IMPROVED UPPER BOUNDS FOR ODD MULTIPERFECT NUMBERS

YONG-GAO CHEN ${ }^{\boxtimes}$ and CUI-E TANG

(Received 2 April 2013; accepted 11 April 2013; first published online 12 June 2013)

Abstract

In this paper, we prove that, if N is a positive odd number with r distinct prime factors such that $N \mid \sigma(N)$, then $N<2^{4^{r}-2^{r}}$ and $N \prod_{p \mid N} p<2^{4^{r}}$, where $\sigma(N)$ is the sum of all positive divisors of N. In particular, these bounds hold if N is an odd perfect number.

2010 Mathematics subject classification: primary 11A25; secondary 11B83.
Keywords and phrases: odd perfect numbers, multiperfect numbers, upper bounds.

1. Introduction

For a positive integer n, let $\sigma(n)$ be the sum of all positive divisors of n. A positive integer N is called a u / v-perfect number if $\sigma(N)=u N / v$, where u and v are two integers with $u>v \geq 1$. For an integer $k \geq 2$, a k-perfect number is also called a multiperfect number. A 2-perfect number is called a perfect number. It is well known that Euler proved that an even perfect number can be written as $2^{p-1}\left(2^{p}-1\right)$, where both p and $2^{p}-1$ are primes. The following is a long-standing problem: Is there any odd perfect number?

Suppose that N is an odd perfect number. In 2007, Nielsen [8] proved that N has at least nine distinct prime factors. Recently, Ochem and Rao [9] proved that N is greater than 10^{1500}. In 2008, Goto and Ohno [4] proved that N has a prime factor exceeding 10^{8}. In 1913, Dickson [2] proved that there are only finitely many odd perfect numbers with r distinct prime factors. Pomerance [10] gave an explicit upper bound. Heath-Brown [5] proved that $N<4^{4^{r}}$, and in 2003 Nielsen [7] improved this bound to $N<2^{4^{r}}$. Luca and Pomerance [6] proved that the radical $\prod_{p \mid N} p$ of N is less than $2 N^{17 / 26}$. Dris and Luca [3] proved that, for any odd perfect number N and $q^{\alpha} \| N$, where q is a prime, we have $\sigma\left(N / q^{\alpha}\right) / q^{\alpha} \geq 6$. Recently, Chen and the first author [1] improved this result by proving that $\sigma\left(N / q^{\alpha}\right) / q^{\alpha} \neq p_{1}, p_{1}^{2}, p_{1}^{3}, p_{1}^{4}, p_{1} p_{2}, p_{1}^{2} p_{2}$, where p_{1}, p_{2} are distinct primes.

[^0]In this note, we prove the following results.
Theorem 1.1. If N is a positive odd number with r distinct prime factors such that $N \mid \sigma(N)$, then

$$
N<2^{4^{r}-2^{r}}, \quad N \prod_{p \mid N} p<2^{4^{r}}
$$

From Theorem 1.1, we have the following corollary.
Corollary 1.2. If N is an odd perfect number with r distinct prime factors, then

$$
N<2^{4^{r}-2^{r}}, \quad N \prod_{p \mid N} p<2^{4^{r}}
$$

2. Proof of the theorem

We will follow the proofs of Heath-Brown [5] and Nielsen [7]. For any positive integer m, let $\omega(m)$ denote the number of distinct prime factors of m. For a set S of integers, let $\Pi(S)=\prod_{s \in S} s$. By convention, $\prod_{s \in \emptyset} f(s)=1$ for any arithmetic function f. We will prove the following stronger result.
Theorem 2.1. If u and v are two positive integers with $u>v$ and N is an odd u / v-perfect number with r distinct prime factors, then

$$
N<(v+1)^{4^{r}-2^{r}}, \quad v N \prod_{p \mid N} p<(v+1)^{4^{r}}
$$

If $N \mid \sigma(N)$ and $N>1$, then $\sigma(N)=u N$ for an integer u with $u>1$. Now Theorem 1.1 follows from Theorem 2.1 with $v=1$.

