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Euclidean approach for bosons

One can distinguish two basic approaches to quantum field theory. In the more
traditional approach, one views the underlying physical Hilbert space equipped
with the self-adjoint generator of the dynamics – Hamiltonian or Liouvillean –
as the basic object. There also exists a different philosophy, whose starting point
is paths (trajectories). The physical space and the physical Hamiltonian or Liou-
villean are treated as derived objects (if they can be defined at all).

The second approach is often viewed as more modern and useful by physicists
active in quantum field theory. Also from the mathematical point of view, the
method of paths has turned out to be in many cases more efficient than the
operator-theoretic approach. This chapter is devoted to a brief description of a
certain version of this method, called often the Euclidean approach.

Let us first explain the origin of the word Euclidean in the name of this
approach. Originally the Euclidean approach amounted to replacing the real time
variable t by the imaginary is, an operation called the Wick rotation. Under this
transformation, the Minkowski space R1,d becomes the Euclidean space R1+d .
After the Wick rotation, the unitary group generated by the Hamiltonian eitH

becomes the self-adjoint group of contractions e−sH . One can then study e−sH

from the point of view of the so-called path space. In particular, it is sometimes
easier to construct or study interacting models of quantum field theory on the
Euclidean space than on the Minkowski space.

In the literature the term “Euclidean approach” seems to have acquired a wider
meaning, going beyond quantum field theory on a Euclidean space. It sometimes
denotes a method for obtaining a unitary group eitH by first constructing the
self-adjoint semi-group e−sH for s ≥ 0. In some cases one can try to represent the
integral kernel of e−sH by a measure on the so-called path space. This allows us to
use methods of measure theory, which are sometimes quite powerful. In particu-
lar, one can treat very singular perturbations with little effort, provided they fit
into the framework – essentially, they need to be representable as multiplication
operators.

This approach also works in ordinary quantum mechanics. For example, it can
be used to construct Schrödinger Hamiltonians H = − 1

2 Δx + V (x) on L2(Rd),
where V is a real potential. In the absence of the potential, e

t
2 Δx is simply the

well-known heat semi-group. Its distribution kernel K0(t, x, y) can be interpreted
as the probability that a Brownian path starting from y arrives at x at time t.
The perturbed heat kernel K(t, x, y) can now be explicitly expressed in terms
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606 Euclidean approach for bosons

of K0(t, x, y) and the integral of the potential along Brownian paths by the
so-called Feynman–Kac formula. We will briefly describe this construction in
Sect. 21.1.

In this chapter we describe the Euclidean method for bosons in an abstract
framework. We describe the construction of a class of interacting Hamiltonians
starting from free ones, using the Feynman–Kac(–Nelson) formula.

In the usual version of the Euclidean approach one assumes that the gener-
ator of the physical dynamics, called the Hamiltonian, is bounded from below.
Physically, this corresponds to the zero temperature, which is typical for most
applications of quantum field theory. There also exists a version of the Euclidean
approach for bosonic quantum fields at positive temperatures. Its aim is to con-
struct an interacting KMS state and a dynamics at inverse temperature β. The
dynamics is now generated by a self-adjoint operator L, the Liouvillean, which
is not bounded from below or from above. This leads to some additional techni-
cal difficulties. However, the system can be described in a way similar to zero-
temperature path spaces. There is an important difference: as a consequence of
the KMS condition, the path space is now β-periodic. Thus, the Euclidean space
is replaced with a cylinder of circumference β.

One of the interesting features of the Euclidean approach is the use of various
non-trivial tools from functional analysis. One of them is the concept of local
Hermitian semi-groups (see Thm. 2.69). They are indispensable in the positive
temperature case. They are also sometimes useful at zero temperature, which
happens if the perturbation is unbounded and destroys the positivity of the
generator.

To motivate the reader, let us briefly discuss Gaussian Markov path spaces,
which are usually the starting point for applications of the Euclidean approach.
Let Z be a Hilbert space equipped with a conjugation τ . As we have seen in
Subsect. 9.3.5, in such a case the bosonic Fock space Γs(Z) can be unitarily
identified with L2(Q,dμ) for some probability space (Q,S, μ). In the Euclidean
approach we study operators on L2(Q,dμ) using the space of paths, that is,
functions from R with values in Q.

A typical situation where Euclidean methods apply arises when we consider a
real (commuting with τ) self-adjoint operator a ≥ 0 on Z. Recall that the semi-
group e−tdΓ(a) is then positivity improving as an operator on L2(Q,dμ). We will
see that for such operators the expectation value (F |e−tdΓ(a)G) can be written
in terms of a measure on the set of paths. Field operators for real (τ -invariant)
arguments can be interpreted as multiplication operators on L2(Q,dμ). There-
fore, operators of the form P (φ), where P is a polynomial based on Zτ , the real
subspace of Z, can be interpreted as multiplication operators in the Q-space
representation. The Euclidean approach gives a powerful tool to study operators
of the form dΓ(a) + P (φ).

Throughout the chapter, we will use the terminology of abstract measure
theory discussed in Chap. 5. Recall, in particular, that if Ti , i ∈ I, is a
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family of subsets of a set Q, we denote by
∨

i∈I Ti the σ-algebra generated by⋃
i∈J Ti .
Throughout the chapter, we will use t as the generic variable in R denoting

time.

21.1 A simple example: Brownian motion

In this section we illustrate the Euclidean approach by recalling the well-known
representation of the heat semi-group e−tH0 , t ≥ 0, for H0 = − 1

2 Δ on L2(Rd),
using Brownian motion.

From Subsect. 4.1.8 we obtain that the distribution kernel of e−tH0 is

e−tH0 (x, y) = (2πt)−d/2e−(x−y )2 /2t . (21.1)

Consider the real Hilbert space X = L2([0,∞[, Rd) � L2([0,∞[, R)⊗ Rd and the
Gaussian measure on X with covariance 1l. Let φ denote the generic variable
in X . The associated Gaussian L2 space L2(X , e−

1
2 φ2

dφ) can be realized as
L2(Q,S,dμ). Following Remark 5.66, we still denote by φ the generic variable
on Q. For a Borel subset I ⊂ R, the function 1lI ⊗ 1l is a projection in X . The
corresponding conditional expectation of a measurable function F on Q will be
denoted EI [F ]. In particular E∅[F ] =

´
F (φ)dμ(φ).

Definition 21.1 The Brownian motion in Rd is the family {Bt}t≥0 of Rd-valued
measurable functions on Q defined by

ξ ·Bt(φ) := 〈φ|1l[0,t] ⊗ ξ〉, ξ ∈ Rd , t ≥ 0.

The Wiener process in Rd is

Xt(x, φ) := x + Bt(φ), t ≥ 0, x ∈ Rd .

We will often drop φ from Bt(φ) and Xt(x, φ).
The following lemma expresses the Markov property of the Wiener process:

Lemma 21.2 For t1 , t2 ≥ 0 and almost all (a.a.) x ∈ Rd

E[0,t1 ]

[
f
(
Xt2 +t1 (x)

)]
=
ˆ

f
(
Xt2

(
Xt1 (x), φ

))
dμ(φ),

for all bounded measurable functions f : Rd → C.

Proof We first prove the lemma for f(x) = eiξ ·x , ξ ∈ Rd . Indeed, for such a func-
tion both sides equal e−ξ 2 t2 /2eiXt 1 (x)·ξ . By Fourier transformation, this proves
the lemma for f ∈ C∞

c (Rd). By the usual argument, the identity extends to all
bounded measurable functions f . �

Proposition 21.3 Let f ∈ L2(Rd) ∩ L∞(Rd). Then

e−tH0 f(x) =
ˆ

f
(
Xt(x)

)
dμ, t ≥ 0, for a.a. x ∈ Rd .
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Proof Let f ∈ C∞
c (Rd) and f̂ be its Fourier transform. Thenˆ

f
(
Xt(x)

)
dμ = (2π)−d

ˆ
f̂(ξ)eiξ ·x

ˆ
eiξ ·Bt dμdξ

= (2π)−d

ˆ
f̂(ξ)eiξ ·xe−tξ 2 /2dξ = e−tH0 f(x).

If f ∈ L2(Rd) ∩ L∞(Rd), we choose a sequence fn ∈ C∞
c (Rd) such that fn → f in

L2 , fn → f a.e. and supn ‖fn‖∞ <∞. From (21.1) we obtain that e−tH0 fn (x) →
e−tH0 f(x) for a.a. x. The convergence of the r.h.s. to

´
f
(
Xt(x)

)
dμ follows from

the dominated convergence. �

We end this section by proving the celebrated Feynman–Kac formula in a
simple situation. We denote by Cb(Rd) the space of bounded continuous functions
on Rd .

