Bull. Aust. Math. Soc. 89 (2014), 353–359 doi:10.1017/S0004972713000488

IMPROVED UPPER BOUNDS FOR ODD MULTIPERFECT NUMBERS

YONG-GAO CHEN[™] and CUI-E TANG

(Received 2 April 2013; accepted 11 April 2013; first published online 12 June 2013)

Abstract

In this paper, we prove that, if *N* is a positive odd number with *r* distinct prime factors such that $N | \sigma(N)$, then $N < 2^{4'-2'}$ and $N \prod_{p|N} p < 2^{4'}$, where $\sigma(N)$ is the sum of all positive divisors of *N*. In particular, these bounds hold if *N* is an odd perfect number.

2010 *Mathematics subject classification*: primary 11A25; secondary 11B83. *Keywords and phrases*: odd perfect numbers, multiperfect numbers, upper bounds.

1. Introduction

For a positive integer *n*, let $\sigma(n)$ be the sum of all positive divisors of *n*. A positive integer *N* is called a *u/v-perfect number* if $\sigma(N) = uN/v$, where *u* and *v* are two integers with $u > v \ge 1$. For an integer $k \ge 2$, a *k*-perfect number is also called a *multiperfect number*. A 2-perfect number is called a *perfect number*. It is well known that Euler proved that an even perfect number can be written as $2^{p-1}(2^p - 1)$, where both *p* and $2^p - 1$ are primes. The following is a long-standing problem: Is there any odd perfect number?

Suppose that *N* is an odd perfect number. In 2007, Nielsen [8] proved that *N* has at least nine distinct prime factors. Recently, Ochem and Rao [9] proved that *N* is greater than 10¹⁵⁰⁰. In 2008, Goto and Ohno [4] proved that *N* has a prime factor exceeding 10⁸. In 1913, Dickson [2] proved that there are only finitely many odd perfect numbers with *r* distinct prime factors. Pomerance [10] gave an explicit upper bound. Heath-Brown [5] proved that $N < 4^{4r}$, and in 2003 Nielsen [7] improved this bound to $N < 2^{4r}$. Luca and Pomerance [6] proved that the radical $\prod_{p|N} p$ of *N* is less than $2N^{17/26}$. Dris and Luca [3] proved that, for any odd perfect number *N* and $q^{\alpha} \parallel N$, where *q* is a prime, we have $\sigma(N/q^{\alpha})/q^{\alpha} \ge 6$. Recently, Chen and the first author [1] improved this result by proving that $\sigma(N/q^{\alpha})/q^{\alpha} \ne p_1$, p_1^2 , p_1^3 , p_1^4 , p_1p_2 , $p_1^2p_2$, where p_1 , p_2 are distinct primes.

This work was supported by the National Natural Science Foundation of China, Grant No. 11071121. © 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

In this note, we prove the following results.

THEOREM 1.1. If N is a positive odd number with r distinct prime factors such that $N \mid \sigma(N)$, then

$$N < 2^{4^r - 2^r}, \quad N \prod_{p \mid N} p < 2^{4^r}.$$

From Theorem 1.1, we have the following corollary.

COROLLARY 1.2. If N is an odd perfect number with r distinct prime factors, then

$$N < 2^{4^r - 2^r}, \quad N \prod_{p \mid N} p < 2^{4^r}.$$

2. Proof of the theorem

We will follow the proofs of Heath-Brown [5] and Nielsen [7]. For any positive integer *m*, let $\omega(m)$ denote the number of distinct prime factors of *m*. For a set *S* of integers, let $\prod(S) = \prod_{s \in S} s$. By convention, $\prod_{s \in \emptyset} f(s) = 1$ for any arithmetic function *f*. We will prove the following stronger result.

THEOREM 2.1. If u and v are two positive integers with u > v and N is an odd u/v-perfect number with r distinct prime factors, then

$$N < (v+1)^{4^r-2^r}, \quad vN \prod_{p|N} p < (v+1)^{4^r}.$$

If $N | \sigma(N)$ and N > 1, then $\sigma(N) = uN$ for an integer *u* with u > 1. Now Theorem 1.1 follows from Theorem 2.1 with v = 1.