Lemma 2.2 [7, Lemma 1]. Let r, a, b be positive integers and let x_{1}, \ldots, x_{r} be integers with $1<x_{1}<\cdots<x_{r}$. If

$$
\prod_{i=1}^{r}\left(1-\frac{1}{x_{i}}\right) \leq \frac{a}{b}<\prod_{i=1}^{r-1}\left(1-\frac{1}{x_{i}}\right),
$$

then

$$
a \prod_{i=1}^{r} x_{i}<(a+1)^{2^{r}}
$$

Lemma 2.3. If u and v are two positive integers with $u>v$ and N is an odd u / v-perfect number with r distinct prime factors, then

$$
N<\left(v \prod_{p \mid N} p\right)^{2^{r}-1}
$$

The proof of Lemma 2.3 is similar to that of [7, Proposition 1].

Lemma 2.4. Let r, a, b be positive integers and let x_{1}, \ldots, x_{r} be integers with $1<x_{1}<$ $\cdots<x_{r}$. If

$$
\prod_{i=1}^{r}\left(1-\frac{1}{x_{i}}\right) \leq \frac{a}{b},
$$

then there exists an integer s with $0 \leq s \leq r$ such that

$$
\prod_{i=1}^{s}\left(1-\frac{1}{x_{i}}\right) \leq \frac{a}{b}, \quad a \prod_{i=1}^{s} x_{i}<(a+1)^{2^{s}}
$$

In particular, if $a<b$, then $s \geq 1$.
Proof. If $a \geq b$, then Lemma 2.4 is true for $s=0$. Now we assume that $a<b$. Let $y_{0}=1$ and

$$
y_{j}=\prod_{i=1}^{j}\left(1-\frac{1}{x_{i}}\right), \quad j=1, \ldots, r .
$$

Then

$$
y_{r}<y_{r-1}<\cdots<y_{1}<y_{0}=1 .
$$

Since $y_{r} \leq a / b<y_{0}$, it follows that there exists an integer s with $1 \leq s \leq r$ such that $y_{s} \leq a / b<y_{s-1}$. Now Lemma 2.4 follows from Lemma 2.2.
Lemma 2.5. Let u and v be two positive integers with $u>v, N$ an odd u / v-perfect number, and S a set (possibly empty) of prime factors of N. Then there exist two coprime integers U and V with $U \geq 1$ and $V>1$, and a set T (possibly empty) of prime factors of U with $|T|+\omega(V) \geq|S|$ such that $N=U V$ and

$$
\left(v_{1}+1\right) \prod_{p \mid V} p \prod(T)<\left((v+1) \prod(S)\right)^{2^{2 \omega(V)+|T|-|S|}}
$$

where $v_{1}=v \sigma(V)$.
Proof. Let $N=\prod_{p \mid N} p^{e(p)}$ be the standard factorisation of n. Then

$$
\frac{u N}{v}=\sigma(N)=\prod_{p \mid N} \frac{p^{e(p)+1}-1}{p-1}<\prod_{p \mid N} \frac{p^{e(p)+1}}{p-1}=N \prod_{p \mid N}\left(1-\frac{1}{p}\right)^{-1} .
$$

It follows that

$$
\prod_{p \mid N}\left(1-\frac{1}{p}\right)<\frac{v}{u} .
$$

Let $u^{\prime}=u \prod_{p \in S}(p-1)$ and $v^{\prime}=v \prod(S)$. Then

$$
\prod_{p \mid N, p \notin S}\left(1-\frac{1}{p}\right)<\frac{v^{\prime}}{u^{\prime}} .
$$

By Lemma 2.4, there exists a subset S^{\prime} of $\{p: p \mid N, p \notin S\}$ such that

$$
\prod_{p \in S^{\prime}}\left(1-\frac{1}{p}\right) \leq \frac{v^{\prime}}{u^{\prime}}, \quad v^{\prime} \prod\left(S^{\prime}\right)<\left(v^{\prime}+1\right)^{2^{\left|S^{\prime}\right|}} \leq\left((v+1) \prod(S)\right)^{2^{\left|S^{\prime}\right|}} .
$$

