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Abstract. The equilateral triangle family of relative equilibria of the 4-body problem
consists of three particles of mass 1 at the vertices of an equilateral triangle and
the fourth particle of arbitrary mass m at the centroid. For one value of the mass
m this relative equilibrium is degenerate. We show that families of isosceles triangle
relative equilibria bifurcate from the equilateral triangle family as m passes through
the degenerate value.

The square family of relative equilibria of the 5-body problem consists of four
particles of mass 1 at the vertices of a square and the fifth particle of arbitrary mass
m at the centroid. For one value of the mass m this relative equilibrium is degenerate.
We show that families of kite and isosceles trapezoidal relative equilibria bifurcate
from the square family as m passes through the degenerate value.

1. Introduction
A classical problem in celestial mechanics is to enumerate all the relative equilibria
in the planar N-body problem. A relative equilibrium (RE) is an equilibrium solution
of the equations of the N-body problem when written in uniformly rotating coordin-
ates. For N = 3 the collinear solutions of Euler [4] and the equilateral triangle
solutions of Lagrange [7] complete the enumeration. For N > 4 the problem seems
too difficult for a complete solution, so partial answers suffice. For all N the collinear
solutions are given in [8] or [10] and highly symmetric solutions are found in [2],
[6], [9] and [12].

We will search for new special RE by using bifurcation analysis. Palmore [11]
showed that there were one-parameter families of RE in the 4- and 5-body problem
which became degenerate for one value of the parameter. This degeneracy suggests
that a bifurcation occurs and that new RE are generated. We shall study the
degeneracies of Palmore to illuminate the exact nature of the bifurcations.

For N = 4 Palmore considered the one-parameter family consisting of three bodies
of mass 1 at the vertices of an equilateral triangle and a fourth body of arbitrary
mass m at the centroid (figure l(a)). We shall call this the equilateral RE (for the
4-body problem). He showed that m$ = (81 + 64-^3)/249 is the unique value of the
mass parameter m for which this RE is degenerate. We shall reproduce this result
and prove that another family of RE bifurcate from the equilateral RE when m = m$.
The other family, called the isosceles RE, has three bodies of mass 1 at the vertices
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(a) (b)

FIGURE 1. (a) Equilateral triangle, (b) Isosceles triangle for m<m*. (c) Isosceles triangle for m > mj.

of an isosceles triangle and a fourth body of mass m near the centroid and on the
line of symmetry of the triangle. For m = m J the isosceles family coincides with the
equilateral family. Let the isosceles triangle have angles 6, d and </>. For m > m%,
<j)>60 and for m<m*, <£<60 (see figures l(b) and l(c)). Of course, because of
the symmetry of the problem, there are two other isosceles families obtained by
rotating the first one by 120° and 240°. We show that there are no non-symmetric
RE which bifurcate from the equilateral RE when m = m*. That is, there are no
scalene RE near the equilateral RE. This refutes a conjecture in [11].

For N = 5 Palmore considered a similar one-parameter family consisting of four
bodies of mass 1 at the vertices of a square and a fifth body of arbitrary mass m at
the centroid (figure 2(a)). We call this the square RE (for the 5-body problem). He
showed that m* = (13 + ll-s/2)/12 is the unique value of the mass parameter m for
which the square RE is degenerate. We reproduce this result and prove that a family
of kite RE as shown in figure 2(b) bifurcates when m> mf and a family of isosceles
trapezoidal RE as shown figure 2(c) bifurcates when m<mf. Both these families
have a reflexive symmetry and other families can be obtained by rotation. Again
there are no non-symmetric RE which bifurcate from the square family.

Our procedure is fairly standard for a bifurcation problem. The novelty is our
use of the coordinates used in the now almost forgotten paper by Dziobek [3] and
the algebraic processor MACSYMA to handle the more tedious calculations.

(a) (b) («)

FIGURE 2. (a) Square family, (b) Kite for m > m!f. (c) Trapezoid for m<mf.
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2. Relative equilibria and the N-body problem
The planar JV-body problem is denned by the system of ordinary differential
equations

mjq) = dU/dqj, j=l,...,N, (2.1)

where a, e R2 is the position vector of the jth body, m, > 0 is the mass of the jth
body and

£/=t/(<7)= I m,m,/||q/-<?,|| (2.2)

is the (self) potential of the system. Thus the position of all N bodies is specified
by q = (qi, • • •, qN) e U2N\A, where

A = {q € U2N: for some i and j , i *j, qt = q}}.