Theorem 21.4 Let V ∈ Cb(Rd) be a real potential, f ∈ L2(Rd) ∩ L∞(Rd) and

t ≥ 0. Then, for all x ∈ Rd , e−
´ t
0 V
(
Xs (x)

)
dsf
(
Xt(x)

)
is a bounded measurable

function on Q and

e−t(H0 +V )f(x) =
ˆ

e−
´ t
0 V (Xs (x))dsf(Xt(x))dμ, for a.a. x ∈ Rd . (21.2)

Lemma 21.5 Let g1 , . . . , gn−1 ∈ L∞(Rd), h ∈ L2(Rd). Let s1 , . . . , sn > 0 and
ti = ti−1 + si, t1 = s1 . Then

e−s1 H0 g1e−s2 H0 · · · gn−1e−sn H0 h(x)

=
ˆ n∏

i=1

gi

(
Xti

(x)
)
h
(
Xtn

(x)
)
dμ. (21.3)

Proof We prove (21.3) for n = 2; the general case follows easily by induction.
We have

e−s1 H0 ge−s2 H0 h(x)

=
ˆ

g
(
Xs1 (x)

)
e−s2 H0 h

(
Xs1 (x)

)
dμ

=
ˆ

g
(
Xs1 (x, φ1)

) ˆ
h
(
Xs2

(
Xs1 (x, φ2)φ1

))
dμ(φ2)dμ(φ1)

=
ˆ

g
(
Xs1 (x)

)
E[0,s1 ]

[
h
(
Xs1 +s2 (x)

)]
dμ

=
ˆ

g
(
Xs1 (x)

)
h
(
Xs1 + s2 (x)

)
dμ,

by Lemma 21.2. �

Lemma 21.6 For V ∈ Cb(Rd) and all x ∈ Rd the map

[0,+∞[� t �→ V
(
Xt(x)

) ∈ L2(Q)

is continuous.
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Proof For t ≥ 0, δ > 0, we haveˆ ∣∣V (Xt+δ (x)
)− V

(
Xt(x)

)∣∣2 dμ

=
ˆ

V 2(Xt+δ (x)
)
dμ +

ˆ
V 2(Xt(x)

)
dμ− 2

ˆ
V
(
Xt(x)

)
V
(
Xt+δ (x)

)
dμ

= e−(t+δ)H0 V 2(x) + e−tH0 V 2(x)− 2e−δH0 V e−tH0 V (x),

where in the last line we use (21.3). From (21.1) we see that e−tH0 is a semi-group
of contractions on Cb(Rd). Moreover it is easy to see that, for G ∈ Cb(Rd) and
all x ∈ Rd , the map

[0,+∞[� t �→ e−tH0 G(x) ∈ R

is continuous. This proves the right continuity at all t ≥ 0. The proof of the left
continuity at all t > 0 is similar. �

Proof of Thm. 21.4. By Lemma 21.6,
´ t

0 V
(
Xs(x)

)
ds is a bounded measurable

function on Q. Hence, the integrand in the r.h.s. of (21.2) is bounded measurable
on Q.

Let f ∈ L2(Rd) ∩ L∞(Rd). By Trotter’s product formula (see Thm. 2.75) we
have

e−t(H0 +V )f = lim
n→∞

(
e−(t/n)H0 e−(t/n)V )nf, in L2(Rd),

and after extracting a subsequence we can assume that

e−t(H0 +V )f(x) = lim
n→∞

(
e−(t/n)H0 e−(t/n)V )nf(x), for a.a. x.

Applying (21.3) to h = e−(t/n)V f , gj = e−(t/n)V for 1 ≤ j ≤ n− 1, we get

e−t(H0 +V )f(x) =
ˆ

e−Fn (x)f
(
Xt(x)

)
dμ,

for Fn (x) = t
n

n∑
j=1

V
(
Xtj/n (x)

)
. Set F (x) =

´ t

0 V
(
Xs(x)

)
ds. We claim that

e−Fn (x) → e−F (x) in L2(Q), for a.a. x, (21.4)

which will complete the proof of the theorem. Since |e−Fn | , |e−F | ≤ et‖V ‖∞ , it
suffices to prove that Fn (x) → F (x) in L2(Q) for a.a. x. Since Fn is a Riemann
sum for the integral defining F , this follows from Lemma 21.6. �

21.2 Euclidean approach at zero temperature

Most of this section is devoted to a description of the Euclidean approach at zero
temperature in an abstract setting. We start with the definition of an abstract
version of Markov path spaces. We will restrict ourselves to path spaces with a
finite measure, which is sufficient for most applications to quantum field theory.
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610 Euclidean approach for bosons

Given a Markov path space there is a canonical construction of a positivity
improving semi-group {P (t)}t∈[0,∞[ possessing a unique ground state. Its gen-
erator is sometimes called the Hamiltonian. It acts on the so-called physical
Hilbert space. A converse construction is also possible: every contractive positiv-
ity improving semi-group with a ground state can be dilated to a Markov path
space.

The concept of a Markov path space is closely related to unitary dilations
of contractive semi-groups. Indeed, each Markov path space involves a unitary
group {Ut}t∈R of measure preserving transformations of the underlying space
which is a dilation of the physical semi-group {P (t)}t∈[0,∞[ .

The most important class of examples of Markov path spaces are Gaussian
Markov path spaces, which can be used to describe free bosonic quantum field
theories in a Euclidean setting. They can be viewed as the real-wave quantization
of a dilation of a contractive semi-group.

21.2.1 Markov path spaces

Definition 21.7 A generalized path space (Q,S,S0 , Ut , R, μ) consists of

(1) a complete probability space (Q,S, μ);
(2) a distinguished sub-σ-algebra S0 of S;
(3) a one-parameter group R � t �→ Ut of measure preserving ∗-automorphisms

of L∞(Q,S, μ), strongly continuous for the σ-weak topology;
(4) a measure preserving ∗-automorphism R of L∞(Q,S, μ) such that RUt =

U−tR, R2 = 1l.

Moreover, one assumes that

S =
∨
t∈R

UtS0 . (21.5)

In what follows, (Q,S,S0 , Ut , R, μ) is a generalized path space. By Prop. 5.33
(2)(iii) and (2)(iv), Ut extends to a strongly continuous group of isometries of
Lp(Q,S, μ), and R extends to an isometry of Lp(Q,S, μ), for 1 ≤ p <∞.

Definition 21.8 We set St := UtS0 , SI :=
∨

t∈I St , for I ⊂ R, and denote by
EI the conditional expectation w.r.t. SI .

Definition 21.9 The generalized path space (Q,S,S0 , Ut , R, μ) is a Markov
path space if it satisfies

(1) the reflection property: RE0 = E0 ,
(2) the Markov property: E[0,+∞[E]−∞,0] = E0 .

21.2.2 Reconstruction theorem

Let (Q,S,S0 , Ut , R, μ) be a Markov path space.
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21.2 Euclidean approach at zero temperature 611

Definition 21.10 The physical Hilbert space associated with
(Q,S,S0 , Ut , R, μ) is

H := L2(Q,S0 , μ).

The function 1 ∈ H will be denoted by Ω. The Abelian ∗-algebra A :=
L∞(Q,S0 , μ) acting on H is called the algebra of time-zero fields.

Theorem 21.11 (1) P (t) := E0UtE0 , t ≥ 0, is a strongly continuous semi-
group of self-adjoint contractions on H preserving Ω.

(2) P (t) is doubly Markovian.
(3) P (t) is a contraction semi-group on Lp(Q,S0 , μ) for 1 ≤ p ≤ ∞. It is

strongly continuous for 1 ≤ p < ∞.
(4) Let Ai ∈ L∞(Q,S0 , μ), i = 1, . . . , n and t1 ≤ · · · ≤ tn . Then(

Ω|A1P (t1 − t2)A2 · · ·P (tn−1 − tn )AnΩ
)

=
ˆ

Q

n

Π
i=1

Uti
(Ai)dμ.

Proof P (t) is clearly a contraction. It is self-adjoint:

P (t)∗ = E0U−tE0 = E0U−tRE0 = E0RUtE0 = E0UtE0 = P (t).

Let us prove the semi-group property. Note that UtE0U−t = Et . The Markov
property implies, for t, s ≥ 0,

E−tE0Es = E−tE]−∞,0]E[0,+∞[Es = E−tEs.

This yields

P (t)P (s) = E0UtE0UsE0 = UtE−tE0EsU−s

= UtE−tEsU−s = E0UtUsE0 = P (t + s).

Finally, since t �→ Ut is strongly continuous, so is t �→ P (t).
Ut , E0 are clearly positivity preserving. Hence so is P (t). Ut , E0 preserve 1.

Hence so does P (t). This proves (2). (3) follows from (2) by Prop. 5.24. We leave
(4) to the reader. �

Definition 21.12 The unique positive self-adjoint operator H on H such that
P (t) = e−tH is called the Hamiltonian.

Clearly, HΩ = 0.