LEMMA 2.2 [7, Lemma 1]. Let r, a, b be positive integers and let x_1, \ldots, x_r be integers with $1 < x_1 < \cdots < x_r$. If

$$\prod_{i=1}^{r} \left(1 - \frac{1}{x_i}\right) \le \frac{a}{b} < \prod_{i=1}^{r-1} \left(1 - \frac{1}{x_i}\right),$$

then

$$a\prod_{i=1}^r x_i < (a+1)^{2^r}.$$

LEMMA 2.3. If u and v are two positive integers with u > v and N is an odd u/v-perfect number with r distinct prime factors, then

$$N < \left(v \prod_{p \mid N} p \right)^{2^r - 1}.$$

The proof of Lemma 2.3 is similar to that of [7, Proposition 1].

LEMMA 2.4. Let r, a, b be positive integers and let x_1, \ldots, x_r be integers with $1 < x_1 < \cdots < x_r$. If

$$\prod_{i=1}^{\prime} \left(1 - \frac{1}{x_i} \right) \le \frac{a}{b},$$

then there exists an integer *s* with $0 \le s \le r$ such that

$$\prod_{i=1}^{s} \left(1 - \frac{1}{x_i}\right) \le \frac{a}{b}, \quad a \prod_{i=1}^{s} x_i < (a+1)^{2^s}.$$

In particular, if a < b, then $s \ge 1$.

PROOF. If $a \ge b$, then Lemma 2.4 is true for s = 0. Now we assume that a < b. Let $y_0 = 1$ and

$$y_j = \prod_{i=1}^{J} \left(1 - \frac{1}{x_i}\right), \quad j = 1, \dots, r.$$

Then

$$y_r < y_{r-1} < \cdots < y_1 < y_0 = 1.$$

Since $y_r \le a/b < y_0$, it follows that there exists an integer *s* with $1 \le s \le r$ such that $y_s \le a/b < y_{s-1}$. Now Lemma 2.4 follows from Lemma 2.2.

LEMMA 2.5. Let u and v be two positive integers with u > v, N an odd u/v-perfect number, and S a set (possibly empty) of prime factors of N. Then there exist two coprime integers U and V with $U \ge 1$ and V > 1, and a set T (possibly empty) of prime factors of U with $|T| + \omega(V) \ge |S|$ such that N = UV and

$$(v_1 + 1) \prod_{p \mid V} p \prod(T) < ((v + 1) \prod(S))^{2^{2\omega(V) + |T| - |S|}},$$

where $v_1 = v\sigma(V)$.

PROOF. Let $N = \prod_{p|N} p^{e(p)}$ be the standard factorisation of *n*. Then

$$\frac{uN}{v} = \sigma(N) = \prod_{p|N} \frac{p^{e(p)+1} - 1}{p-1} < \prod_{p|N} \frac{p^{e(p)+1}}{p-1} = N \prod_{p|N} \left(1 - \frac{1}{p}\right)^{-1}.$$

It follows that

$$\prod_{p|N} \left(1 - \frac{1}{p}\right) < \frac{v}{u}.$$

Let $u' = u \prod_{p \in S} (p - 1)$ and $v' = v \prod(S)$. Then

$$\prod_{p|N,p\notin S} \left(1-\frac{1}{p}\right) < \frac{\nu'}{u'}.$$

By Lemma 2.4, there exists a subset S' of $\{p : p \mid N, p \notin S\}$ such that

$$\prod_{p \in S'} \left(1 - \frac{1}{p} \right) \le \frac{v'}{u'}, \quad v' \prod (S') < (v'+1)^{2^{|S'|}} \le \left((v+1) \prod (S) \right)^{2^{|S'|}}.$$

That is,

356

$$\prod_{p \in S \cup S'} \left(1 - \frac{1}{p} \right) \le \frac{v}{u} < 1, \quad v \prod (S \cup S') < \left((v+1) \prod (S) \right)^{2^{|S'|}}.$$
 (2.1)

Since the numerator of

$$\prod_{p \in S \cup S'} \left(1 - \frac{1}{p} \right)$$

is even and the numerator of $v/u = N/\sigma(N)$ is odd when it is written in the lowest terms, it follows that equality in (2.1) cannot hold.