For the moment think of U2 as C1 and the q as complex numbers. To change to
rotating coordinates, let qj = em'uJt so equations (2.1) become

mj(iij + 2ia>Uj - a)2Uj) = dU/dUj, j = l , . . . , N (2.3)

and the condition for an equilibrium in these rotating coordinates is

-Xuj = (l/mj)dU/dUj, j = l,...,N, (2.4)

where A = a>2. Thus u = (w, , . . . , MN) is an RE if there is a A > 0 which satisfies the
system of algebraic equations (2.4). By dotting with u,, summing on j and using
Euler's theorem on homogeneous polynomials, one gets that A = U/2I > 0, where
/ is the moment of inertia of the system, i.e.

I = l2 1 mj\\uj\\2. (2.5)

Thus a solution of (2.4) forces a positive A.
The variable A can be considered as a Lagrange multiplier and so an equivalent

definition of an RE is a critical point of U restricted to 5\A, where S =
{« e R2N : / = /„}, with / 0 > 0 a constant. If u is an RE, then by multiplying (2.4) by
#Wj and summing on j , one gets £,= 1 mjUj = 0 and so the centre of mass of the system
is at the origin. If u is an RE, then so is au = (aw, , . . . , auN), where a = pe'9 is an
arbitrary non-zero complex number. Thus any configuration of the bodies which is
similar to an RE is also an RE. Thus RE lie in equivalence classes where the
equivalence relation is similarity, i.e. u ~ v if au = v, where a is a non-zero complex
number. In the counting of RE one counts equivalence classes.

The concept of non-degenerate RE takes into account all the observations of the
previous paragraph. Let M = {ueU2N: X mjUj — 0}, S as above and Sf =
{(S\A)nM}/~, where ~ is the equivalence relation denned above. Since ueS
means I(u) = Io, a constant, the scale of the system is fixed, so u, v e S and u ~ v
means au = v, where a = e'6 is a pure rotation. U is invariant under rotations so
constant on equivalence classes. Thus %:5^-»IR can be denned by °ll([u])= U(u).
It turns out that y and °U are smooth. An RE is called non-degenerate if its class
is a non-degenerate critical point of °U. in the sense of Morse theory, i.e. the Hessian
of °U is non-singular at the critical point.
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One of the reasons that RE are difficult to find is that it is difficult to find good
coordinates on Sf. Here we will use the coordinates which were so artfully exploited
in [3]. Dziobek's idea was to use the mutual distances py = || uf - u,-1|, 1 s i <j < N,
as coordinates, since these coordinates ignore the centre of mass and do not
distinguish between configurations which are obtained from one another by a
rotation. If the centre of mass is at the origin, then expanding pi yields

N N

= (1/4M) X (2.6)
i=ij=\

where M = £ ,1 , "», is the total mass of the system. Thus U and / are functions of
the mutual distances only. When N = 3 the three positive numbers pi2, Pn, P23 are
coordinates for a non-collinear configuration provided they satisfy the inequalities
imposed by the triangle inequality. In this case the dimension of SP is 2 and so
non-collinear classes in Sf have coordinates p12, pi3, P23 subject to the constraint
/ = /«•

Thus to find the non-collinear RE for N = 3, one needs to solve

j 0 (2.7)

subject to the side condition / = 70 (= M/4 say). This gives py = 1 for all values of
the masses. Moreover, this critical point is a non-degenerate minimum since the
Hessian of U + k(I-Io) is diagonal with positive diagonal entries. Thus for N = 3
Dziobek's coordinates easily give that the only non-collinear RE are the non-
degenerate equilateral triangle RE of Lagrange.

FIGURE 3. Mutual distances.

For JV = 4 there are six mutual distances (see figure 3). Clearly six numbers
overdetermine the problem, and for four bodies in the general position five mutual
distances suffice to determine the configuration. A necessary and sufficient condition
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i<4, are the mutual distances between fourthat six positive
coplanar points
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where r(/ = p2,. The reader can verify that this 19th century determinant is 288 V2,
where V is the volume of the tetrahedron whose six edges are given. This is the
three-dimensional generalization of Heron of Alexandria's formula for the area of
a triangle given its three sides.

Thus for N = 4 we follow Dziobek and introduce a new Lagrange multiplier and
look for critical points of L/ + Ao(/-io) + Ui /2)F subject to the conditions I = Io

and F = 0. This is how we study the bifurcation problems in subsequent sections.
A modern reference to this material is Hagihara [5].

3. An illustrative example
Before attacking the main problem, we shall look at a simple problem which models
the essential features but lacks the technical difficulties of the full problem. This
will indicate what to expect. Palmore [11] considers the equilateral triangle family
for N = 4 and the square family for N = 5. In both cases the function % has a
critical point for all values of m and this critical point is degenerate for one specific
value m* of m. He shows that at m = m* the nullity of the Hessian of ^l is 2. In
fact two of the eigenvalues of the Hessian change sign as m passes through m*.