That is,

$$
\begin{equation*}
\prod_{p \in S \cup S^{\prime}}\left(1-\frac{1}{p}\right) \leq \frac{v}{u}<1, \quad v \prod\left(S \cup S^{\prime}\right)<\left((v+1) \prod(S)\right)^{2^{\left|S^{\prime}\right|}} . \tag{2.1}
\end{equation*}
$$

Since the numerator of

$$
\prod_{p \in S \cup S^{\prime}}\left(1-\frac{1}{p}\right)
$$

is even and the numerator of $v / u=N / \sigma(N)$ is odd when it is written in the lowest terms, it follows that equality in (2.1) cannot hold.

Let $u^{\prime \prime}=u \prod_{p \in S \cup S^{\prime}}(p-1)$ and $v^{\prime \prime}=v \prod\left(S \cup S^{\prime}\right)$. By (2.1), $v^{\prime \prime}>u^{\prime \prime}$. Since

$$
\prod_{p \in S \cup S^{\prime}}\left(1-\frac{1}{p^{e(p)+1}}\right)=\prod_{p \in S \cup S^{\prime}} \frac{\sigma\left(p^{e(p)}\right)(p-1)}{p^{e(p)+1}} \leq \frac{\sigma(N)}{N} \prod_{p \in S \cup S^{\prime}} \frac{p-1}{p}=\frac{u^{\prime \prime}}{v^{\prime \prime}}<1,
$$

it follows from Lemma 2.4 that there exists a nonempty subset $S^{\prime \prime} \subseteq S \cup S^{\prime}$ with

$$
\prod_{p \in S^{\prime \prime}}\left(1-\frac{1}{p^{e(p)+1}}\right) \leq \frac{u^{\prime \prime}}{v^{\prime \prime}}, \quad u^{\prime \prime} \prod_{p \in S^{\prime \prime}} p^{e(p)+1} \leq\left(u^{\prime \prime}+1\right)^{2^{\left|s^{\prime \prime}\right|}} \leq\left(v^{\prime \prime}\right)^{2^{\left|s^{\prime \prime}\right|}}
$$

As in Heath-Brown's paper, let

$$
V=\prod_{p \in S^{\prime \prime}} p^{e(p)}, \quad U=N / V, \quad T=\left(S \cup S^{\prime}\right) \backslash S^{\prime \prime}, \quad v_{1}=v \sigma(V)
$$

Then $\left|S^{\prime \prime}\right|=\omega(V) \geq 1$ and $\left|S^{\prime}\right|=\left|S^{\prime \prime}\right|+|T|-|S|=\omega(V)+|T|-|S| \geq 0$. Since

$$
\begin{aligned}
v_{1}+1 & \leq 2 v_{1}=2 v \prod_{p \in S^{\prime \prime}} \frac{p^{e(p)+1}-1}{p-1} \leq v \prod_{p \in S^{\prime \prime}}\left(p^{e(p)+1}-1\right) \\
& =v \prod_{p \in S^{\prime \prime}}\left(1-\frac{1}{p^{e(p)+1}}\right) \prod_{p \in S^{\prime \prime}} p^{e(p)+1} \leq v \frac{u^{\prime \prime}}{v^{\prime \prime}} \frac{1}{u^{\prime \prime}}\left(v^{\prime \prime}\right)^{\mid 2^{s^{\prime \prime} \mid}} \\
& =v\left(v^{\prime \prime}\right)^{2^{\left|S^{\prime \prime}\right|}-1} \\
& =v^{2^{2^{\prime \prime} \mid}}\left(\prod\left(S \cup S^{\prime}\right)\right)^{2^{\left|s^{\prime \prime}\right|} \mid-1}
\end{aligned}
$$

and

$$
\prod_{p \mid V} p \prod(T)=\prod\left(S^{\prime \prime}\right) \prod(T)=\prod\left(S \cup S^{\prime}\right)
$$

it follows that

$$
\begin{aligned}
\left(v_{1}+1\right) \prod_{p \mid V} p \prod(T) & \leq\left(v \prod\left(S \cup S^{\prime}\right)\right)^{2^{\left|s^{\prime \prime}\right|}}<\left((v+1) \prod(S)\right)^{2^{\left|s^{\prime}\right|+\left|S^{\prime \prime}\right|}} \\
& =\left((v+1) \prod(S)\right)^{2^{2 \omega(V)+|T|-|S|}}
\end{aligned}
$$