Let $u'' = u \prod_{p \in S \cup S'} (p-1)$ and $v'' = v \prod (S \cup S')$. By (2.1), v'' > u''. Since

$$\prod_{p \in S \cup S'} \left(1 - \frac{1}{p^{e(p)+1}} \right) = \prod_{p \in S \cup S'} \frac{\sigma(p^{e(p)})(p-1)}{p^{e(p)+1}} \le \frac{\sigma(N)}{N} \prod_{p \in S \cup S'} \frac{p-1}{p} = \frac{u''}{v''} < 1,$$

it follows from Lemma 2.4 that there exists a nonempty subset $S'' \subseteq S \cup S'$ with

$$\prod_{p \in S''} \left(1 - \frac{1}{p^{e(p)+1}} \right) \le \frac{u''}{v''}, \quad u'' \prod_{p \in S''} p^{e(p)+1} \le (u''+1)^{2^{|S''|}} \le (v'')^{2^{|S''|}}.$$

As in Heath-Brown's paper, let

$$V = \prod_{p \in S''} p^{e(p)}, \quad U = N/V, \quad T = (S \cup S') \setminus S'', \quad v_1 = v\sigma(V).$$

Then $|S''| = \omega(V) \ge 1$ and $|S'| = |S''| + |T| - |S| = \omega(V) + |T| - |S| \ge 0$. Since

$$v_{1} + 1 \leq 2v_{1} = 2v \prod_{p \in S''} \frac{p^{e(p)+1} - 1}{p - 1} \leq v \prod_{p \in S''} (p^{e(p)+1} - 1)$$

$$= v \prod_{p \in S''} \left(1 - \frac{1}{p^{e(p)+1}}\right) \prod_{p \in S''} p^{e(p)+1} \leq v \frac{u''}{v''} \frac{1}{u''} (v'')^{2^{|S''|}}$$

$$= v(v'')^{2^{|S''|} - 1}$$

$$= v^{2^{|S''|}} \left(\prod (S \cup S')\right)^{2^{|S''|} - 1}$$

and

$$\prod_{p|V} p \prod(T) = \prod(S'') \prod(T) = \prod(S \cup S'),$$

it follows that

$$(v_1 + 1) \prod_{p \mid V} p \prod(T) \le \left(v \prod(S \cup S') \right)^{2^{|S''|}} < \left((v + 1) \prod(S) \right)^{2^{|S'| + |S''|}}$$
$$= \left((v + 1) \prod(S) \right)^{2^{2\omega(V) + |T| - |S|}}.$$

This completes the proof of Lemma 2.5.

PROOF OF THEOREM 2.1. Let $n_0 = N$, $u_0 = u$, $v_0 = v$, and $S_0 = S = \emptyset$. Let U, V and T be as in Lemma 2.5. Let $n_1 = U$, $V_1 = V$, $u_1 = uV = u_0V_1$, $v_1 = v\sigma(V) = v_0\sigma(V_1)$ and $S_1 = T$. Then $n_0 = n_1V_1$,

$$\frac{\sigma(n_1)}{n_1} = \frac{\sigma(N)}{N} \frac{V_1}{\sigma(V_1)} = \frac{u_0 V_1}{v_0 \sigma(V_1)} = \frac{u_1}{v_1},$$

and

$$(v_1 + 1) \prod_{p \mid V_1} p \prod (S_1) \le \left((v_0 + 1) \prod (S_0) \right)^{2^{2\omega(V_1) + |S_1| - |S_0|}}.$$

If $n_1 > 1$, then $u_1 > v_1$. We continue to apply Lemma 2.5. Since $V_1 > 1$, it follows that $n_1 < n_0 = N$. So this procedure must stop in a finite number of steps. Thus, we can obtain sequences $\{n_i\}_{i=0}^t, \{V_i\}_{i=1}^t, \{u_i\}_{i=0}^t, \{v_i\}_{i=0}^t, \text{ and } \{S_i\}_{i=0}^t$ such that $n_i = 1$, $\sigma(n_i) = u_i n_i / v_i$, S_i is a set (possibly empty) of prime factors of n_i ($0 \le i \le t$) and, for all $0 \le i \le t - 1$,

$$n_i = n_{i+1}V_{i+1}, \quad (n_{i+1}, V_{i+1}) = 1, \quad V_{i+1} > 1,$$
 (2.2)

$$u_{i+1} = u_i V_{i+1}, \quad v_{i+1} = v_i \sigma(V_{i+1}), \quad \omega(V_{i+1}) + |S_{i+1}| \ge |S_i|, \tag{2.3}$$

$$(v_{i+1}+1)\prod_{p|V_{i+1}}p\prod(S_{i+1}) \le \left((v_i+1)\prod(S_i)\right)^{2^{r+1}},$$
(2.4)