Also from the symmetry it is clear that the function % is invariant under the
action of the appropriate dihedral group. Thus the essential features are (i) °U is a
one-parameter family of functions which has a fixed critical point for all values of
the parameter, (ii) for one value of the parameter this critical point is degenerate
with the Hessian having nullity 2, (iii) the function is invariant under an action of
the dihedral group. The perturbation parameter is e = m-m*.

Let Ve: U
2 -»R be a smooth one-parameter family of functions which has the

origin as a critical point for all values of e. Since we are interested in critical points,
we may assume Ve(0) = 0 also. Consider R2 as C1 and use z and z as coordinates.
Since Ve(0) = 0 and VVE(0) = 0, the Taylor expansion for Ve starts with quadratic
terms. Assume Ve is invariant under the standard action of Dn on R2, i.e. assume

VE(z, f) = Vc(az, of), VE(z, z) = Ve(z, z), (3.1)

where a = exp (2vi/n). The only terms in a Taylor expansion which satisfy the first
condition in (3.1) are of the form

(zzYz"" or (zzYz"", (3.2)

where p and q are non-negative integers. The second condition is simply a reality
condition. Thus Ve would have a Taylor expansion of the form

(3.3)
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If jS, ¥= 0, then replacing z by exp (-i(f>/n)z, where <f> = arg (3t, rotates coordinates
so that /3i is positive. Since V is real, so are the a. The Hessian of Vc will have
nullity 2 when e =0 if, for example, we take a} = e (or some multiple of e). With
a, = e the origin changes from a non-degenerate maximum when e <0 to a non-
degenerate minimum when e > 0.

We see that the )8 term is of smaller degree than the a2 term when n = 3 and the
other way around when n > 5. For n = 4 the two terms are of the same degree. In
the typical or generic case a2 ̂  0 and Pi^O.

Example 1, n=3. Consider

Ve = ezz--i(z3 + z3). (3.4)

Here we have a very simple one-parameter family of functions which has all the
essential features discussed above. We omit the a2 term since it is of higher degree
and makes no essential contribution. To find the critical points, proceed:

ezz-z3 = 0,

Thus for e > 0 there are three critical points on the circle r = e at angles 0 = 0,2IT/3,

4ir/3 and for e <0 there are three critical points on the circle r = -e > 0 at angles
e = ir/3, 7T/3 + 277-/3, -n73 + 4ir/3 (see figure 4(a)).

Example 2, n > 5. Consider

Vs = ezz-l2(zz)2 + (l/n)(z" + zn)- (3.6)

As before, proceed:

e r 2 - r 4 +r"e" l 9 =

where 0 = 2k7r/n for fc = 0, . . . , n - l when the plus sign is taken and 0 =
TT/n + 2kTr/n for fc = 0 , . . . , n - l when the minus sign is taken (see figure 4(b)).

Example 3, n =4. Consider

V. = e(zz) - (a/2)(zz)2+ (/8/4)(z4+ z4).

Proceed:

There are two cases: |a |> | )3 | (case 1) and |«j< |/3| (case 2). (|a| = |/3| is exceptional.)
In the first case aTj3 are of the same sign, say positive. Then there are two groups
of four critical points each for e > 0 and none for e < 0. In the second case a T /3

https://doi.org/10.1017/S0143385700009433 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009433


Relative equilibria in the 4- and 5-body problem 221

FIGURE 4. (a) Example 1, e>0. (b) Example 2, N = 5, e>0.

have different signs and there is one group of four critical points for e > 0 and
another group of four critical points when e < 0. The first case is like example 2
and the second case is like example 1.

In all the examples one can compute the second derivatives at the critical points
just found and show that they are non-degenerate minima, maxima and saddles as
illustrated in figures 4(a) and 4(b).

