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Abstract

Examples are given that show the following: (1) normal structure need not be inherited by
quotient spaces; (2) uniform normal structure is not a self-dual property; and (3) no degree of
A>uniform rotundity need be present in a space with uniform normal structure.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 46 B 20.

The concept of normal structure, a geometrical property of sets in normed
linear spaces, was introduced by M. S. Brodskii and D. P. Milman [3] in
1948 in order to study the existence of common fixed points of certain sets
of isometries; uniform normal structure was initially investigated by A. A.
Gillespie and B. B. Williams [9] in 1979. Both of these notions are well-
known and have been studied as purely geometrical properties and as tools
in fixed point theory.

In this paper, four examples of Banach spaces are given that illustrate the
permanence (or lack thereof) of normal or uniform normal structure when
forming quotient spaces or dual spaces. More specifically, the first exam-
ple is a renorming of / ' that has normal structure and has the property that
every separable Banach space is isometrically isomorphic to one of its quo-
tient spaces. Consequently, quotient spaces of spaces with normal structure
need not have normal structure; this answers a question of B. Sims [10, page
62]. The second example complements the first by showing that not every
renorming of / ' with normal structure has the properties of the first example.
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224 Mark A. Smith and Barry Turett [2]

The third example, originally studied by W. L. Bynum [4], is a renorming
of I2 that is shown to have uniform normal structure while its dual space is
known to lack even normal structure. Therefore, dual spaces of spaces with
uniform normal structure need not have uniform normal structure; this an-
swers another question of B. Sims [10, page 42J. All of the examples in the
literature (at least all that are known to the authors) of spaces with uniform
normal structure have this property because they have the stronger geomet-
rical property of being fc-uniformly rotund for some positive integer k; this
includes the third example in this paper. The fourth example given here is
an example of a Banach space that has uniform normal structure and yet is
not /ouniformly rotund for any positive integer k.

The terminology used in this paper is standard. Some of the basic defini-
tions and notations are now reviewed. For a closed bounded convex subset A
of a Banach space X, the Chebyshev radius of A, denoted by r(A), is defined
to be inf{sup{||x - y\\: y e A}: x e A) and the diameter of A, denoted by
diam(y4), is defined to be sup{||x - j>||: x,y e A}. A Banach space X is said
to have normal structure if r{A) < diam(^4) for every nonsingleton closed
bounded convex subset A of X; the space X is said to have uniform normal
structure if there is an e > 0 such that the ratio r(A)/ diam(A) < 1 - e for all
A as above. The modulus of rotundity of a Banach space X is the function
Sx: [0,2] — [0,1] defined by

dx(e) = inf{l - ||(* + >0/2||: x,y eX,\\x\\ = \\y\\ = 1,||* -y\\ > e}

and the characteristic of convexity of X, denoted so(X), is defined to be
sup{e € [0,2]: dx(e) = 0}. A Banach space X is uniformly rotund if and
only if so(X) = 0. Several generalizations of uniform rotundity are well-
known. Those used in this paper include, in decreasing order of strength,
weak uniform rotundity, weak* uniform rotundity (in dual spaces), uniform
rotundity in every direction (a property that implies normal structure), and
rotundity (also known as strict convexity); see [6, Chapter VII, §2] for de-
tailed information. Also needed here is the generalization called fc-uniform
rotundity (a property that implies uniform normal structure); see [11] for ba-
sic information. The fc-dimensional volume enclosed by vectors Xi,...,.x*+1

is denoted by A{x\,..., x^+i) and the affine span of these vectors is denoted
by [JCI,... .,Xk+i]; again, see [11] for definitions.

EXAMPLE 1. (lx,\\\ • |||). Define S: lx -+ I1 by S(an) = (an2-"/2) for (a,)
in I1. Then S is a continuous linear mapping and hence ||| • ||| defined, for
(an) in I1, by

'2

is a norm on Z1 that is equivalent to the usual norm. Since S is an injection
and since (I2, \\ • H2) is, in particular, uniformly rotund in every direction, it
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[3] Normal structure in Banach spaces 225

follows from [13, Proposition 14], that (Z1, ||| • |||) is uniformly rotund in every
direction and hence, by [13, Proposition 23], (/ ' , ||| • |||) has normal structure.

THEOREM 1. Every separable Banach space is isometrically isomorphic to
a quotient space of (I1, ||| • |||). Consequently, quotient spaces of Banach spaces
with normal structure need not have normal structure.