Remark 21.13 Often instead of Markov path spaces one uses more general OS-
positive path spaces, named after Osterwalder and Schrader, where Def. 21.9 is
replaced by the condition that E[0,+∞[RE[0,+∞[ ≥ 0. The OS-positivity condition
is one of the Osterwalder–Schrader axioms; see Osterwalder–Schrader (1973,
1975). They are Euclidean analogs of the G̊arding–Wightman axioms.

In space dimensions 2 or higher it is believed that sharp time interacting fields
do not exist, hence the Markov property cannot be used. Results similar to those
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612 Euclidean approach for bosons

in this chapter can be established in the framework of OS-positive path spaces,
with similar proofs.

21.2.3 Gaussian path spaces I

Let X be a real Hilbert space with a self-adjoint operator ε > 0. (All the construc-
tions of this subsection have their complex counterparts; we assume the reality
to simplify the exposition and in view of the application in the next subsection.)
Consider the real Hilbert space

L2(R,X ) � L2(R, R)⊗X (21.6)

and the positive self-adjoint operator

C = (D2
t + ε2)−1

on (21.6). Introduce the real Hilbert space Q := C− 1
2 L2(R,X ). Its dual Q# can

be identified with C
1
2 L2(R,X ). Note that the operator C is orthogonal from Q

to Q# .

Definition 21.14 For t ∈ R let us define the map

jt : (2ε)
1
2 X � g �→ δt ⊗ g ∈ Q. (21.7)

Lemma 21.15 We have

(jt1 g1 |jt2 g2)Q =
(
g1 |e

−|t1 −t2 |ε

2ε
g2

)
X

.

In particular jt is isometric.

Proof We use the identityˆ
R

eitk 2ε

k2 + ε2 dk = 2πe−|t|ε , t ∈ R, (21.8)

which follows from Fourier transform and functional calculus. �

Definition 21.16 For t ∈ R we set Qt := jt(2ε)
1
2 X . Let et denote the orthogonal

projection onto Qt .
For I ⊂ R we set QI :=

(∑
t∈I Qt

)cl. The orthogonal projection onto QI will
be denoted eI .

Note that et = jtj
#
t .

For explicit formulas, in the following proposition we prefer to use the space
Q# rather than Q, by transporting operators with the help of the operator C.

Definition 21.17 We write et , resp. eI for CetC
−1 , resp. CeI C

−1 .

Definition 21.18 We define

(rf)(s) := f(−s), (utf)(s) = f(s− t), f ∈ Q, s, t ∈ R.
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21.2 Euclidean approach at zero temperature 613

Definition 21.19 e−tε , defined originally on X , determines in an obvious way
a contractive semi-group on (2ε)

1
2 X , which will be denoted by the same symbol.

We set p(t) := j0e−tεj#
0 , which is a contractive semi-group on Q0 .

Proposition 21.20 (1) Let t, t1 < t2 , f ∈ Q# . We have

etf(s) := e−ε|t−s|f(t),

e[t,∞[f(s) = 1l[t,∞[(s)f(s) + e−|s−t|ε1l]−∞,t[(s)f(t),

e]−∞,t]f(s) = 1l]−∞,t](s)f(s) + e−|s−t|ε1l]t,∞[(s)f(t),

e[t1 ,t2 ]f(s) = 1l[t1 ,t2 ](s)f(s) + e−|s−t1 |ε1l]−∞,t1 [(s)f(t1) + e−|s−t2 |ε1l]t2 ,∞[(s)f(t2).

(2) C∞
c (]t1 , t2 [,Dom ε) is dense in Q]t1 ,t2 [.

(3) R � t �→ ut is an orthogonal C0-group on Q.
(4) r is an orthogonal operator satisfying rut = u−tr and r2 = 1l.
(5)
∑

t∈R
utQ0 is dense in Q.

(6) re0 = e0 .
(7) e[0,∞[e]−∞,0] = e0 .
(8) e0ute0 = p

(|t|).
Remark 21.21 Let [0,∞[� t �→ p(t) be a contractive C0-semi-group on a Hilbert
space Q0 . We say that (Q, ut , e0) is a unitary dilation of {p(t)}t∈[0,∞[ if Q is a
Hilbert space, e0 is an orthogonal projection from Q onto Q0 , {ut}t∈R is a unitary
C0-group on Q and p(t) = e0ute0 , t ≥ 0. We say that the dilation (Q, ut , e0) is
minimal if

∑
t∈R

utQ0 is dense in Q.
Clearly, what we have constructed in this subsection is a minimal dilation of

the contractive semi-group {p(t)}t∈[0,∞[.

21.2.4 Gaussian path spaces II

In this subsection we describe the main example of Markov path spaces – Gaus-
sian path spaces. They are used to describe free quantum field theories. They
are obtained by second quantizing the Markov path system constructed in the
previous subsection.

Let X be a real Hilbert space and ε > 0 a self-adjoint operator on X . Let C, Q,
{jt}t∈R, {ut}t∈R, r be constructed as in the previous subsection. Let us consider
the Gaussian L2 space with covariance C. According to the notation introduced
in Subsect. 5.4.2, it will be denoted

L2(L2(R,X ), eφ·C −1 φdφ
)
, (21.9)

where we use φ as the generic variable in L2(R,X ).
As we discussed in Chap. 5, there are many ways to realize this Gaussian L2

space as a space L2(Q,μ), where (Q,μ) is a probability space. (Note that the
notation Q for such a measure space is traditional in a part of the literature,
hence the name “Q-space representation”.) A class of possible choices, which is in
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fact our favorite, is Q := B
1
2 L2(R,X ), where B ≥ 0 is any self-adjoint operator

on L2(R,X ) such that B− 1
2 CB− 1

2 is trace-class. Thus the Gaussian L2 space
(21.9) becomes the concrete space L2(Q,dμ), where μ is a Borel probability
measure on Q such thatˆ

Q

eiφ(f )dμ(φ) = e−
1
2 f ·C f , f ∈ B− 1

2 L2(R,X ). (21.10)

Following Remark 5.66, we now use φ as the generic name for an element
of Q = B

1
2 L2(R,X ). φ(f) denotes the pairing of φ ∈ B

1
2 L2(R,X ) with f ∈

B− 1
2 L2(R,X ).

By Prop. 5.77, we can extend the definition of

Q � φ �→ φ(f) (21.11)

to f ∈ C− 1
2 L2(R,X ). The function in (21.11) in general needs not to be contin-

uous; however it still belongs to Lp(Q,μ) for all 1 ≤ p <∞.

Definition 21.22 Since the maps js defined in (21.7) are isometric, we can
define for s ∈ R, g ∈ (2ε)

1
2 X , the functions

φs(g) := φ(δs ⊗ g) ∈
⋂

1≤p<∞
Lp(Q,μ),

which are called the sharp-time fields.

We can now define the associated path space. We lift r and {ut}t∈R to L2(Q,μ)
by setting first

Reiφ(f ) := eiφ(rf ) , Uteiφ(f ) = eiφ(u−t f ) , f ∈ B− 1
2 L2(R,X ), (21.12)

extending then R and Ut to L2(Q,μ) by linearity and density. In particular we
have

Rφs(g) = φ−s(g), Utφs(g) = φs−t(g), g ∈ (2ε)
1
2 X . (21.13)

Proposition 21.23 Let S be the completion of the Borel σ-algebra on Q, S0

be the σ-algebra generated by the functions eiφ0 (g) for g ∈ (2ε)
1
2 X . Let R,Ut be

defined in (21.12). Then (Q,S,S0 , Ut , R, μ) is a Markov path space.

Definition 21.24 (Q,S,S0 , Ut , R, μ) described in Prop. 21.23 will be called the
Gaussian path space with covariance C.

We will later need the following lemma, which follows directly from the results
on complex-wave representation in Subsect. 9.2.1.

Lemma 21.25 Let Z be a Hilbert space, Γs(Z) the associated bosonic Fock space
and b a self-adjoint operator on Z. Then(

eiφ(g1 )Ω|e−tdΓ(b)eiφ(g2 )Ω
)

= e−
1
2 ‖g1 ‖2

e−
1
2 ‖g2 ‖2

e−(g1 |e−t b g2 ) ,

whenever the r.h.s. is finite.
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Proof of Prop. 21.23. Using that r and ut preserve C, formula (21.10) and the
density of exponentials in L2(Q,μ) (see Subsect. 5.2.5) we see that R is unitary on
L2(Q,μ) and that t �→ Ut is a strongly continuous unitary group on L2(Q,μ). R

and Ut are clearly ∗-automorphisms. By Prop. 5.33, t �→ Ut is strongly continuous
on L∞(Q,μ) for the σ-weak topology.

From (21.13) we see that the closed vector subspace generated by eiφ0 (g) for
g ∈ (2ε)

1
2 X is invariant under R, which implies that RE0 = E0 . The fact that

RUt = U(−t)R is obvious.
We now check the Markov property. We unitarily identify

L2
(
L2(R,X ), eφ·C −1 φdφ

)
with Γs(CQ), as in Thm. 9.22. If I ⊂ R is a

closed interval, then under this identification EI becomes Γ(eI ), where eI is
defined in Lemma 21.15. So the Markov property follows from the pre-Markov
property proved in Prop. 21.20 (7).

