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IMPROVED UPPER BOUNDS FOR ODD
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Abstract

In this paper, we prove that, if N is a positive odd number with r distinct prime factors such that N | σ(N),
then N < 24r−2r

and N
∏

p|N p < 24r
, where σ(N) is the sum of all positive divisors of N. In particular, these

bounds hold if N is an odd perfect number.
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1. Introduction

For a positive integer n, let σ(n) be the sum of all positive divisors of n. A positive
integer N is called a u/v-perfect number if σ(N) = uN/v, where u and v are two
integers with u > v ≥ 1. For an integer k ≥ 2, a k-perfect number is also called a
multiperfect number. A 2-perfect number is called a perfect number. It is well known
that Euler proved that an even perfect number can be written as 2p−1(2p − 1), where
both p and 2p − 1 are primes. The following is a long-standing problem: Is there any
odd perfect number?

Suppose that N is an odd perfect number. In 2007, Nielsen [8] proved that N has
at least nine distinct prime factors. Recently, Ochem and Rao [9] proved that N is
greater than 101500. In 2008, Goto and Ohno [4] proved that N has a prime factor
exceeding 108. In 1913, Dickson [2] proved that there are only finitely many odd
perfect numbers with r distinct prime factors. Pomerance [10] gave an explicit upper
bound. Heath-Brown [5] proved that N < 44r

, and in 2003 Nielsen [7] improved this
bound to N < 24r

. Luca and Pomerance [6] proved that the radical
∏

p|N p of N is less
than 2N17/26. Dris and Luca [3] proved that, for any odd perfect number N and qα ‖ N,
where q is a prime, we have σ(N/qα)/qα ≥ 6. Recently, Chen and the first author [1]
improved this result by proving that σ(N/qα)/qα , p1, p2

1, p3
1, p4

1, p1 p2, p2
1 p2, where

p1, p2 are distinct primes.
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In this note, we prove the following results.

T 1.1. If N is a positive odd number with r distinct prime factors such that
N | σ(N), then

N < 24r−2r
, N

∏
p|N

p < 24r
.

From Theorem 1.1, we have the following corollary.

C 1.2. If N is an odd perfect number with r distinct prime factors, then

N < 24r−2r
, N

∏
p|N

p < 24r
.

2. Proof of the theorem

We will follow the proofs of Heath-Brown [5] and Nielsen [7]. For any positive
integer m, let ω(m) denote the number of distinct prime factors of m. For a set
S of integers, let

∏
(S ) =

∏
s∈S s. By convention,

∏
s∈∅ f (s) = 1 for any arithmetic

function f . We will prove the following stronger result.

T 2.1. If u and v are two positive integers with u > v and N is an odd u/v-perfect
number with r distinct prime factors, then

N < (v + 1)4r−2r
, vN

∏
p|N

p < (v + 1)4r
.

If N | σ(N) and N > 1, then σ(N) = uN for an integer u with u > 1. Now
Theorem 1.1 follows from Theorem 2.1 with v = 1.

L 2.2 [7, Lemma 1]. Let r, a, b be positive integers and let x1, . . . , xr be integers
with 1 < x1 < · · · < xr. If

r∏
i=1

(
1 −

1
xi

)
≤

a
b
<

r−1∏
i=1

(
1 −

1
xi

)
,

then

a
r∏

i=1

xi < (a + 1)2r
.

L 2.3. If u and v are two positive integers with u > v and N is an odd u/v-perfect
number with r distinct prime factors, then

N <
(
v
∏
p|N

p
)2r−1

.

The proof of Lemma 2.3 is similar to that of [7, Proposition 1].
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L 2.4. Let r, a, b be positive integers and let x1, . . . , xr be integers with 1 < x1 <
· · · < xr. If

r∏
i=1

(
1 −

1
xi

)
≤

a
b
,

then there exists an integer s with 0 ≤ s ≤ r such that

s∏
i=1

(
1 −

1
xi

)
≤

a
b
, a

s∏
i=1

xi < (a + 1)2s
.

In particular, if a < b, then s ≥ 1.

