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A CURE FOR THE TELEPHONE DISEASE

BY
A. HAJNAL, E. C. MILNER AND E. SZEMEREDI()

The following problem due to A. Boyd, has enjoyed a certain popularity in
recent months with several mathematicians. A different solution to the one given
here has been given independently by R. T. Bumby and J. Spencer.(?)

The Problem. There are n ladies, and each one of them knows an item of scandal
which is not known to any of the others. They communicate by telephone, and
whenever two ladies make a call, they pass on to each other, as much scandal as they
know at that time. How many calls are needed before all the ladies know all the
scandal?

If f(n) is the minimum number of calls needed, then it is easy to verify that
S()=0, f(2)=1, f(3)=3, f(4)=4. It is also easy to see that f(n+1)<f(n)+2, for
the (n+1)-th lady first calls one of the others and someone calls her back after the
remaining n ladies have communicated all the scandal to each other. It follows that
f(n)<2n—4 (n>4). We will prove that

(1) f(n)y=2n—4 (n2>4).
We shall represent the n ladies by the set of vertices, V, of a multigraph. A
sequence of calls

2) c(1),¢(2),...,c(®)
between them can be represented by the edges of the multigraph labelled
according to the order in which the calls are made.

The interchange rule. Suppose (2) is a given sequence of calls, and suppose that
the a calls c(i), c(i+1), ..., c(i+a—1) are vertex disjoint from the succeeding b
calls c(i+a), . .., c(i+a+b—1). Then we can interchange the order of these two
blocks of a and b calls, i.e. if we make the same calls as in (2) but in the order

c),...,c(i—Dc(i+a),...,c(i+a+b—1),

c(@),...,c(i+a—1), c(i+a+b),...,c(t)
then the total information conveyed is exactly the same as for the sequence (2).
If ¢'(1), ..., c'(¢) is a rearrangement of the sequence (2) obtained by a number of
interchanges of adjacent blocks of vertex disjoint calls of the kind just described,
we say that ¢’ is an equivalent calling system and write ¢’~c.

(*) Research supported by National Research Council Grant A-5198.
(%) Since this paper was written we have received another solution from R. Tijdeman. His
paper will appear in Nieuw Archief voor Wiskunde.
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Let (2) be a given sequence of calls. A vertex x of the graph will be called an
F-point if the corresponding lady knows everything after the # calls have been made.
Obviously, if ¢’~c, then the sequence of calls ¢'(1), ..., c'(f) gives the same
F-points as c. In order that there be any F-points at all, the graph G, with vertex
set ¥ and edge set (2), must be connected. Consequently, we have

LEMMA 1. There are no F-points after n-2 calls.
In order to prove (1) it is enough to prove
LEMMA 2. After n+k—4 calls there are at most k F-points.

Proof. We shall actually prove the following stronger assertion
P(k): Ifc(l), ..., c(n+k—4) is a sequence of n+k—4 calls, then there are at most
k F-points. Further, if there are k F-points, then there is an equivalent calling
sequence c'~c in which the last k calls

c'(n=3),c'(n=2),...,c(n+k—4)

are all between F-points.

The first part of P(k) follows from Lemma 1 if k=0, 1, or 2 and for these values
of k the second part of P(k) is satisfied vacuously. We now assume £>2 and use
induction on k.

Suppose there are k41 F-points after the n+k—4 calls. Since the last call
c(n+k—4) can produce at most two F-points, it follows from the induction
hypothesis that there must be k—1 F-points {x,, . . ., x;_,} after the first n+k—5
calls and the last call c(n+k—4) is between two additional F-points {x;, X;.,}. By
the second part of P(k—1), we can assume that the last k—1 calls of the sequence
c(l), ..., c(n+k—>5) are between the F-points {x,, . . . , x;_;}. By the interchange
rule, the last call c(n+k—4) could be made before c(n—3), ..., c(n+k—5). It
follows that after the n—3 calls

c(1), c(2),...,c(n—4), c(n+k—4)

there would be two F-points {x;, x;.,} contrary to Lemma 1. This shows that there
can be at most k F-points.