It remains to check condition (21.5). We note that it is equivalent to the
property that the algebra generated by

{
Utf : f ∈ L∞(Q,S0 , μ), t ∈ R

}
is

dense in L2(Q,S, μ). It is easy to see that finite linear combinations of δti
⊗ gi

for ti ∈ R, gi ∈ (2ε)
1
2 X , are dense inQ. It follows that if f ∈ Q, the function eiφ(f )

can be approximated in L2 by products of eiφt i
(gi ) . Since linear combinations of

exponentials are dense in L2(Q,μ), we obtain (21.5). �

Theorem 21.26 There exists a unique unitary map

Teucl : H → Γs
(
C(2ε)

1
2 X )

such that

Teucl1 = Ω, (21.14)

Teucleiφ0 (g) = ei(a∗(g)+a(g))Teucl, g ∈ (2ε)
1
2 X .

We have

Teucle−tH = e−tdΓ(ε)Teucl, t ≥ 0.

Proof Linear combinations of time-zero exponentials eiφ0 (g) , for g ∈ (2ε)
1
2 X , are

dense in L2(Q,S0 , μ), andˆ
Q

eiφ0 (g)dμ = e−
1
2 (δ0 ⊗g |C δ0 ⊗g) = e−

1
2 (g |g) ,

by Lemma 21.15. Therefore, there exists a unique unitary map T̃eucl :
L2(Q,S0 , μ) → L2

(
(2ε)

1
2 X , e−xεxdx

)
such that

T̃eucl1 = 1,

T̃eucleiφ0 (g) = eiφ(g) T̃eucl, g ∈ (2ε)
1
2 X .

Composing T̃eucl with the map (T rw )−1 constructed in Thm. 9.22, we obtain the
unitary map Teucl with the first two properties of (21.14). To prove the third
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one, it suffices by density to check that, for g1 , g2 ∈ (2ε)
1
2 X , one hasˆ

Q

e−iφ0 (g1 )eiφt (g2 )dμ =
(
ei(a∗(g1 )+a(g1 ))Ω|e−tdΓ(ε)ei(a∗(g2 )+a(g2 ))Ω

)
. (21.15)

The l.h.s. of (21.15) equals

exp
(
−1

2
(
δt ⊗ g2 − δ0 ⊗ g1 |δt ⊗ g2 − δ0 ⊗ g1

)
Q
)

= exp
(
−(g2 |(4ε)−1g2

)
X −
(
g1 |(4ε)−1g1

)
X +
(
g1 |(2ε)−1e−tεg2

)
X
)
,

by Lemma 21.15. Applying Lemma 21.25 to the Hilbert space C(2ε)
1
2 X , we see

that this equals the r.h.s. of (21.15). �

21.2.5 From a positivity preserving semi-group to a

Markov path space

Let (X, ν) be a measure space and P (t) = e−tH be positivity improving contrac-
tive semi-group on L2(X, ν). We assume that 0 = inf specH and inf specH is an
eigenvalue. Recall that by the Perron–Frobenius theorem (Thm. 5.25) H has a
unique positive ground state. It will be denoted by Ω.

In this subsection we present a construction converse to that of Subsect. 21.2.2.

Theorem 21.27 (1) There exist
(i) a Markov path space (Q,S,S0 , Ut , R, μ),
(ii) a unitary map T : L2(X, ν) → L2(Q,S0 , μ) such that

TΩ = 1,

TL∞(X, ν)T−1 = L∞(Q,S0 , μ).

(2) Denoting TAT−1 by Ã for A ∈ L∞(X, ν), one hasˆ
Q

n

Π
i=1

Uti
(Ãi)dμ =

(
Ω|A1e−(t2 −t1 )H A2 · · · e−(tn −tn −1 )H AnΩ

)
,

for Ai ∈ L∞(X, ν), i = 1, . . . , n, t1 ≤ · · · ≤ tn .

Lemma 21.28 e−tH L∞(X, ν)Ω ⊂ L∞(X, ν)Ω, t ≥ 0.

Proof Set νΩ = Ω2ν and consider the unitary map

TΩ : L2(X, ν) → L2(X, νΩ)

f �→ Ω−1f.

Setting HΩ := TΩHT−1
Ω , we see that e−tHΩ is positivity preserving, with 1 as

the unique strictly positive ground state. Therefore, HΩ is doubly Markovian.
Therefore, by Prop. 5.24, it is a contraction on L∞(X, νΩ) = L∞(X, ν). Now

e−tH L∞(X, ν)Ω = T−1
Ω e−tHΩ L∞(X, νΩ)1

⊂ T−1
Ω L∞(X, νΩ)1 = L∞(X, ν)Ω. �
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Proof of Thm. 21.27. By the Gelfand–Naimark theorem (Sakai (1971), Thm.
1.2.1), L∞(X, ν) is isomorphic as a C∗-algebra to C(Q0), where Q0 is a compact
Hausdorff space. In the sequel we will denote by the same letter A an element
of L∞(X, ν) and its image in C(Q0).

Since L∞(X, ν) is a W ∗-algebra, we know that Q0 is a Stonean space, i.e. the
closure of any open set in Q0 is open (see Sakai (1971), Prop. 1.3.2). Let Ξ be the
set of characteristic functions on Q0 . By Sakai (1971), Prop. 1.3.1, the ∗-algebra
generated by Ξ is dense in C(Q0).

Let Q := QR
0 be equipped with the product topology, which is also compact by

Tychonov’s theorem. Note that each q ∈ Q is a function R � t �→ qt ∈ Q0 . By the
Stone–Weierstrass theorem, the ∗-algebra generated by functions f of the form
f(q) = A(qt) for some t ∈ R and A ∈ C(Q0) is dense in C(Q). By the argument
above, the ∗-algebra L(Q) generated by the functions f of the form f(q) = A(qt)
for some t ∈ R and A ∈ Ξ is also dense in C(Q).

Now let f ∈ L(Q). Clearly, f can always be written as

f(q) =
p∑

j=1

aj

n

Π
i=1

Ai,j (qti
), Ai,j ∈ Ξ, aj ∈ C,

for t1 ≤ · · · ≤ tn . Splitting further characteristic functions Ai,j , we can uniquely
rewrite f as

f(q) =
q∑

j=1

bj

n

Π
i=1

Bi,j (qti
) , Bi,j ∈ Ξ, bj ∈ C, (21.16)

where Bi,jBi,k = 0 for j �= k. It follows that

ρ(f) :=
q∑

j=1

bj

(
Ω|B1,j e−(t2 −t1 )H B2,j · · · e−(tn −tn −1 )H Bn,jΩ

)
, (21.17)

defines a linear form on L(Q) with ρ(1) = 1. Now let F ∈ L(Q) with F ≥ 0.
Clearly, f can be uniquely written as in (21.16) with bj ≥ 0, Bi,j ≥ 0. Since
e−tH is positivity preserving and Ω ≥ 0, we see that ρ(f) ≥ 0 and ρ is a positive,
hence bounded linear form on L(Q). We denote by S the Baire σ-algebra on Q.
Extending ρ to C(Q) by density and using the Riesz–Markov theorem, we obtain
a Baire probability measure μ such that

ρ(f) =
ˆ

Q

fdμ, f ∈ L(Q).

We now set

rqs := q−s , utqs := qs−t , t ∈ R,

and

Rf(q) := f(rq),
(
Utf
)
(q) := f(u−tq), t ∈ R.
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Clearly, Ut and R satisfy conditions (3) and (4) of Def. 21.7. Let S0 be the sub-
σ-algebra of S generated by the functions q �→ A(q0), A ∈ C(Q0) = L∞(X, ν).
Note that S :=

∨
t∈R

UtS0 . We can rewrite (21.17) as
ˆ

Q

n

Π
i=1

Ai(q(ti))dμ(q) =
(
Ω|A1e−(t2 −t1 )H A2 · · · e−(tn −tn −1 )H AnΩ

)
, (21.18)

for Ai ∈ L∞(X, ν), t1 ≤ · · · ≤ tn .
It remains to prove that (Q,S,S0 , Ut , R, μ) is a Markov path space. Prop-

erty (1) of Def. 21.9 is obvious. To prove property (2) of Def. 21.9, i.e. that
E[0,+∞[E]−∞,0] = E{0}, it suffices by linearity and density to show that for

f(q) =
n∏

i=1

Ai(qti
), Ai ∈ L∞(Q,S0), t1 ≤ · · · ≤ tn ≤ 0 (21.19)

E[0,+∞[f is S0-measurable. Recall that E[0,+∞[f = g iff g is S[0,+∞[ -measurable
and ˆ

Q

fhdμ =
ˆ

Q

ghdμ, (21.20)

for all S[0,+∞[ -measurable functions h. Again by linearity and density, it suffices

to check (21.20) for h(q) =
p

Π
i=1

Bi(qsi
), Bi ∈ L∞(Q,S0) and 0 ≤ s1 ≤ · · · ≤ sp .