PROOF. Let X be a separable Banach space and let (xn) be a sequence that
is dense in the unit ball of X. Define T: / ' -» X by T(an) = J2T=i anxn for
(an) in / ' . Then T is a continuous linear mapping; in fact, since

7 1 = 1 7 1 = 1

it follows that ||| T |||< 1. To see that T is a surjection, let z be in X with
||z|| = 1 and let e > 0 be given. Choose nx in N such that

1/2"'< 2e + 8e2/3 and \\z - xni|| < e.

Inductively choose a subsequence (xnj) of (xn) such that, for all j in N,

||z_x -ix -±x f-x II < e

Then let

ye = enx + 2e"i + 2 2 e " 3 + ' " i n / 1 >

where (en) denotes the standard basis in Z1. By the continuity of T, it follows
that Tye = z, and by the choice of n\,

j=2

< ( l + e ) 2 + 2 - n i + e 2 / 3

< (l + 2e)2.

Thus T maps onto X and if y - y + kerT in the quotient space
(l\ HI • |||)/ker T where Ty = z, then ||| y \\\< 1 + 2e. Since e > 0 was arbi-
trary, HI y |||< 1 and since ||z|| = 1 and ||| T |||< 1, it follows that ||| y |||> 1.
Hence ||| j) |||= 1. This shows that if f: (Z1, ||| • |||)/ker T -» X is defined by
f (j>+ker T) = Ty, then f is a continuous linear isometry of (I1, ||| • |||)/ ker T
onto X. This completes the proof of Theorem 1.

Of course, the proof just given is a very slight modification of the proof of
the classical result due to Banach and Mazur [2, page 111] that every separable
Banach space is isometrically isomorphic to a quotient space of (I1, || • ||i).
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226 Mark A. Smith and Barry Turett [4]

This same proof works since the norm ||| • ||| is a small perturbation of the
norm || • ||i for elements (an) whose first nonzero entry occurs at a large value
of n in N; this perturbation, although small, is sufficient to guarantee that
(/', HI • HI) has normal structure. The next example shows that ||| • ||| is special
in that not every renorming of / ' has the property that every separable Banach
space is isometrically isomorphic to one of its quotient spaces.

EXAMPLE 2. (Z1, || • | |5). Since CQ has a separable dual space, by [12, The-
orem 2], there is an equivalent norm on Co that is simultaneously weakly
uniformly rotund and uniformly Gateaux differentiable. Let (co) denote Co
with such a norm. Then, from rotundness and smoothness duality theory (see
[6, Chapter VII, §2]), it follows that its dual space, denoted (/'), is simulta-
neously uniformly Gateaux differentiable and weak* uniformly rotund, and
its second dual, denoted by (/°°), is weak* uniformly rotund and hence, in
particular, is rotund. Now let Y be any closed subspace of (/') and consider
the quotient space (ll)/Y. Since ({ll)/Y)* = YL, which is a closed subspace
of (/°°), it follows that (ll)/Y is smooth. Let || • ||s denote the norm on (/').
Then (/', || • \\s) has the property that each of its quotient spaces is smooth and
hence not every separable Banach space is isometrically isomorphic to one
of its quotient spaces. Also note that (/', || • \\s) has normal structure, by [13,
Proposition 23], since it is uniformly rotund in every direction, a property
implied by weak* uniform rotundity.

EXAMPLE 3. (I2, \\ • ||2,i)- For x in I2, define its positive and negative parts
x+ and x~ as usual and then define || • \\i,\ and || • ||2,oo by

11*112.1= ||*+||2 + ||*-||2
and

Then || • ||2,i and || • ||2,<x> are norms on I2 each of which is equivalent to
the usual norm; these norms were introduced and studied by Bynum [4].
Let I2 equipped with || • ||2,i be denoted by h,\ and with || • ||2,oo by lit0o-
Bynum showed that h,i has normal structure while its dual space /2jOO lacks
normal structure, thereby establishing that normal structure is not a self-dual
property. In fact, as will be shown here, this same example verifies that
uniform normal structure is not a self-dual property.

THEOREM 2. The Banach space lit\ is 2-uniformly rotund and hence has
uniform normal structure. Consequently, dual spaces of Banach spaces with
uniform normal structure need not have uniform normal structure.