This completes the proof of Lemma 2.5.
Proof of Theorem 2.1. Let $n_{0}=N, u_{0}=u, v_{0}=v$, and $S_{0}=S=\emptyset$. Let U, V and T be as in Lemma 2.5. Let $n_{1}=U, V_{1}=V, u_{1}=u V=u_{0} V_{1}, v_{1}=v \sigma(V)=v_{0} \sigma\left(V_{1}\right)$ and $S_{1}=T$. Then $n_{0}=n_{1} V_{1}$,

$$
\frac{\sigma\left(n_{1}\right)}{n_{1}}=\frac{\sigma(N)}{N} \frac{V_{1}}{\sigma\left(V_{1}\right)}=\frac{u_{0} V_{1}}{v_{0} \sigma\left(V_{1}\right)}=\frac{u_{1}}{v_{1}},
$$

and

$$
\left(v_{1}+1\right) \prod_{p \mid V_{1}} p \prod\left(S_{1}\right) \leq\left(\left(v_{0}+1\right) \prod\left(S_{0}\right)\right)^{2 \omega\left(V_{1}\right)+\left|S_{1}\right|-\left|S_{0}\right|}
$$

If $n_{1}>1$, then $u_{1}>v_{1}$. We continue to apply Lemma 2.5. Since $V_{1}>1$, it follows that $n_{1}<n_{0}=N$. So this procedure must stop in a finite number of steps. Thus, we can obtain sequences $\left\{n_{i}\right\}_{i=0}^{t},\left\{V_{i}\right\}_{i=1}^{t},\left\{u_{i}\right\}_{i=0}^{t},\left\{v_{i}\right\}_{i=0}^{t}$, and $\left\{S_{i}\right\}_{i=0}^{t}$ such that $n_{t}=1$, $\sigma\left(n_{i}\right)=u_{i} n_{i} / v_{i}, S_{i}$ is a set (possibly empty) of prime factors of $n_{i}(0 \leq i \leq t)$ and, for all $0 \leq i \leq t-1$,

$$
\begin{gather*}
n_{i}=n_{i+1} V_{i+1}, \quad\left(n_{i+1}, V_{i+1}\right)=1, \quad V_{i+1}>1, \tag{2.2}\\
u_{i+1}=u_{i} V_{i+1}, \quad v_{i+1}=v_{i} \sigma\left(V_{i+1}\right), \quad \omega\left(V_{i+1}\right)+\left|S_{i+1}\right| \geq\left|S_{i}\right|, \tag{2.3}\\
\left(v_{i+1}+1\right) \prod_{p \mid V_{i+1}} p \prod\left(S_{i+1}\right) \leq\left(\left(v_{i}+1\right) \prod\left(S_{i}\right)\right)^{2_{i+1}}, \tag{2.4}
\end{gather*}
$$

where $k_{i}=2 \omega\left(V_{i}\right)+\left|S_{i}\right|-\left|S_{i-1}\right|(1 \leq i \leq t)$. It follows from $n_{t}=1$ that $S_{t}=\emptyset$. By (2.2) and (2.3),

$$
\begin{gathered}
2 \omega\left(V_{i+1}\right)+\left|S_{i+1}\right|-\left|S_{i}\right| \geq 1, \quad 0 \leq i \leq t-1 \\
N=n_{1} V_{1}=\cdots=V_{t} \cdots V_{1} \\
v_{t}=v_{t-1} \sigma\left(V_{t}\right)=v_{t-2} \sigma\left(V_{t-1}\right) \sigma\left(V_{t}\right)=\cdots=v_{0} \sigma\left(V_{1}\right) \cdots \sigma\left(V_{t}\right)
\end{gathered}
$$