For f as in (21.19), we have, using (21.18),ˆ
Q

fhdμ

=
ˆ

Q

n

Π
i=1

Ai(qti
)

p

Π
i=1

Bi(qsi
)dμ

=
(
Ω|A1e(t1 −t2 )H · · · e(tn −1 −tn )H Ane(tn −s1 )H B1e(s1 −s2 )H · · · e(sp −1 −sp )H BpΩ

)
=
(
etn H Ane(tn −1 −tn )H · · · e(t1 −t2 )H A1Ω|e−s1 H B1e(s1 −s2 )H · · · e(sp −1 −sp )HBpΩ

)
.

By Lemma 21.28, there exists C ∈ L∞(X, ν) such that

etn H Ane(tn −1 −tn )H An−1 · · · e(t1 −t2 )H A1Ω = CΩ,

and hence ˆ
Q

fhdμ

=
(
Ω|Ce−s1 H B1e(s1 −s2 )H B2 · · · e(sp −1 −sp )H BpΩ

)
=
ˆ

Q

C(q0)
p

Π
i=1

Bi(qsi
)dμ.

Therefore, by (21.20) we have (E[0,∞[f)(q) = C(q0), which proves that E[0,+∞[f

is S0-measurable and completes the proof of the Markov property.
To complete the proof of the theorem it remains to construct the unitary

operator T . We first note that, since Ω is a.e. positive, L∞(X, ν)Ω is dense in
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L2(X, ν). Using (21.18), it follows that the map

T : L2(X, ν) → L2(Q,S0 , μ)

(TAΩ)(q) := A(q0), A ∈ L∞(X, ν), q ∈ Q,

extends to a unitary operator. �

21.3 Perturbations of Markov path spaces

We fix a Markov path space (Q,S,S0 , Ut , R, μ). Recall that this leads to a
construction of a physical space H equipped with a Hamiltonian H. We will
show how to perturb this Hamiltonian using the framework of Markov path
spaces. Perturbations that can be treated by Euclidean methods are those cor-
responding to operators of multiplication by real S0-measurable functions, i.e.
by functions of time-zero fields. Sometimes the perturbation itself does not even
make sense as an operator, although a perturbed Hamiltonian can be defined.
These singular cases can be handled using the so-called Feynman–Kac–Nelson
kernels.

21.3.1 Feynman–Kac–Nelson kernels

Definition 21.29 Let δ ∈ [0,+∞]. A local Feynman–Kac–Nelson (FKN) kernel
is a family {F[a,b]}0≤b−a<δ of S-measurable functions on Q such that

(1) F[a,b] > 0, F[a,b] ∈ L1(Q,S[a,b]),
(2) for a ∈ R, the map [a, a + δ[� b �→ F[a,b] ∈ L1(Q) is continuous,
(3) F[a,b]F[b,c] = F[a,c], for a ≤ b ≤ c, c− a < δ,
(4) Us

(
F[a,b]

)
= F[a+s,b+s], for s ∈ R,

(5) R
(
F[a,b]

)
= F[−b,−a ].

If δ = ∞ in the above definition, we will drop the word “local” and use the name
“FKN kernel”.

Remark 21.30 Let us mention a certain notational problem. Let F be a meas-
urable function on Q. Ut(F ) denotes the image of F under the action of Ut . It
is also a function on Q.

The symbols F , resp. Ut(F ) are often understood as multiplication operators.
Using this meaning, we have the identity

Ut(F ) = UtFU∗
t ,

where now Ut on the r.h.s. is understood as a unitary operator on L2(Q,μ).
Clearly, if we use the latter interpretation of the FKN kernel, (4) of Def. 21.29
can be rewritten as UsF[a,b]U

∗
−s = F[a+s,b+s].
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Remark 21.31 The simplest example of a FKN kernel is given by

F[a,b] := e−
´ b
a

Us (V )ds , (21.21)

where V ∈ L∞(Q,S0). At least formally, all FKN kernels are of this form.
In fact, by (3), the operators of multiplication by F[s,t] form a two parameter
semi-group. Their generators V (t) are also operators of multiplication by
S{t}-measurable functions, commute with one another, and satisfy Us

(
V (t)
)

=
V (t + s) by (4). Setting V = V (0) we see that F[a,b] is formally given by (21.21).

Properties of FKN kernels obtained from formula (21.21) are described in the
following lemma.

Lemma 21.32 Let 1 ≤ p < ∞ and V ∈ Lp(Q). Then the following hold:

(1)
´ b

a
Us(V )ds ∈ Lp(Q).

(2) ‖e−
´ b
a

Us (V )ds‖p ≤ ‖e−(b−a)V ‖p = ‖e−p(b−a)V ‖1/p
1 .

(3) Let V ∈ Lp(Q) for some p > 1, and e−δV ∈ L1(Q) for some δ > 0. Set
F[a,b] = e−

´ b
a

Us (V )ds . Then {F[a,b]}0≤b−a<δ is a local FKN kernel.
(4) Let V ∈ L1(Q) and V ≥ 0. Then {F[a,b]}0≤b−a<∞ is a FKN kernel.

Proof (1) follows from the strong continuity of Ut on Lp(Q).
To prove (2), we apply Jensen’s inequality,

e−
´ b
a

Us (V )ds ≤ 1
b− a

ˆ b

a

e−(b−a)Us (V )ds,

and obtain

‖e−
´ b
a

Us (V )ds‖p ≤ 1
b− a

ˆ b

a

‖e−(b−a)Us (V )‖pds = ‖e−(b−a)V ‖p ,

since e−(b−a)Us (V ) = Us(e−(b−a)V ) and Us is measure preserving.
To prove (3), we will use Subsect. 5.1.9. Write

F[a,b+ε] − F[a,b] = (F[b,b+ε] − 1)F[a,b].

Since F[a,b] ∈ Lδ/(b−a)(Q), it suffices by Hölder’s inequality to prove that
F[b,b+ε] → 1 in Lq (Q) for q = δ/(δ − b + a). Since Ub is isometric on Lq , we
may assume that b = 0. Clearly, F[0,ε] → 1 a.e., when ε → 0. Hence, F[0,ε] → 1
in measure. Using (2), we see that, for all p′ > 1, ‖F[0,ε]‖p′ ≤ C uniformly for
0 ≤ ε ≤ δ/p′. Hence, {F[0,ε] : 0 ≤ ε ≤ δ/p′} is an equi-integrable family. By the
Lebesgue–Vitali theorem (Thm. 5.32), F[0,ε] → 1 in Lq (Q).

Finally, statement (4) is immediate, since F[a,b] ≤ 1 for all a ≤ b. �

21.3.2 Feynman–Kac–Nelson formula

We now describe the construction of a perturbed Hamiltonian associated with a
FKN kernel.

We recall that local Hermitian semi-groups were defined in Subsect. 2.3.6.
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Proposition 21.33 Let {F[a,b]}0≤b−a≤δ , δ > 0, be a FKN kernel. For 0 ≤ t <

δ/2, set

Dt := E0Span

⎛⎝ ⋃
0≤s<δ/2−t

F[0,s]L
∞(Q,S[0,+∞[)

⎞⎠ ,

PF (t) := E0F[0,t]Ut

∣∣
Dt

.

Then {PF (t),Dt}t∈[0,δ/2] is a local Hermitian semi-group.

Proof We check the conditions of Def. 2.67. Since F[0,s] belongs only to L1(Q)
it is not obvious that Dt ⊂ L2(Q,S0) = H. To prove that this is the case, we
write, for f = E0F[0,s]g ∈ Dt , 0 ≤ s < δ/2− t,

‖f‖2 = (F[0,s]g|E0F[0,s]g) = (F[0,s]g|RE0F[0,s]g)

= (F[−s,0]Rg|E0F[0,s]g) = (F[−s,0]Rg|E]−∞,0]E[0,+∞[F[0,s]g)

= (E]−∞,0]F[−s,0]Rg|E]−∞,0]E[0,+∞[F[0,s]g) = (F[−s,0]Rg|F[0,s]g)

= (Rg|F[−s,0]F[0,s]g) = (Rg|F[−s,s]g) ≤ ‖F[−s,s]‖1‖g‖2
∞.

