NOTE ON A PARTITION THEOREM

by GEORGE E. ANDREWS \dagger

(Received 17 February, 1969)

1. Introduction. In [1, p. 130] the following partition theorem was deduced from a general theorem concerning the limit of a recurrent sequence.

Theorem. Let $r \geqq 2$ be an integer. Let $P_{1}(n)$ denote the number of partitions of n into parts that are either even and not congruent to $4 r-2(\bmod 4 r)$ or odd and congruent to $2 r-1$, $4 r-1(\bmod 4 r) . L e t P_{2}(n)$ denote the number of partitions of n of the form $n=b_{1}+\ldots+b_{s}$, where $b_{i} \geqq b_{i+1}$, and for b_{i} odd, $b_{i}-b_{i+1} \geqq 2 r-1 \quad\left(1 \leqq i \leqq s\right.$, where $\left.b_{s+1}=0\right)$. Then $P_{1}(n)=P_{2}(n)$.

Now considering the generating function for $P_{1}(n)$, we have

$$
\begin{align*}
1+\sum_{n=1}^{\infty} P_{1}(n) q^{n} & =\prod_{j=1}^{\infty}\left(1-q^{4 r j-2}\right)\left(1-q^{2 j}\right)^{-1}\left(1-q^{2 r j-1}\right)^{-1} \tag{1}\\
& =\prod_{j=1}^{\infty}\left(1+q^{2 r j-1}\right)\left(1-q^{2 j}\right)^{-1} \\
& \equiv 1+\sum_{n=1}^{\infty} P_{3}(n) q^{n}
\end{align*}
$$

where $P_{3}(n)$ is the number of partitions of n into parts that are either even or else congruent to $2 r-1(\bmod 2 r)$ with the further restriction that only even parts may be repeated. Thus $P_{1}(n)=P_{3}(n)$.

The object of this note is to provide a simple combinatorial proof of the fact that $P_{2}(n)=$ $P_{3}(n)$; equation (1) then yields the above theorem.
2. Proof that $P_{2}(n)=P_{3}(n)$. We provide a one-to-one correspondence between the sets of partitions to be counted.

Let π be a partition of the type enumerated by $P_{2}(n)$. Then represent π graphically with each even part $2 m$ represented by two rows of m nodes and each odd part $2 m+1$ represented by two rows of $m+1$ nodes and m nodes respectively. For example, $11+4$ becomes

Now read the graph vertically with the proviso that r columns are always to be grouped as a single part whenever the lowest node in the most right-hand column of the group comes from what was originally the right-hand-most node contributed by an odd part. Thus in our
\dagger Partially supported by NSF Grant GP 8075.
example with $r=2$, we obtain in this manner the partition $4+4+2+2+3$. Now since the condition on partitions enumerated by $P_{2}(n)$ is $b_{i}-b_{i+1} \geqq 2 r-1$ whenever b_{i} is odd, we see that our groupings of r columns always have one less node than a rectangle of $r \times 2 v$ nodes; thus a part congruent to $2 r-1(\bmod 2 r)$ is produced. Since originally odd parts were distinct, we see that now odd parts will be congruent to $2 r-1(\bmod 2 r)$ and will not be repeated, and since originally all odd parts were greater or equal to $2 r-1$, we see that there will always be r columns available for each grouping. Thus in this way we have produced a partition of the type enumerated by $P_{3}(n)$. Clearly our correspondence is one-to-one into; however, the above process is reversible and thus the correspondence is onto. Hence $P_{2}(n)=P_{3}(n)$.

As an example we take $r=2, n=11$. The corresponding partitions are listed opposite each other in the following table

P_{2}	P_{3}
11	$2+2+2+2+3$
$9+2$	$4+2+2+3$
$8+3$	$7+2+2$
$7+4$	$4+4+3$
$7+2+2$	$6+2+3$
$6+5$	$7+4$
$5+2+2+2$	$8+3$
$4+4+3$	11

REFERENCES

1. G. E. Andrews, On Schur's second partition theorem, Glasgow Math. J. 8 (1967), 127-132.

The Pennsylvania State University
University Park, Pennsylvania 16802