PROOF. By [1, Proposition 2.14], a Banach space has uniform normal
structure if it is fc-uniformly rotund for some positive integer k. Thus it
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suffices to show I2,i is 2-uniformly rotund. Toward this end, let {xn), (yn)
and (zn) be sequences of norm-one elements in 12,\ with

Vim
n—>oo

The goal is to show that limn_oo A{xn,yn,zn) = 0.
The proof is divided into three steps. The first step is to slightly perturb

the given sequences in order to obtain new sequences with nicer properties.

STEP 1. There exist sequences (Xn), (Yn) and (Zn) of norm-one elements
in 12,\ such that

lim \\xn -Xn\\2,i = 0,
n—»oo

lim \\yn — Yn\\2 i = 0,
n—>oo '

lim \\zn-Zn\\2A = 0,
n—•oo

(and hence l im,,-^ \\{Xn + Yn + Zn)/3\\2,\ — 1) and, for all / and n in N,

sgnXn(i) • sgn Yn(i) ± - 1 ,

sgn *„(/) • sgnZn(/) 7 ^ - 1 ,

and, for all n in N,

Ar+, Z " , yw
+, yn~, Z+, Z~ are all nonzero elements in I2,i.

In order to establish this step, let 0 < d < 1 be given and assume that x, y
and z are norm-one elements in /2,i and to* is a norm-one element in /£,
( - 2̂,oo) such that

w*((x + y + z)/3) = ||(JC + y + z)/3||2,i > 1 - S.

Note that this implies, by the triangle inequality, that each of w*x, w*y and
w*z is greater than 1 - 3d. Let

Dx = {i: sgnw*(i) • sgnx(/) = - 1 or w*(i) = 0}.

If Dx = 0 , let X = x; otherwise, let

c(i) if i ^ ft,

) if i eDx.

Then

1=1
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228 Mark A. Smith and Barry Xurett [6]

and, for each i in N,
sgn w*(i) • sgaX(i) / - 1 .

In similar fashion, obtain Y and Z satisfying

1 > Illiki > 1 - 3<$ and 1 > ||Z||2,i > 1 - 3<J

and, for each / in N,

sgnw*(i) sgny(/) ^ - 1 and sgnw*(i) • sgnZ(/) ^ - 1 .

It follows, for each / in N, that each of

sgaX(i) • sgn Y(i), sgnX(i) • sgnZ(/) and sgn Y(i) • sgnZ(z")

is not equal to - 1 .
Now let u = x\Dx and consider \\x - X\\i,\ = ||M||2,I- Since u and X

have disjoint supports, x+ = (u + X)+ = u+ + X+ and x~ = {u + X)~ =
u~ +X~. Using this and the definition of || • ||2,i combined with the fact that
(a2 + j?2)1/2 > a + P2/2 for real numbers a and P satisfying 0 < a, p < 1
and a2 + P2 < 1, it follows that

Therefore \\u+\\2
2 + \\u~\\l < 65 and so ||M+||2 < V6S and | |«-| |2 < V6S. It

now follows that \\x — X||2i < 2\/65 and hence
x II ^ II x

--x\\ < W-r^r, Xn2)1 2,1

9Vd.

Similarly, this last inequality can be established where the letters X and x
are replaced by Y and y respectively or by Z and z respectively. Thus,
with x,y, z, and S replaced by xn,yn,zn, and \/n respectively, norm-one
elements Xn, Yn and Zn (corresponding to XI\\X\\2>1, y/||y||2,i and Z/\\Z\\2,i
respectively) have been constructed in /2)i that satisfy the first six conditions
in the statement of Step 1.

Finally, if there exists n in N such that at least one of X+, X~, Y+, Y~, Z+
or Z~ is the zero element in I2y\, then the triple Xn, Yn, Zn must be modified.
For such an n, choose distinct indices j and k such that each of \Xn(j)\,
\Yn{j)\, \Zn(j)\, \Xn(k)\, \Yn(k)\, and \Zn(k)\ is less than l/2«+3. Define X'n,
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yn' and Z'n by having them agree with Xn, Yn and Zn respectively at indices
different from j and k, having each of them equal to l /2n + 3 at j , and each
of them equal to - l / 2 " + 3 at k. Then the triangle inequality yields that

iWIki i2,, 2"
as well as the same inequality where the letter X is replaced by Y or Z.
Thus, for each such n, replace Xn, Yn and Zn by X'nl\\X'n\\2,u l^/H^Iki and
Z^/||Z^||2,i respectively. Then the (modified) sequences (Xn), (Yn) and (Zn)
have all of the desired properties and the statement in Step 1 is established.