(21.22)

Since 0 ≤ s ≤ δ/2, F[−s,s] ∈ L1(Q) and the r.h.s. is finite. Since L∞(Q,S0) ⊂ Dt ,
Dt is dense in H. We now claim that PF (s) Dt ⊂ Dt−s for 0 ≤ s ≤ t ≤ δ/2. In
fact, if f = E0F[0,s1 ]g ∈ Dt , for 0 ≤ s1 ≤ δ/2− t, we have

PF (s)f = E0F[0,s]UsE0F[0,s1 ]g = E0F[0,s]E{s}F[s,s+s1 ]Usg

= E0F[0,s]E]−∞,s]E[s,+∞[F[s,s+s1 ]Usg = E0F[0,s]E]−∞,s]F[s,s+s1 ]Usg

= E0E]−∞,s]F[0,s]F[s,s+s1 ]Usg = E0E]−∞,s]F[0,s+s1 ]Usg

= E0F[0,s+s1 ]Usg ∈ Dt−s , (21.23)

where we have used the properties of F[a,b] and the Markov property. The identity
(21.23) also proves that if f = E0F[0,s1 ]g ∈ Dt+s for 0 ≤ s1 ≤ δ/2− (t + s), then
PF (t)PF (s)f = PF (t + s)f .

Let us prove the weak continuity of PF (t). For f = E0F[0,s1 ]g ∈ Ds and 0 ≤
s1 ≤ δ/2− s as above, we have(

f |PF (t)f
)
H =

(
F[0,s1 ]g|E0F[0,s1 +t]Utg

)
=
(
Rg|F[−s1 ,s1 +t]Utg

)
,

by the same arguments as in (21.22) and (21.23). Hence,(
f |PF (t + ε)f

)− (f |PF (t)f
)

=
(
Rg|(F[−s1 ,s1 +t+ε] − F[−s1 ,s1 +t]

)
Ut+εg

)
+
(
Rg|F[−s1 ,s1 +t]

(
Ut+εg − Utg

))
.

The first term tends to 0 when ε → 0 by Def. 21.29. The second term tends to 0
when ε→ 0 by the σ-weak continuity of t �→ Ut on L∞(Q). �

In the next two propositions we give examples of FKN kernels obtained from
a real S0-measurable function V as in Lemma 21.32. Note that the Hermitian
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operators PF (t) are now denoted by PV (t) and have slightly bigger domains.
This choice will be convenient in the next subsection.

The case of positive perturbations is easier:

Proposition 21.34 Let V be a real S0-measurable function such that V ∈ L1(Q)
and V (x) ≥ 0 a.e. Then

PV (t) = E0e−
´ t
0 Us (V )dsUt , t ≥ 0,

is a strongly continuous semi-group of bounded self-adjoint operators on
L2(Q,S0 , μ).

In the case of arbitrary perturbations we need to use the notion of a Hermitian
semi-group.

Proposition 21.35 Let V be a real S0-measurable function such that V ∈
Lp0 (Q) for some p0 > 2, and e−δV ∈ L1(Q) for some δ > 0. Set p(t)−1 :=
1/2− t/δ for 0 ≤ t ≤ δ/2, and

PV (t) = E0e−
´ t
0 Us (V )dsUt

∣∣
Lp ( t ) (Q,S0 ,μ) .

Then
{
PV (t), Lp(t)(Q,S0 , μ)

}
t∈[0,δ/2] is a local Hermitian semi-group.

Proof It follows from Lemma 21.32 that
´ t

0 Us(V )ds is well defined in Lp0 (Q),
and that e−

´ t
0 Us (V )ds ∈ Lp(Q) for 0 ≤ t ≤ δ/p. By Hölder’s inequality, PV (t)

maps Lp(t)(Q) into L2(Q), so PV (t) is well defined on Lp(t)(Q,S0). The fact that
PV (t) maps Lp(t+s) into Lp(s) follows also from Hölder’s inequality. The proofs
of the semi-group and weak continuity properties are completely analogous to
those of Prop. 21.33. �

Remark 21.36 Let us write the physical Hilbert space as H = L2(X, ν). We
treat paths (elements of Q) as functions R � t �→ qt ∈ X. The expectation Et is
written as

EtG(x) =:
ˆ

G(q)dμt,x(q), G ∈ L1(Q,dμ), x ∈ X.

Let V be a real function on X. Under some conditions on V (see for example
Thms. 21.37, 21.38) one can show that PV (t) = E0e

´ t
0 Us (V )dsUt = e−t(H +V ) for

t ≥ 0. This can be formally rewritten as

e−t(H0 +V (x))f(x) =
ˆ

exp
(
−
ˆ t

0
V (qs)ds

)
f(qt)dμ0,x(q). (21.24)

Recall that in Thm. 21.4 we described the Feynman–Kac formula for the inte-
gral kernel of e−t(− 1

2 Δ+V (x)). The generalization (21.24) of the Feynman–Kac
formula to quantum field theory was first given by Nelson. Therefore, in this
context, (21.24) is usually called the Feynman–Kac–Nelson formula.
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21.3 Perturbations of Markov path spaces 623

21.3.3 Perturbed Hamiltonians

We recall that H is the positive self-adjoint operator generating the group
{P (t)}t∈[0,∞[ constructed in Thm. 21.11.

Let V be a real S0-measurable function. The self-adjoint operator of multi-
plication by V on L2(Q,S0 , μ) is also denoted by V . Under the hypotheses of
Prop. 21.34 we can define a unique positive self-adjoint operator HV such that
PV (t) = e−tHV . Similarly, using Thm. 2.69, under the hypotheses of Prop. 21.35,
we can define a unique self-adjoint operator HV such that PV (t) ⊂ e−tHV . We
now give without proof some results about the Hamiltonian HV .

Theorem 21.37 (Positive perturbations) Assume the hypotheses of Prop. 21.34.
Then:

(1) HV is bounded below.
(2) If V ∈ Lp(Q) for p > 1, then HV is a restriction of the form sum H + V .
(3) If V ∈ Lp(Q) for p ≥ 2, then HV is the closure of H + V .

Theorem 21.38 (Arbitrary perturbations) Assume the hypotheses of Prop.
21.35. Then:

(1) HV is the closure of H + V .
(2) Assume that e−tH is hyper-contractive on L2(Q,S0) and let T > 0 be such

that e−T H maps L2(Q) into Lr (Q), r > 2. Then if e−δV ∈ L1(Q) for δ = r′T ,
1/r + 1/r′ = 1/2, HV is bounded below.

Remark 21.39 The main examples of models with local interaction that can be
treated by the methods of this chapter are the (space-cutoff) P (ϕ)2 and (eαϕ )2

models (both at 0 and at positive temperature). The P (ϕ)2 model was the first
model with a local interaction to be rigorously constructed. It will be further
studied in Chap. 22.

The (eαϕ )2 model is also called the Høgh-Krohn model. Although not physi-
cal, it has the pedagogical advantage that the interaction term

´
g(x)eαϕ(x)dx is

positive, even after Wick ordering. It provides an example of where Feynman–
Kac–Nelson kernels can be used even if the formal interaction does not exist. In
fact, one can show that the formal interactionˆ

g(x) :eαϕ(x) : dx

for g a positive compactly supported function can be given a rigorous meaning iff
|α| < √

2π, although the FKN kernels
ˆ b

a

ˆ
g(x) :eαϕ(t,x) : dxdt

are well defined iff |α| < √
4π; see Simon (1974).
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624 Euclidean approach for bosons

Another example where one has to use FKN kernels is the P (ϕ)(0) model,
obtained by replacing the space-cutoff g(x) with the delta function δ0 ; see Klein–
Landau (1975).

21.4 Euclidean approach at positive temperatures

There exists a version of the Euclidean approach for bosonic fields at positive
temperatures. The “Euclidean time”, which at the zero temperature took values
in R, now belongs to the circle of length β. The number β has the meaning of
inverse temperature. Given a β-Markov path space, we construct a von Neumann
algebra equipped with a W ∗-dynamics and a KMS state.

21.4.1 β-Markov path spaces

Definition 21.40 The circle of length β, that is, R/βZ, is denoted by Sβ , and
is sometimes identified with ]− β/2, β/2]. t will still denote the generic variable
in Sβ .

Definition 21.41 Let (Q,S,S0 , Ut , R, μ) be a generalized path space as in Def.
21.7. The path space is called

(1) β-periodic if Uβ = 1l, so that Sβ � t �→ Ut is a strongly continuous unitary
group.

(2) β-Markov if in addition it satisfies
(i) the β-reflection property RE{0,β/2} = E{0,β/2},
(ii) the β-Markov property E[0,β/2]E[−β/2,0] = E{0,β/2}.

It is easy to show that in a β-Markov path space we have

E{0,β/2} = E[0,β/2]RE[0,β/2]. (21.25)

21.4.2 Reconstruction theorem

We assume that we are given a β-Markov path space (Q,S,S0 , Ut , R, μ). As in
Subsect. 21.2.1, we now proceed to the construction of the corresponding physical
objects.

Definition 21.42 The physical Hilbert space is

H := E{0,β/2}L2(Q,S, μ) = L2(Q,S{0,β/2}, μ),

and the vector 1 ∈ H will be denoted by Ω. The Abelian von Neumann algebra
L∞(Q,S{0}, μ) acting on H will be denoted by A.