P. If a ≥ b, then Lemma 2.4 is true for s = 0. Now we assume that a < b. Let
y0 = 1 and

y j =

j∏
i=1

(
1 −

1
xi

)
, j = 1, . . . , r.

Then
yr < yr−1 < · · · < y1 < y0 = 1.

Since yr ≤ a/b < y0, it follows that there exists an integer s with 1 ≤ s ≤ r such that
ys ≤ a/b < ys−1. Now Lemma 2.4 follows from Lemma 2.2. �

L 2.5. Let u and v be two positive integers with u > v, N an odd u/v-perfect
number, and S a set (possibly empty) of prime factors of N. Then there exist two
coprime integers U and V with U ≥ 1 and V > 1, and a set T (possibly empty) of prime
factors of U with |T | + ω(V) ≥ |S | such that N = UV and

(v1 + 1)
∏
p|V

p
∏

(T ) <
(
(v + 1)

∏
(S )

)22ω(V)+|T |−|S |

,

where v1 = vσ(V).

P. Let N =
∏

p|N pe(p) be the standard factorisation of n. Then

uN
v

= σ(N) =
∏
p|N

pe(p)+1 − 1
p − 1

<
∏
p|N

pe(p)+1

p − 1
= N

∏
p|N

(
1 −

1
p

)−1

.

It follows that ∏
p|N

(
1 −

1
p

)
<

v
u
.

Let u′ = u
∏

p∈S (p − 1) and v′ = v
∏

(S ). Then∏
p|N,p<S

(
1 −

1
p

)
<

v′

u′
.
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By Lemma 2.4, there exists a subset S ′ of {p : p | N, p < S } such that∏
p∈S ′

(
1 −

1
p

)
≤

v′

u′
, v′

∏
(S ′) < (v′ + 1)2|S

′ |

≤

(
(v + 1)

∏
(S )

)2|S
′ |

.

That is, ∏
p∈S∪S ′

(
1 −

1
p

)
≤

v
u
< 1, v

∏
(S ∪ S ′) <

(
(v + 1)

∏
(S )

)2|S
′ |

. (2.1)

Since the numerator of ∏
p∈S∪S ′

(
1 −

1
p

)
is even and the numerator of v/u = N/σ(N) is odd when it is written in the lowest
terms, it follows that equality in (2.1) cannot hold.

Let u′′ = u
∏

p∈S∪S ′(p − 1) and v′′ = v
∏

(S ∪ S ′). By (2.1), v′′ > u′′. Since∏
p∈S∪S ′

(
1 −

1
pe(p)+1

)
=

∏
p∈S∪S ′

σ(pe(p))(p − 1)
pe(p)+1

≤
σ(N)

N

∏
p∈S∪S ′

p − 1
p

=
u′′

v′′
< 1,

it follows from Lemma 2.4 that there exists a nonempty subset S ′′ ⊆ S ∪ S ′ with∏
p∈S ′′

(
1 −

1
pe(p)+1

)
≤

u′′

v′′
, u′′

∏
p∈S ′′

pe(p)+1 ≤ (u′′ + 1)2|S
′′ |

≤ (v′′)2|S
′′ |

.

As in Heath-Brown’s paper, let

V =
∏
p∈S ′′

pe(p), U = N/V, T = (S ∪ S ′) \ S ′′, v1 = vσ(V).

Then |S ′′| = ω(V) ≥ 1 and |S ′| = |S ′′| + |T | − |S | = ω(V) + |T | − |S | ≥ 0. Since

v1 + 1 ≤ 2v1 = 2v
∏
p∈S ′′

pe(p)+1 − 1
p − 1

≤ v
∏
p∈S ′′

(pe(p)+1 − 1)

= v
∏
p∈S ′′

(
1 −

1
pe(p)+1

) ∏
p∈S ′′

pe(p)+1 ≤ v
u′′

v′′
1

u′′
(v′′)2|S

′′ |

= v(v′′)2|S
′′ |−1

= v2|S
′′ |
(∏

(S ∪ S ′)
)2|S

′′ |−1

and ∏
p|V

p
∏

(T ) =
∏

(S ′′)
∏

(T ) =
∏

(S ∪ S ′),
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it follows that

(v1 + 1)
∏
p|V

p
∏

(T ) ≤
(
v
∏

(S ∪ S ′)
)2|S

′′ |

<
(
(v + 1)

∏
(S )

)2|S
′ |+|S ′′ |

=

(
(v + 1)

∏
(S )

)22ω(V)+|T |−|S |

.