The next step is to show that the sequences constructed in Step 1 have the
property that the triangles determined by Xn, Yn and Zn are almost contained
in the intersection of some two-dimensional subspaces of l2 i and the unit ball
of/2,1.

STEP 2. Let (Xn), (Yn) and (Zn) be the sequences constructed in Step 1
and let (Mn) be the sequence {(Xn + Yn + Zn)/3). Then, if (Vn) is any one of
the sequences (Xn), (Yn) or (Zn),

lim dist(Fn+,span{M+}) = 0
n—•(»

and
lim dist(Fn-,span{Af-}) = 0.

n—»oo

To establish this step, consider a fixed positive integer n and let X, Y, Z,
and M denote Xn,Yn,Zn, and Mn respectively. Note that

M+ = (X+ + Y+ + Z+)/3 and M~ = (X~ + Y~ + Z")/3

by the properties of X, Y and Z established in Step 1. Let 0 < r\ < 4/9 be
given and suppose ||M||2,i > 1 - »/. Then

0 < (||x+||2 + imu + \\z+h)P - \\M+\\2 < n.
By Clarkson's strong triangle inequality [5, Theorem 3],

> 2d2(\\(X
+/\\X+\\2 - M+/\\M+\\2)\\2)\\X

+\\2

+ 2d2(\\(Y+/\\Y+\\2 - M +

+ 2S2(\\(Z+/\\Z+\\2 - A/+

where S2 is the modulus of rotundity of (I2, || • ||2). Therefore

d2(\\(X
+/\\X+\\2-M

+/\\M+\\2)\\2)\\X
+\\2 < 3r,/2.

Now, if ||A"+||2> y/rj, then

d2(\\(X
+/\\X+\\2 - Jl/+/ll^+ll2)||2)

= 1 - [1 - | | (X + / | |^ + | |2 - M+/\\M+\\2)\\
2
2/4]1?2.
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Thus, ||X+||2 > yjr\ implies

||(X+/| |^+||2 - Jl/+/l|Ani2)||2 < [120/ - 9r,]1'2 < 2(9r,y\

Therefore, no matter what the (nonzero) norm of X+ is, it follows that
dist(Ar+,span{M+}) < 2(9t])1^. This shows that

lim dist(X+ span{Af+}) = 0
n—>oo

and each of the other five limits follows in an identical manner. This estab-
lishes Step 2.

Consequently, if n is large enough, Xn, Yn and Zn (and hence xn, yn and
zn) are "almost" in the two-dimensional subspace of 12,\ spanned by M+ and
M~. The next step is to show that limn-,oo A(xn,yn, zn) — 0, which will
complete the proof of Theorem 2.

Toward this end, choose norm-one elements X'n, Y'n and Z'n in the span of
M+ and M~ such that each of \\Xn - X'J2J, \\Yn ~ 7M'||2,i and \\Zn - Z'n\\2A

tends towards 0 as n increases.

STEP 3. l i m ^ o o ^ ^ , Y'n,Z<n) = 0.
To establish this step, consider a fixed positive integer n and let X', Y'

and Z ' denote X'n, Y'n and Z'n respectively. Let 0 < r\ < 1/3 be given and
suppose ||X' + Y' + Z'\\2>i > 3(1 - rf). Note that this implies that every convex
combination of X', Y' and Z ' has norm greater than 1 - 3t]. Thus 0 is not in
the triangle determined by X', Y' and Z'. Let w be a point in this triangle
of minimum norm. Without loss of generality, assume w lies on the chord
between X' and Z' . Choose w* in the unit sphere of /£ x such that

w*X' = w*Z' = w*w = |M | > 1 - 3t].

Observe that w*Y' > \\w\\ and hence

dist(Y',[X',Z']) = w*(Y' -w) < 1 - (1 - 3f/) = 3r/.

Thus, by [8, Lemma 2],

A{X', Y', Z') < 2\\X' - Z'| | dist(7', [X1, Z']) < 12//.

This shows that l im,,-^ A(X'n, Y'n, Z'n) - 0 and Step 3 is established.
Since the area function is uniformly continuous, it follows that

lim A(xn,yn,zn) = lim A(Xn, Yn,Zn) - lim A(X'n, Y'n,Z'n) = 0
n—>oo n—>oo n—>oo

and hence the proof of Theorem 2 is complete.