The construction of the generator of the dynamics on H is now more del-
icate than in Thm. 21.11, because Ut does not preserve L2(Q,S[0,β/2], μ). In
fact, Ut sends L2(Q,S[0,β/2], μ) into L2(Q,S[t,t+β/2] , μ). In the construction the
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21.4 Euclidean approach at positive temperatures 625

crucial role is played by the concept of a local Hermitian semi-group introduced
in Def. 2.67.

Theorem 21.43 Set, for 0 ≤ t < β/2,

Mt := L2(Q,S[0,β/2−t] , μ),

Dt := E{0,β/2}Mt ⊂ H.

Then, for any 0 ≤ s ≤ t ≤ β/2, there exists a unique P (s) : Dt → Dt−s such that

P (s)E{0,β/2}f = E{0,β/2}Usf, f ∈ L2(Q,μ),

and
{Dt , P (t)

}
t∈[0,β/2] is a local Hermitian semi-group on H preserving Ω.

Proof If s ≤ t, one has Mt ⊂Ms , hence Dt ⊂ Ds . From the definition of SI

as
∨

t∈I UtS0 and from the strong continuity of Ut on L2(Q,S, μ), we see that
∪

0<t<β/2
Mt is dense in L2(Q,S[0,β/2], μ), which implies the density of ∪

0<t<β/2
Dt

in H.
We now have to check that, for 0 ≤ t < β/2, P (t) is well defined as a linear

operator on Dt .
Let us fix 0 < r ≤ s < t < β/2 with r + s ≤ t. Let f ∈Mt . We have

‖E{0,β/2}Usf‖2 = (Usf |RUsf)

= (Us−r f |U−rRUsf) = (Us−r f |RUs+r f)

= (Us−r f |E{0,β/2}Us+r f) ≤ ‖E{0,β/2}Us−r f‖‖f‖. (21.26)

In the first line we use (21.25) and the fact that Usf is S[0,β/2]-measurable. In
the second line we use the unitarity of U−r and U−rR = RUr . In the third line we
apply (21.25) again, the Cauchy–Schwarz inequality and the fact that E{0,β/2}
and Us+r are contractions.

Taking r = s, we obtain that ‖E{0,β/2}Usf‖ ≤ ‖E{0,β/2}f‖ 1
2 ‖f‖ 1

2 for 2s ≤ t. If
n+1

n s ≤ t, for n ∈ N, taking r = s/n and applying recursively (21.26), we obtain

‖E{0,β/2}Usf‖ ≤ ‖E{0,β/2}Us−r f‖ 1
2 ‖f‖ 1

2

≤ ‖E{0,β/2}Us−pr f‖2−p ‖f‖(2−1 +···+2−p )

≤ ‖E{0,β/2}f‖2−n ‖f‖(1−2−n ) .

This shows that E{0,β/2}f = 0 implies E{0,β/2}Usf = 0 for all 0 ≤ s < t. By the
strong continuity of Us , this extends to s = t. Thus we have proved

E{0,β/2}f = 0, f ∈Mt ⇒ E{0,β/2}Utf = 0, (21.27)

which means that P (t) is well defined.
The semi-group property of P (t) and the fact that P (s)Dt ⊂ Dt−s are imme-

diate. To prove that P (t) is Hermitian, we write, for f, g ∈Mt ,(
E{0,β/2}f |P (t)E{0,β/2}g

)
= (f |RUtg) = (Utf |Rg)

=
(
E{0,β/2}Utf |E{0,β/2}g

)
=
(
P (t)E{0,β/2}f |E{0,β/2}g

)
.
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Finally, the weak continuity of P (t) follows from the strong continuity of
Ut . �

Definition 21.44 The unique self-adjoint operator L on H such that e−tL
∣∣
Dt

=
P (t) is called the Liouvillean.

Clearly, LΩ = 0.

Definition 21.45 We denote by F ⊂ B(H) the von Neumann algebra defined by

F :=
{
eitLAe−itL , A ∈ A, t ∈ R

}′′
. (21.28)

Let

Rβ/4 := Uβ/2R = Uβ/4RU−β/4

be the reflection around s = β/4. Clearly,

Rβ/4E{0,β/2} = E{0,β/2}Rβ/4 . (21.29)

Definition 21.46 By (21.29),

JE{0,β/2}f := E{0,β/2}Rβ/4f, f ∈ L2(Q,S, μ), (21.30)

defines an anti-unitary operator J on H. We also introduce a state and a
W ∗-dynamics on F:

ω(A) := (Ω|AΩ), τt(A) = eitLAe−itL , A ∈ F.

The next theorem will be proven in the following two subsections.

Theorem 21.47 ω is a faithful state, it satisfies the β-KMS condition for the
dynamics τ , J is the modular conjugation corresponding to ω and L is the stan-
dard Liouvillean for the dynamics τ .

21.4.3 Proof of the KMS condition

In this subsection we prove the part of Thm. 21.47 saying that ω is β-KMS. We
first need to introduce additional notation. For n ∈ N, we set

Jβ (n) :=
{

(t1 , . . . , tn ) ∈ Rn : tj ≥ 0,

n∑
j=1

tj ≤ β/2
}

,

Iβ (n) :=
{

(z1 , . . . , zn ) ∈ Cn : Re zj > 0,

n∑
j=1

Re zj < β/2
}

.

Note that Jβ (n) ⊂ Iβ (n)cl . We denote by Holβ (n) the space of functions (with
values in H or in C, depending on the context) which are holomorphic in Iβ (n)
and continuous in Iβ (n)cl .
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Proposition 21.48 (1) For (t1 , . . . , tn ) ∈ Jβ (n), A1 , . . . , An ∈ A, the vector

An

1
Π

j=n−1
(e−tj LAj )Ω (21.31)

belongs to Dom e−tn L .
(2) The linear span of such vectors is dense in H.
(3) Let (t1 , . . . , tn ) ∈ Jβ (n), (s1 , . . . , sm ) ∈ Jβ (m) and A1 , . . . , An ,B1 , . . . , Bm ∈

A. Set t0 := β/2− (tn + · · ·+ t1), s0 := β/2− (sn + · · ·+ s1). Then one has( 1
Π

j=n
(e−tj LAj )Ω|

1
Π

i=m
(e−si LBi)Ω

)
=
(m−1

Π
i=0

(e−si LB∗
i+1)Ω|

n−1
Π

j=0
(e−tj LA∗

j+1)Ω
)
. (21.32)

Proof For A ∈ A, we set A(t) = Ut(A). First let us show that

1
Π

j=n
(e−tj LAj )Ω = E{0,β/2}

1
Π

j=n
Aj (tj + · · ·+ tn ). (21.33)

We use induction. (21.33) is clear for n = 1. Assume that it is true for n− 1,
that is,

1
Π

j=n−1
(e−tj LAj )Ω = E{0,β/2}

1
Π

j=n−1
Aj (tj + · · ·+ tn−1).

Then

e−tn LAn

1
Π

j=n−1
(e−tj LAj )Ω = E{0,β/2}Utn

An

1
Π

j=n−1
Aj (tj + · · ·+ tn−1)

= E{0,β/2}
1
Π

j=n
Aj (tj + · · ·+ tn ),

which proves (21.33) for n.

Since An

1
Π

j=n−1
Aj (tj + · · ·+ tn−1) belongs to Mtn

, this proves that (21.31)

belongs to Dom e−tn L . Hence, (1) is true.
The linear span of vectors as on the r.h.s. of (21.33) is dense in

L2(Q,S[0,β/2], μ), which proves (2).
We have ( 1

Π
j=n

(e−tj LAj )Ω|
1
Π

j=m
(e−si LBi)Ω

)
(21.34)

=
( 1

Π
j=n

Aj (τj )|R
1
Π

i=m
Bi(σi)

)
L2 (Q)

=
( 1

Π
j=n

Aj (τj )|
1
Π

i=m
Bi(−σi)

)
L2 (Q)

, (21.35)

where

τj =
n∑

k=j

tk , 1 ≤ j ≤ n, σi =
m∑

k=i

tk , 1 ≤ i ≤ m. (21.36)
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Since Uβ = 1l, we have

(f |g) = (U−β/2f |Uβ/2g)L2 (Q) , f, g ∈ L2(Q).

Hence, (21.35) equals( 1
Π

j=n
Aj (−β/2 + τj )|

1
Π

j=m
Bi(β/2− σi)

)
L2 (Q)

=
( m

Π
i=1

Bi(β/2− σi)|
n

Π
j=1

Aj (−β/2 + τj )
)

L2 (Q)

=
(m−1

Π
i=0

(e−si LB∗
i+1)Ω|

n−1
Π

j=0
(e−tj LA∗

j+1Ω
)
.