This completes the proof of Lemma 2.5. �

P  T 2.1. Let n0 = N, u0 = u, v0 = v, and S 0 = S = ∅. Let U, V and T
be as in Lemma 2.5. Let n1 = U, V1 = V , u1 = uV = u0V1, v1 = vσ(V) = v0σ(V1) and
S 1 = T . Then n0 = n1V1,

σ(n1)
n1

=
σ(N)

N
V1

σ(V1)
=

u0V1

v0σ(V1)
=

u1

v1
,

and

(v1 + 1)
∏
p|V1

p
∏

(S 1) ≤
(
(v0 + 1)

∏
(S 0)

)22ω(V1)+|S 1 |−|S 0 |

.

If n1 > 1, then u1 > v1. We continue to apply Lemma 2.5. Since V1 > 1, it follows
that n1 < n0 = N. So this procedure must stop in a finite number of steps. Thus,
we can obtain sequences {ni}

t
i=0, {Vi}

t
i=1, {ui}

t
i=0, {vi}

t
i=0, and {S i}

t
i=0 such that nt = 1,

σ(ni) = uini/vi, S i is a set (possibly empty) of prime factors of ni (0 ≤ i ≤ t) and, for all
0 ≤ i ≤ t − 1,

ni = ni+1Vi+1, (ni+1, Vi+1) = 1, Vi+1 > 1, (2.2)

ui+1 = uiVi+1, vi+1 = viσ(Vi+1), ω(Vi+1) + |S i+1| ≥ |S i|, (2.3)

(vi+1 + 1)
∏
p|Vi+1

p
∏

(S i+1) ≤
(
(vi + 1)

∏
(S i)

)2ki+1

, (2.4)

where ki = 2ω(Vi) + |S i| − |S i−1| (1 ≤ i ≤ t). It follows from nt = 1 that S t = ∅. By (2.2)
and (2.3),

2ω(Vi+1) + |S i+1| − |S i| ≥ 1, 0 ≤ i ≤ t − 1,

N = n1V1 = · · · = Vt · · · V1,

vt = vt−1σ(Vt) = vt−2σ(Vt−1)σ(Vt) = · · · = v0σ(V1) · · · σ(Vt).

So vt = v0σ(N) = v0uN/v = uN. Let P0 = 1 and

Pi =
∏

p|V1···Vi

p, 1 ≤ i ≤ t.

Thus, by (2.4),

(vi+1 + 1)Pi+1

∏
(S i+1) ≤

(
(vi + 1)Pi

∏
(S i)

)2ki+1

, 0 ≤ i ≤ t − 1.
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It follows that

vN
∏
p|N

p = vNPt < uNPt = vtPt < (vt + 1)Pt

∏
(S t)

≤

(
(vt−1 + 1)Pt−1

∏
(S t−1)

)2kt

≤ · · ·

≤

(
(v0 + 1)P0

∏
(S 0)

)2kt+···+k1

.

Noting that (v0 + 1)P0
∏

(S 0) = v + 1 and

kt + · · · + k1 =

t∑
i=1

(2ω(Vi) + |S i| − |S i−1|) = 2ω(N) + |S t | − |S 0| = 2ω(N),

we have
vN

∏
p|N

p < (v + 1)4ω(N)
. (2.5)

If v
∏

p|N p ≥ (v + 1)2ω(N)
, then, by (2.5),

N < (v + 1)4ω(N)−2ω(N)
.

If v
∏

p|N p < (v + 1)2ω(N)
, then, by Lemma 2.3,

N <
(
v
∏
p|N

p
)2ω(N)−1

< (v + 1)4ω(N)−2ω(N)
.

This completes the proof. �
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