EXAMPLE 4. (/2(^o), II • |b)- Let (Xo, || • ||o) be the two-dimensional space
R2 normed so that the unit sphere consists of all points (a, /?) satisfying one
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[9] Normal structure in Banach spaces 231

of the following:

( a - l/8)2 + y?2=l and a > 1/8,

\P\ =1 and \a\ < 1/8,
2 + £ 2 = l and a < - l / 8 .

So the unit sphere of Xo is a "short bathtub". Consider the Banach se-
quence space (12(XO), || • ||2) consisting of all sequences (xn) in Xo whose
norms form a square-summable sequence in R and where ||(JCW)||2 is given
by E ^ t i H^nllcJ'̂ 2- As w ^ ^ shown, this space is not A:-uniformly rotund
for any k in N and yet this space has uniform normal structure. The first
assertion is a consequence of the following result since XQ is not even rotund
(and hence not uniformly rotund).

THEOREM 3. Let 1 < p < 00 and let (Xt) be a sequence of Banach spaces
each one of which is not uniformly rotund. Then the Banach sequence space
lp(Xi) is not k-uniformly rotund for any k in N.

The proof of this result will be facilitated by the following elementary,
geometrical fact.

LEMMA. Let X be a Banach space. For norm-one elements x and y in X,

dist(j>,span{x}) > 5 min{||x — y||, ||JC + >»||}.

PROOF. Let t) - min{||x - y||, ||JC + y\\}/2. Note that dist(^,span{x}) =
\\y - ax\\ for some a in R. To obtain a contradiction, assume \\y — ax\\ < rj.
From this and the triangle inequality, it follows that

M = | M | > \\y\\ - \\y - ax\\ > 1 - t,

and
|a| = \\ax\\ < \\y\\ + \\y — ax\\ < 1 + n

and hence |(1 — |a|)| < n. Now if a > 0, then

| |x-y | | = ||ax + ( l - a )x - ;y | |

< | | ax -y | | + | l - a |

< ^ + | ( l - | a | ) |<2i , ,
a contradiction. On the other hand, if a < 0, then

< ||}> - ax\\ + |1 + a|

< ^ + | ( l - |a | ) |<2»j ,

a contradiction. Therefore \\y - ax\\ > n and the proof is complete.
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PROOF OF THEOREM 3. Since, for each positive integer /, the space Xi is
not uniformly rotund, there exist norm-one sequences (x^) and (y^) in Xt

ande, > 0 such that Wx^-y^W > e, for all w in N and l i m , , ^ WxlP+y^W = 2.
Let k > 2 be given (clearly, lp{Xi) is not uniformly rotund). Define k + 1
sequences in /P(X,) as follows: for n in N, let

z(1) - (x{l) x(2)

,(2) _ / v ( l ) «(2)

) x(k) 0 )

(k) _ / (1) v ( 2 )

(V(U v(2)

Then Hz^H = kx<p for each 1 < j < k + 1 and n in N. Moreover,

lim
n—too

E
; • = •

MP

/ = i

' lim
n—>oo k+l y"

Now let w{
n
j} = z^/114^11 for each 1 < j < k + 1 and n in N. Then

{(to^): 1 < j < /c + 1} is a collection of fc + 1 norm-one sequences in
t) such that

lim
n—»oo

k+\

7 = 1

The proof will be complete once it is shown, for each n in N, that

where e - (fljLi Sj)/(2k^p)k. Toward this end, note that the lemma yields

^ , . . . , ^ ] ) > iWxP-yPWk-1'" > \ejk-V?

for each 1 < j < k and n in N. Also, from [8, Lemma 1],
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for each \ < j <k and n in N. Now, by repeated applications of these last
two inequalities, it follows that, for each n in N,

i (

y ( "

ek--s2 . ( i) ( 2

= e.

This completes the proof of Theorem 3.
It remains to be shown that (12(XO), || | |2) has uniform normal structure. To

show this, simply combine the following four facts. First, the characteristic
of convexity eo(^o) is 2/9, as follows immediately from the geometry of the
unit sphere of Xo. Second, by [7, Theorem 9], eo(/2(^o)) = £o(*o)- Third, for
any Banach space X, if EQ{X) < 1, then 8x{\) > 0, where dx is the modulus of
rotundity of X, as follows immediately from the definitions of eo(X) and dx-
And fourth, by [1, Proposition 2.14], for any Banach space X, if dx(l) > 0,
then X has uniform normal structure.
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