To complete the proof we must show that the second part of the inductive
statement P(k) holds.

Suppose there are k F-points after the n4-k—4 calls

c(1), ¢(2),...,c(n+k—4).

Consider the disconnected graph G, with vertex set ¥ and edge set E,=
{c(1), ..., c(n—2)}. Suppose G, has an isolated vertex x. There are at least k—1
F-points x;7#x(1<i<k) and each of these is connected to x by a path from the
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edge set E;={c(n—1),...,c(n+k—4)}. This implies that the points x, x;
(1<i<k) are in a single component of the graph on V with edge set E,. This is
impossible since | E;|+1<k. Thus G, has no isolated vertex and each component
of this graph has at least one edge. By the interchange rule, the first n—3 calls can
be equivalently re-ordered so that the (n—3)-rd call is in a different component of
G, to c¢(n—2). Therefore, we may assume that c(n—3) and c¢(n—2) are disjoint.

Now suppose that the last k calls of the given sequence are not all between
F-points. Then there is p, 1 < p<k, such that the last p—1 calls c(n+k—p—2), .. .,
c(n+k—4) are all between F-points but the preceding call, c(n+k—p—3), is
adjacent to at most one F-point. In fact, we can assume that p<k. For, if p=k we
can, by the last paragraph, consider instead the equivalent calling sequence
obtained by interchanging c(n—3) and c(n—2).

If ¢(n+k—p—3) is not adjacent to any F-point, then by the interchange rule,
this call could be made last and then there would be k& F-points after only n-+k—35
calls

c(l),...,ec(n+k—p—4), c(n+k—p—2),...,c(n+k—4).

This contradicts the induction hypothesis and so we can assume that c(n+k—p—3)
is adjacent to exactly one F-point.

Consider the graph G on V having the p edges c(n+k—p—3), ..., c(n+k—4)
and let C be the component of this graph containing the edge c(n+k—p—3).
Let ¢(1)=c(n+k—p—3), ¢2), ..., é(r) be the edges of C in the order in which
these calls are made and let &(1), &(2), . .., &(p—r) be the remaining edges of G
in order. By the interchange rule, &(1) can be made before any of the calls in C
and similarly for &(2), . . ., &(p—r). Thus the original calling sequence is equivalent
to the sequence of.calls

3 c(D), c(2),...,c(n+k—p—4),eQ),...,e(p—r), ¢1),. .., (r).

Since ¢(1) is adjacent to only one F-point, the component C contains at most r
F-points (C has r edges and at most r+1 points). It follows that after the first
n+k—r—4 calls in the sequence (3), there are at least k—r F-points. Therefore, by
the induction hypothesis there must be exactly k—r such F-points (and the com-
ponent C contains exactly r F-points) and there is an equivalent re-ordering of
these n+k—r—4 calls so that the last k—r are between the k—r F-points not in C.
In this way we obtain an equivalent calling sequence, say

4 (D), ..., c(n+k—r—4),cQ1),...,er).
Since the k—r calls ¢(n—3),...,c,(n+k—r—4) are vertex disjoint from
é(1), ..., &(r) (they are between F-points not in C) it follows, again by the inter-

change rule, that an equivalent sequence is

(5) (D), ..., ci(n—4),¢Q),...,ér), ci(n=3),...,c(n+k—r—4).
9—(20 pp.)
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The first n—4+-r calls in the sequence (5) give rise to the r F-points in C. There-
fore, by the induction hypothesis, these calls can be rearranged so that the last r
calls are between F-points. After re-ordering the first n+4r—4 calls of (5) in this
way we obtain an equivalent calling system ¢’~c in which the last k calls are
all between F-points. This completes the proof of Lemma 2.
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