgroup in L(M). It is
well-known that L must then be equal to L1 × L2, where L1

∼= GL(d, F) and L2
∼=

GL(r − d, F) for some integer 1 ≤ d ≤ r − 1. Accordingly, we represent x by the
ordered pair (x1, x2). Given Q ∈ P(M), we have

L = MNQ∩L(K ∩ L).

Since vM is left-invariant under M and right-invariant under K we may assume that
x is unipotent. Given P ∈ P(M), we also have

L = NP∩LM(K ∩ L).

It follows that

HP(x) = HP∩L(x) =
(

HP∩L1 (x1),HP∩L2 (x2)
)
∈ aM∩L1 ⊕ aM∩L2

∼= aM .

We may decompose x j as u jm jk j , where u j ∈ NP∩L j , m j ∈ M ∩ L j and k j ∈ K ∩ L j ,
for j = 1, 2. Clearly,

det m1 = det m2 = 1,

as x1 and x2 are unipotent. This implies that

HP(x) =
(

HP∩L1 (m1),HP∩L2 (m2)
)
∈ a

L1
M∩L1

⊕ a
L2
M∩L2

∼= aL
M.

That is, 〈λ,HP(x)〉 vanishes for all λ ∈ a∗L . Now, according to [1, (6.5)], there exists
a constant C such that

vM(x) = C
∑

P∈P(M)

〈λ,HP(x)〉dim(AM/AG)∏
α∈∆P

λ(α∨)
, λ ∈ ia∗M .

The expression on the right is independent of λ ∈ ia∗M . We know that the polynomial
function,

λ �→ 〈λ,HP(x)〉dim(AM/AG), λ ∈ ia∗M ,

has a zero of multiplicity dim(AM/AG) at any element in ia∗L ⊂ ia∗M . On the other
hand, the polynomial function,

λ �→
∏
α∈∆P

λ(α∨), λ ∈ a∗M,C,

has a zero of multiplicity strictly less than |∆P| = dim(AM/AG) at any element of ia∗L
which does not also lie in ia∗G. The lemma follows.
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Corollary 2 Suppose sn
i and sn

i+1 do not lie in the same conjugacy class for some 1 ≤
i ≤ k− 1. Then JM̃

(
s(γ)n, f 0

G̃

)
vanishes.

Proof After possibly conjugating s by a permutation matrix, we may assume that if
s j is not conjugate to s j+1 for some 1 ≤ j ≤ k − 1, then s j is not conjugate to s j ′ for
any j + 1 ≤ j ′ ≤ k−1. As explained on [9, pp. 164–165], there exist an integer 	 ≥ 2

and extensions, F1, . . . , F	, of F such that Gsn is isomorphic to
∏	

i=1 GL(ti , Fi) and∑	
i=1 ti[Fi : F] = r. Let y ∈ G be the diagonal matrix whose first t1[F1 : F] diagonal

entries are 1 and whose remaining diagonal entries are −1. It is simple to verify that
Gy ∈ L and Gy �= G. At the same time, it is apparent that Gs ⊂ Gy . Hence, by [7,
Lemma 3 Section 3] and Lemma 2,

JM̃

(
s(γ)n, f 0

G̃

)
= |DG(γn)|1/2

∫
G̃s(γ)n\G̃y

f 0
G̃

(
x−1s(γ)nx

)
vM

(
p(x)
)

dx = 0.

Corollary 3 Suppose sn
i and sn

i+1 do not lie in the same conjugacy class for some 1 ≤
i ≤ k− 1. Then

JM̃

(
s(γ)n, f 0

G̃

)
=
∑

η∈µM
n /µ

G
n

JM(ηγ, f 0
G) = 0.

Proof Suppose η ∈ µM
n . As η lies in the center of M and n is relatively prime to q, the

topological Jordan decomposition of ηγ is (ηs)u =
(

(η1s1)u1, . . . , (ηksk)uk

)
. The

hypothesis, together with the fact that ηn
j = 1 for all 1 ≤ j ≤ k, imply that ηi si and

ηi+1si+1 do not belong to the same conjugacy class. The corollary now follows from
an application of Corollary 2 in the case n = 1.

Corollary 4 Suppose sn
1, . . . , s

n
k all lie in the same conjugacy class, and n is relatively

prime to r1. Then

JM̃

(
s(γ)n, f 0

G̃

)
=
∑

η∈µM
n /µ

G
n

JM(ηγ, f 0
G).

Proof Suppose η belongs to µM
n but does not belong to µG

n . In view of Corollary 1,
it suffices to show that JM(ηγ, f 0

G) vanishes. As in the proof of Corollary 3, the topo-
logical Jordan decomposition of ηγ is (ηs)u =

(
(η1s1)u1, . . . , (ηks1)uk

)
. Evidently,

ηi �= ηi+1 for some 1 ≤ i ≤ k−1, otherwise η would belong to µG
n . Consequently ηi s1

and ηi+1s1 do not belong to the same conjugacy class and an application of Corollary 2
yields the desired vanishing.

The proof of the following proposition is really just an indication of how to gen-
eralize the previous results to the case L �= G of the Theorem.