4. The 4-body problem
In this section we shall consider the bifurcations of the equilateral triangle family
of the 4-body problem. Thus as indicated in § 2 we must find extrema of U subject
to the constraint / = Io, and we shall use the mutual distances ptj as coordinates,
which imposes the constraint F = 0 (see (2.8)). Define

V = l / + Ao(/-/o) + (A,/2)F, (4.1)

where these functions are defined as in § 2. V is a function of eight variables which
we order by introducing the 8-vector z = (Ao, Aj, p,2, Pu, P14, P23, P24, Pi*)- Hence-
forth the variables and equations will be numbered according to this convention.
The equations to be solved are

dV/dz = 0 (4.2)

or
dV/d\o=I-Io =

(4.3)

The last six equations are easier to handle if the equations are divided by p(> to give

(l/ptf)O V/dPij) = (Ao- l/p3
B)m,in, + X(dF/drij) = 0. (4.4)

Fix the masses by setting m, = m2 = m3 = 1 and m4 = m arbitrary. Let the equations
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with (4.4) replacing the last six equations in (4.3) be denoted by W= W(z, m) = 0.
The equilateral triangle family p12 = pi3 = p23 = >/3, Pi4 = Pit, = p34 = 1 corresponds to
the solution z = a, where

a = ((3m + >/5)/(3in+9),(>/3-9)m/(27fn + 81),V3,V3,l,>/3,l,l) (4.5)

and Jo = (9 + 3m)/2. Thus W(a, m) = 0 for all m.

With the aid of MACSYMA the determinant of d W/dz(a, m) is

{(532>/3-720)/6889}m2{249m-64V3-81}2, (4.6)

which is non-zero for all positive m except m = m4' = (64\/3 + 81)/249. Thus the
equilateral triangle family is non-degenerate for all m¥^m$, which agrees with
Palmore [11].

When m = m* the 6x6 submatrix obtained from d W/dz by deleting the last two
rows and columns has non-zero determinant. Thus by the implicit function theorem
the first six equations can be solved to give Ao, A,, p12) pl3, Pi4, P23 in terms of p24,
p34 and m for m near m j . This affects the Liapunov-Schmidt reduction.

Let m = mt + e, z = a + eb + -- •, Z = (W7,WS), u = (z7, z8) = (p24, p34), a =
(a7, a8), p = (b7, bs). Solving the first six equations order by order and substituting
into the last equations yields

Z(u,e) = 0, (4.7)

which is identically zero at order 0 and 1. At order 2 equations (4.7) become

(2b7 + bs)(Plbs+p2) = 0, (b7 + 2b6)(Plb7+p2) = 0, (4.8)

where px and p2 are non-zero numeric constants given in the Appendix. Besides the
trivial solution b7 = bs = 0, there are the following three pairs of solutions:

b7 = b8 = -p3,

b7 = ~p3, bg = 2p3, (4.9)

b7 = 2p3, bs = -p3,

where p3 = pjp2 • The fact that there are three non-trivial solutions is a consequence
of the threefold symmetry of the problem, so concentrate on the first. The Jacobian
of equations (4.8) at the solution (4.9) is —p\ ^ 0, so the implicit function theorem
says that equations (4.7) can be solved for u as a function of e with u =
—(p3,p3) + O(e). This means the last two distances p24 and p34 can be expanded as
series in e and p24 = p3*= 1 - ep3+ O(e2). Previously, we had found that the first six
equations of (4.2) or (4.3) can be solved for the first six variables as a function of
the last two, p24 and p34, and m. Combining these results gives a series solution
z = a + eb + - • • of equations (4.2) and (4.3), where a and b are given in the Appendix.
The last two components of b are as found above to be —p3 ¥=• 0. The remaining
components were obtained by substituting these values into the previously computed
series for the first six variables.

Thus we have shown that the equilateral triangle family of relative equilibria of
the 4-body problem experiences a bifurcation at m*. From the symmetry of the
equations it is easy to see that for the solution found p24 = p34 and Pi2 = pl3, i.e. the
solution has a Z2 symmetry and the configuration has three bodies at the vertices
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of an isosceles triangle and one in the interior (see figures l(b) and l(c)). Moreover,
from the symmetry of the equations the three solutions of (4.8) give rise to three
series expansions for z as a function of e = m — m*, and these three solutions are
obtained from one another by a rotation of the configuration by 2TT/3.

If existence were our only goal, we could have simplified the problem by seeking
only symmetric solutions. We did not do this, but decided to treat the full set of
equations in case non-symmetric solutions made a bifurcation also. Our analysis
shows that the only solutions which bifurcate from the equilateral family are the
three isosceles families discussed above. This follows from the uniqueness of solu-
tions when the implicit function theorem is applied. This disproves a conjecture of
Palmore [11] on the bifurcation of scalene families.

The essential features found in the relative equilibrium problem are the same as
in the illustrated example in § 3. In the case of a threefold symmetry there is a
bifurcation of three solutions which respect the Z2 symmetry of the problem. Also
the bifurcated solutions are expandable in the first power of the perturbation
parameter and therefore exist when the parameter is on both sides of the critical value.