So $v_{t}=v_{0} \sigma(N)=v_{0} u N / v=u N$. Let $P_{0}=1$ and

$$
P_{i}=\prod_{p \mid V_{1} \cdots V_{i}} p, \quad 1 \leq i \leq t
$$

Thus, by (2.4),

$$
\left(v_{i+1}+1\right) P_{i+1} \prod\left(S_{i+1}\right) \leq\left(\left(v_{i}+1\right) P_{i} \prod\left(S_{i}\right)\right)^{2^{k_{i+1}}}, \quad 0 \leq i \leq t-1 .
$$

It follows that

$$
\begin{aligned}
v N \prod_{p \mid N} p & =v N P_{t}<u N P_{t}=v_{t} P_{t}<\left(v_{t}+1\right) P_{t} \prod\left(S_{t}\right) \\
& \leq\left(\left(v_{t-1}+1\right) P_{t-1} \prod\left(S_{t-1}\right)\right)^{2^{k_{t}}} \\
& \leq \cdots \\
& \leq\left(\left(v_{0}+1\right) P_{0} \prod\left(S_{0}\right)\right)^{2^{k_{t}+\cdots+k_{1}}} .
\end{aligned}
$$

Noting that $\left(v_{0}+1\right) P_{0} \Pi\left(S_{0}\right)=v+1$ and

$$
k_{t}+\cdots+k_{1}=\sum_{i=1}^{t}\left(2 \omega\left(V_{i}\right)+\left|S_{i}\right|-\left|S_{i-1}\right|\right)=2 \omega(N)+\left|S_{t}\right|-\left|S_{0}\right|=2 \omega(N)
$$

we have

$$
\begin{equation*}
v N \prod_{p \mid N} p<(v+1)^{4^{\omega(N)}} . \tag{2.5}
\end{equation*}
$$

If $v \prod_{p \mid N} p \geq(v+1)^{2 \omega(N)}$, then, by (2.5),

$$
N<(v+1)^{4 \omega(N)}-2^{\omega(N)} .
$$

If $v \prod_{p \mid N} p<(v+1)^{2^{\omega(N)}}$, then, by Lemma 2.3,

$$
N<\left(v \prod_{p \mid N} p\right)^{2^{\omega(N)}-1}<(v+1)^{4^{\omega(N)}-2^{\omega(N)}}
$$

This completes the proof.

Acknowledgements

We are grateful to the referee and the editor for their helpful comments.

References

[1] F.-J. Chen and Y.-G. Chen, 'On odd perfect numbers', Bull. Aust. Math. Soc. 86 (2012), 510-514.
[2] L. E. Dickson, 'Finiteness of odd perfect and primitive abundant numbers with n-distinct prime factors', Amer. J. Math. 35 (1913), 413-422.
[3] J. A. B. Dris and F. Luca, A note on odd perfect numbers, Matimyas Mat., to appear, arXiv:1103.1437v3.
[4] T. Goto and Y. Ohno, 'Odd perfect numbers have a prime factor exceeding 10^{8}, Math. Comp. 77(263) (2008), 1859-1868.
[5] D. R. Heath-Brown, 'Odd perfect numbers', Math. Proc. Cambridge Philos. Soc. 115 (1994), 191-196.
[6] F. Luca and C. Pomerance, 'On the radical of a perfect number', New York J. Math. 16 (2010), 23-30.
[7] P. P. Nielsen, 'An upper bound for odd perfect numbers', Integers 3 (2003), A14; 9 pages.
[8] P. P. Nielsen, 'Odd perfect numbers have at least nine prime factors', Math. Comp. 76(260) (2007), 2109-2126.
[9] P. Ochem and M. Rao, 'Odd perfect numbers are greater than 10^{1500} ', Math. Comp. 81(279) (2012), 1869-1877.
[10] C. Pomerance, 'Multiply perfect numbers, Mersenne primes and effective computability', Math. Ann. 266 (1997), 195-206.

YONG-GAO CHEN, School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China e-mail: ygchen@njnu.edu.cn

CUI-E TANG, School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China

[^0]: This work was supported by the National Natural Science Foundation of China, Grant No. 11071121.
 (C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