Proposition Suppose that for any 1 ≤ j ≤ r and any proper divisor i of j, n is relatively
prime to i. Then

JL̃
M̃

(
s(γ)n, f 0

L̃

)
=
∑

η∈µM
n /µ

L
n

JL
M(ηγ, f 0

L ), L ∈ L(M).
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Proof Taken together, Corollary 3 and Corollary 4 provide a proof of the Proposition
in the case L = G. Suppose L �= G. We decompose L as the product,

L1 × · · · × L	,

where L j
∼= GL(t j , F) and

∑	
j=1 t j = r. There exists a partition, 0 = k0 < · · · <

k	 = k, such that

Mk j−1+1 ×Mk j−1+2 × · · · ×Mk j ⊂ L j ,

and
∑k j

i=k j−1+1 ri = t j , for all 1 ≤ j ≤ 	. Taking our hypothesis into account, we

apply Lemma 1 to show that if sk j−1+1, . . . , sk j all belong to the same conjugacy class
for all 1 ≤ j ≤ 	, then there exist extensions, E1, . . . , E	, of F and positive integers,

t ′1, . . . , t
′
	 , such that Ls = Lsn ∼=

∏	
j=1 GL(t ′j , E j). After changing equation (1) in the

proof of Corollary 1 to

s(x)−1s(sn)s(x) = i
((

(det s)n, det x
) 1+2m

F

	∏
j=1

(sn
1 , det

j
x j)
−1
E j

)

(cf. [9, p. 212]), the remaining lemmas and corollaries are easily seen to hold when G
is replaced by L.

The Proposition is a proof of the Theorem in the elliptic case. Indeed, if r ≥ 4
then n is odd by assumption and γ ′ = s(γ)n. In addition, γ ′ = s(γ)n for γ ∈ M0

[6, Section 4]. Therefore, the only case left to consider is the case that r = 3 and M is
a maximal proper Levi subgroup. In this case, Corollary 3 implies

JM̃(γ ′, f 0
G̃) = ± JM̃

(
s(γ)n, f 0

G̃

)
= 0 =

∑
η∈µM

n /µ
G
n

JM(ηγ, f 0
G).

4 Proof of the Theorem

By the Proposition, it suffices to consider the case that γ ∈ M is semisimple and
γn is regular in G, but γ is not elliptic in M. Then, by Jordan canonical form, γ is
conjugate to an elliptic element in M1 ∈ L where M1 � M. This fact allows us to use
a descent formula for weighted orbital integrals [2, (8.2)]. Namely,

JL̃
M̃(γ ′, f 0

L̃ ) =
∑

L1∈LL(M1)

dL
M1

(M, L1) JL̃
M̃1

(γ ′, f 0
L̃1

).

The constants, dL
M1

(M, L1), L1 ∈ LL(M1), are defined in [2, Section 7]. They vanish
unless

aL
M1
∼= aM

M1
⊕ aL1

M1
.
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In particular dL
M1

(M, L) = 0. This descent formula allows us to argue by induction.
Assume inductively that the Theorem holds for L1 ∈ LL(M) with L1 �= L. Then

JL̃
M̃(γ ′, f 0

L̃ ) =
∑

L1∈LL(M1)

dL
M1

(M, L1) JL̃1

M̃1
(γ ′, f 0

L̃1
)

=
∑

L1∈LL(M1)

dL
M1

(M, L1)
∑

η∈µ
M1
n /µ

L1
n

JL1
M1

(ηγ, f 0
L1

).

We need a lemma to justify the next step.

Lemma 3 Suppose aL
M1
∼= aM

M1
⊕ a

L1
M1

. Then the canonical map,

µM
n /µ

L
n → µ

M1
n /µ

L1
n ,

is a bijection.

Proof The vector spaces aL
M and aL

L1
may be regarded as the respective orthogonal

complements of aM
M1

and aL1
M1

in aL
M1

. As a consequence we also have

aL
M ⊕ aL

L1
∼= aL

M1
.

It is readily verified that the homomorphism,

HM1 : M1 → aM1 ,

passes to a homomorphism

H ′M1
: AM1/AL → aL

M1

such that H ′M1
(AM/AL) ⊂ aL

M and H ′M1
(AL1/AL) ⊂ aL

L1
. Accordingly,

H ′M1

(
(AM ∩ AL1 )/AL

)
⊂ aL

M ∩ aL
L1
= {0}.

In other words, |ξ(x)| = 1 for all x belonging to the split torus AM ∩ AL1 , and all
characters ξ ∈ X(M1), which are trivial when restricted to L. This implies that AL1 ∩
AM ⊂ AL. As a result,

µM
n /µ

L
n → µ

M1
n /µ

L1
n ,

is injective. It is also bijective as

|µM
n /µ

L
n| = ndim(aL

M ) = ndim(aL
M1

)−dim(aL
L1

) = |µM1
n /µ

L1
n |.

This lemma tells us that we may replace the previous decomposition of JL̃
M̃(γ ′, f 0

L̃
)

with ∑
L1∈LL(M1)

dL
M1

(M, L1)
∑

η∈µM
n /µ

L
n

JL1
M1

(ηγ, f 0
L1

) =
∑

η∈µM
n /µ

L
n

JL
M(ηγ, f 0

L ).

The proof of the Theorem is complete.
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