5. The 5-body problem
In this section we shall consider the bifurcation of the square family of relative
equilibria of the 5-body problem by the same method as used in the previous section
for the 4-body problem. Since only minor modifications need to be made, only an
outline will be presented. In the 5-body problem there are 10 mutual distances pi},
I < i < 7 s 5 , so three constraints are necessary to insure that these 10 numbers
represent the mutual distances between five points in the plane. Let F(i,j, k, I) be
the determinant given in (2.8) with (i,j, k, I) replacing (1,2,3,4) in that order. Then
the three constraints we choose are F, = F( l , 2,3,4) = 0, F2 = F( l , 2,3, 5) = 0 and
F3 = F(l,2,4,5) = 0.

Consider

V= t/ + Ao(/-/o) + (A1/2)F1 + (A2/2)F2+(A3/2)F3, (5.1)

so V is a function of 14 variables which are ordered by the vector

Z = (A 0 , A , , A 2 , A 3 , p 1 2 , p , 3 , pi4, Pl5,P23,P24, p25, Pi*, P35,p4s)- (5-2)

The equations to be solved are

dV/dz = 0 (5.3)

and again we replace dV/dpy = 0 by (l/po)(dV/dpy) in (5.3) to obtain the equivalent
system

W(z, m) = 0. (5.4)

The square family chosen is pi5 = p25 = p35 = p45 = 1, p)2 = pI4 = p23 = p34 = V2, p13 =
p24 = 2, m, = m2 = m3 = m4 = 1 and wi5 = m arbitrary. The corresponding values of
the A are computed to give a vector a such that

W{a, m) = 0. (5.5)

MACSYMA computes det (dW/dz)(a, m) to be

(5.6)
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where q0 is a negative constant. This determinant is non-zero for positive m except
m = m* = ( 13 + 11>/2)/12. Thus the square family of relative equilibria is non-
degenerate except when m = mf, which agrees with Palmore [11]. The 12x12
submatrix of dW/dz obtained by deleting the last two rows and columns is non-
singular, and so the first 12 equations can be solved for the first 12 variables and
the result substituted into the last two equations. This affects the Liapunov-Schmidt
reduction. Let z = a + eb + e2c+- • •, where m = mt + 8e2, S = ±l, Z = (Wn, Wi4),
U = {zl3, z14) = (p35,p45), a = (a13, a,4), /3 = (b13, b14), y = (ci3, c14). The problem is
reduced to solving

Z(u,e) = 0, (5.7)

which vanishes identically in e up to order 2. The first non-zero terms occur at order
e3 and are of the form

(g,8 - q2b\3 +q3b\4){bl3l q4) = 0,
2 . 2 \ / L / _ • > . « (5-X)

where q\, q2, q3, q4 are positive constants which are listed in the Appendix. Since
we seek real solutions, we first set 8 = +l then 5 = - l . When 5 = +l, besides the
trivial solution there are the solution pairs

fc13 = 0, b,4=±ql/q2,
bi3 = ±qjq2, bu = 0,

and when S = -1 the non-trivial solutions are

bn = ±q5, bi4 = ±q5, (5.10)

where qs = Jq\(q3-q2)/(ql+q3). The Jacobians of equations (5.8) are seen to be
non-singular at the solutions (5.9) and (5.10), so the implicit function theorem yields
a solution of (5.7) and hence of (5.5) for each of the solutions in (5.9) and (5.10).
There are eight such solutions in two groups of four, the groups resulting from the
symmetry of the problem. When S = +1, m> mf and the family which bifurcates
from the square family is symmetric with respect to one of its diagonals and gives
rise to the kite family of relative equilibria as illustrated in figure 2(b). When S = - 1 ,
m<m* and the family which bifurcates from the square is a family of isosceles
trapezoids as illustrated in figure 2(c).

As in the previous case, there are no non-symmetric solutions which bifurcate.
This bifurcation is of the same general type as discussed in § 2, example 3, case 2.
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Appendix. Constants
px = (521486264V3 +859264848)/29732924,
p2 = - ( 1 5 4 3 8 2 4 9 N / 3 + 49745469)/29732924,
a, = (9V3 + 3)/52,
a2 = -(29v/3 + 27)/1404,
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a3 = a4 = a6 = V3,

a5 = a-i = as= 1,

b, = -(2647V3 -10575)/35152,
b3 = -(479007V3 - 2724459)/18889832,
b5 = -(3089347v/3-4531167)/9444916,
b2 = bi/3, b4=b3, b6 = -2b3,
^=-4939776^+6193152,
qx =411830784V2+1226912544,
^2 = 21165941026972 + 291093160040,
q3 = 860002887155V2+1204699032744,
^4 = 310303056.
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