where $k_i = 2\omega(V_i) + |S_i| - |S_{i-1}|$ $(1 \le i \le t)$. It follows from $n_t = 1$ that $S_t = \emptyset$. By (2.2) and (2.3),

$$2\omega(V_{i+1}) + |S_{i+1}| - |S_i| \ge 1, \quad 0 \le i \le t - 1,$$

$$N = n_1 V_1 = \dots = V_t \cdots V_1,$$

$$v_t = v_{t-1} \sigma(V_t) = v_{t-2} \sigma(V_{t-1}) \sigma(V_t) = \dots = v_0 \sigma(V_1) \cdots \sigma(V_t).$$

So $v_t = v_0 \sigma(N) = v_0 u N / v = u N$. Let $P_0 = 1$ and

$$P_i = \prod_{p \mid V_1 \cdots V_i} p, \quad 1 \le i \le t.$$

Thus, by (2.4),

$$(v_{i+1}+1)P_{i+1}\prod(S_{i+1}) \le ((v_i+1)P_i\prod(S_i))^{2^{k_{i+1}}}, \quad 0 \le i \le t-1.$$

It follows that

$$vN \prod_{p|N} p = vNP_t < uNP_t = v_tP_t < (v_t + 1)P_t \prod(S_t)$$
$$\leq \left((v_{t-1} + 1)P_{t-1} \prod(S_{t-1}) \right)^{2^{k_t}}$$
$$\leq \cdots$$
$$\leq \left((v_0 + 1)P_0 \prod(S_0) \right)^{2^{k_t + \cdots + k_1}}.$$

Noting that $(v_0 + 1)P_0 \prod (S_0) = v + 1$ and

$$k_t + \dots + k_1 = \sum_{i=1}^t (2\omega(V_i) + |S_i| - |S_{i-1}|) = 2\omega(N) + |S_t| - |S_0| = 2\omega(N),$$

we have

$$vN \prod_{p|N} p < (v+1)^{4^{\omega(N)}}.$$
 (2.5)

If $v \prod_{p|N} p \ge (v+1)^{2^{\omega(N)}}$, then, by (2.5),

$$N < (v+1)^{4^{\omega(N)}-2^{\omega(N)}}$$

If $v \prod_{p|N} p < (v + 1)^{2^{\omega(N)}}$, then, by Lemma 2.3,

$$N < \left(v \prod_{p \mid N} p \right)^{2^{\omega(N)} - 1} < (v + 1)^{4^{\omega(N)} - 2^{\omega(N)}}.$$

This completes the proof.

Acknowledgements

We are grateful to the referee and the editor for their helpful comments.

References

- [1] F.-J. Chen and Y.-G. Chen, 'On odd perfect numbers', Bull. Aust. Math. Soc. 86 (2012), 510-514.
- [2] L. E. Dickson, 'Finiteness of odd perfect and primitive abundant numbers with *n*-distinct prime factors', *Amer. J. Math.* **35** (1913), 413–422.
- [3] J. A. B. Dris and F. Luca, A note on odd perfect numbers, *Matimyas Mat.*, to appear, arXiv:1103.1437v3.
- T. Goto and Y. Ohno, 'Odd perfect numbers have a prime factor exceeding 10⁸', *Math. Comp.* 77(263) (2008), 1859–1868.
- [5] D. R. Heath-Brown, 'Odd perfect numbers', Math. Proc. Cambridge Philos. Soc. 115 (1994), 191–196.
- [6] F. Luca and C. Pomerance, 'On the radical of a perfect number', *New York J. Math.* **16** (2010), 23–30.

[6]

Improved upper bounds for odd multiperfect numbers

[7]

- [7] P. P. Nielsen, 'An upper bound for odd perfect numbers', *Integers* **3** (2003), A14; 9 pages.
- [8] P. P. Nielsen, 'Odd perfect numbers have at least nine prime factors', *Math. Comp.* **76**(260) (2007), 2109–2126.
- P. Ochem and M. Rao, 'Odd perfect numbers are greater than 10¹⁵⁰⁰', *Math. Comp.* 81(279) (2012), 1869–1877.
- [10] C. Pomerance, 'Multiply perfect numbers, Mersenne primes and effective computability', Math. Ann. 266 (1997), 195–206.

YONG-GAO CHEN, School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China e-mail: ygchen@njnu.edu.cn

CUI-E TANG, School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China