This proves (3). �

Proposition 21.49 For (z1 , . . . , zn ) ∈ Iβ (n)cl and A1 , . . . , An ∈ A, the vector

An

1
Π

n−1
(e−zj LAj )Ω (21.37)

belongs to Dom e−zn L . Furthermore, the function

Iβ (n)cl � (z1 , . . . , zn ) �→ 1
Π

j=n
(ezj LAj )Ω

belongs to Holβ (n) and is bounded by
n

Π
j=1
‖Aj‖.

Proof We prove the result by induction in n.
By Prop. 21.48 (1), A1Ω ∈ Dom e−βL/2 . Therefore, Prop. 2.63 implies that

the map Iβ (1) � z1 �→ e−z1 LA1Ω belongs to Holβ (1). Moreover, for z1 ∈ I(1), we
have

‖eiz1 LA1Ω‖ = ‖e−(Re z1 )LA1Ω‖ = ‖A∗
1Ω‖ ≤ ‖A1‖,

again using Prop. 2.63. This proves the result for n = 1.
Assume that the result holds for n− 1. For (z1 , . . . , zn−1) ∈ Iβ (n− 1), set

g(z1 , . . . , zn−1) = An

1
Π

j=n−1
(ezj LAj )Ω,

h(z1 , . . . , zn−1) =
n−1
Π

j=1
(A∗

j e
zj L )A∗

nΩ.

By the induction assumption, g, h belong to Holβ (n− 1) and are bounded by
n−1
Π

j=1
‖Aj‖. Moreover, using (3) of Prop. 21.48 with m = n, Bj = Aj and

sn = β/2−
n−1∑
i=1

si, tn = β/2−
n−1∑
j=1

tj ,

we obtain that

g(t1 , . . . , tn−1) ∈ Dom e−tn L , g(s1 , . . . , sn−1) ∈ Dom e−sn L ,
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and (
e−tn Lg(t1 , . . . , tn−1)|e−sn Lg(s1 , . . . , sn−1)

)
=
(
h(s1 , . . . , sn−1)|h(t1 , . . . , tn−1)

)
, (21.38)

for (s1 , . . . , sn ), (t1 , . . . , tn−1) ∈ Jβ (n− 1). Denote by Hf , resp. Hh the
closed subspaces of H generated by the vectors e−tn Lg(t1 , · · · , tn−1), resp.
h(t1 , · · · , tn−1), for (t1 , . . . , tn−1) ∈ Jβ (n− 1).

Note that h(z1 , . . . , zn−1) belongs to Hh for (z1 , . . . , zn−1) ∈ Iβ (n− 1)cl. In
fact, let Ψ ⊥ Hh . Then(

Ψ|h(z1 , . . . , zn−1)
)

= 0, z1 , . . . , zn−1 ∈ Jβ (n− 1). (21.39)

Hence, by analyticity and continuity, (21.39) is true for z1 , . . . , zn−1 ∈
Iβ (n− 1)cl.

From (21.38) we see that there exists a unique anti-unitary map T : Hf → Hh

such that

T e−tn Lg(t1 , . . . tn−1) = h(t1 , . . . , tn−1).

It follows that

f(z1 , . . . , zn−1) := T−1h(z1 , . . . , zn−1)

belongs to Holβ (n− 1). Note that, by the definition of T , for t1 , . . . , tn−1 ∈
Jβ (n− 1) one has

f(t1 , . . . , tn−1) = e−tn Lg(t1 , . . . , tn−1). (21.40)

We claim that, for z1 , . . . , zn−1 ∈ Iβ (n− 1),

g(z1 , . . . , zn−1) ∈ Dom e−(β/2−∑ n −1
j = 1 zj )L (21.41)

and

f(z1 , . . . , zn−1) = e−(β/2−∑ n −1
j = 1 zj )Lg(z1 , · · · , zn−1). (21.42)

In fact, the scalar products of the above two functions with a fixed vec-
tor Ψ ∈ Dom e−βL/2 belong to Holβ (n− 1) and coincide on Jβ (n− 1) by
(21.40). By analytic continuation it follows that g(z1 , . . . , zn−1) belongs to
Dom e−(β/2−∑ n −1

j = 1 zj )L , and that (21.41) and (21.42) are true.
By Prop. 2.63, we obtain that the function{

0 ≤ zn ≤ β/2−
n−1∑
j=1

Im zj

}
� zn �→ ezn Lg(z1 , . . . , zn−1)

is continuous and analytic in the interior of its domain. For Re zn = 0, we have

‖ezn Lg(z1 , . . . , zn−1)‖ = ‖g(z1 , . . . , zn−1)‖ ≤
n

Π
j=1
‖Aj‖.
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For Re zn = β/2−
n−1∑
j=1

Im zj ,

‖ezn Lg(z1 , . . . , zn−1)‖ = ‖f(z1 , . . . , zn−1)‖
= ‖h(z1 , . . . , zn−1)‖ ≤

n

Π
j=1
‖Aj‖.

Therefore, by Prop. 2.63, for 0 ≤ zn ≤ β/2−
n−1∑
j=1

Im zj ,

‖ezn Lg(z1 , . . . , zn−1)‖ ≤
n

Π
j=1
‖Aj‖,

which ends the proof of the induction step. �

Proof of Thm. 21.47, Part 1. By Prop. 21.49, we can analytically continue
(21.42) to obtain( 1

Π
j=n

(e−itj LAj )Ω|
1
Π

i=m
(e−isi LBi)Ω

)
=
(
e(−β/2+ism +···+is1 )L

m

Π
i=1

(B∗
i eisi L )Ω|e(−β/2+itn +···+it1 )L

n

Π
j=1

(A∗
j e

itj L )Ω
)
.

Changing variables, this can be rewritten as

(AΩ|BΩ) =
(
e−βL/2B∗Ω|e−βL/2A∗Ω

)
,

A :=
1
Π

j=n
ττj

(Aj ),

B :=
1
Π

i=m
τσi

(Bi).

This identity implies that the (τ, β)-KMS condition (6.7) is satisfied in the
∗-algebra F0 generated by

{
τt(A) : A ∈ A, t ∈ R

}
. But F0 is weakly dense

in F. By Prop. 6.64, the (τ, β)-KMS condition is satisfied for all A,B ∈ F. �

21.4.4 Identification of the modular conjugation

To complete the proof of Thm. 21.47, we need the following lemma:

Lemma 21.50 (1) JAΩ = e−βL/2A∗Ω, for all A ∈ F;
(2) JeitL = eitLJ , for all t ∈ R;
(3) JFJ ⊂ F′.

Proof Let (t1 , . . . , tn ) ∈ Jβ (n) and A1 , . . . , An ∈ A. Then

J
1
Π

j=n
(e−tj LAj )Ω = E{0,β/2}Rβ/4

1
Π

j=n
Aj (τj )

= E{0,β/2}
1
Π

j=n
Aj (β/2− τj )

= e−(β/2−∑ n
j = 1 tj )L n−1

Π
j=1

(A∗
j e

−tj L )A∗
nΩ, (21.43)

where τj are defined in (21.36).
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By Prop. 21.49, we can apply the analytic continuation to the above identity
and obtain

J
1
Π

j=n
(eitj LAj )Ω = e−βL/2ei

∑ n
j = 1 tj L

n−1
Π

j=1
(A∗

j e
−itj L )A∗

nΩ.

Changing variables, this can be rewritten as

JAΩ = e−βL/2A∗Ω, (21.44)

for

A =
1
Π

j=n
τtj

(Aj ),

which proves (1) on F0 .
Now let A ∈ F. Since F is the strong closure of F0 , by the Kaplansky density

theorem there exists a sequence An ∈ F0 such that An → A, A∗
n → A∗ strongly.

Applying (21.44) to An , we obtain that AnΩ → AΩ and e−βL/2AnΩ → JA∗Ω.
Since e−βL/2 is closed, this implies that

e−βL/2AΩ = JA∗Ω, A ∈ F. (21.45)

This proves (1) on F.
Let us now prove (2). Let Ψ = E{0,β/2}F for F ∈ L2(Q,S[ε,β/2−ε], μ) and ε >

0. For 0 ≤ s < ε, we have

Je−sLΨ = E{0,β/2}Rβ/4UsF = E{0,β/2}U−sRβ/4F .

Since U−sRβ/4F ∈ L2(Q,S[ε−s,β/2−ε+s]), it follows that Je−sLΨ ∈ Dom e−sL

and

e−sLJe−sLΨ = E{0,β/2}Rβ/4F = JΨ,

or equivalently

Je−sLΨ = esLJΨ. (21.46)

We note that Ψ, JΨ ∈ ⋂
|s|<ε

Dom esL , hence they are analytic vectors for L. There-

fore, we can analytically continue (21.46), using that J is anti-linear, to obtain

JeitLΨ = eitLJΨ.

Since the set of such vectors Ψ is dense in H, this proves (2).
Let us now prove (3). Since F is the strong closure of F0 , it suffices to show

that, for A,B ∈ F0 , one has

[JAJ,B] = 0. (21.47)

To prove (21.47), it suffices, using (2), to prove that

[JAJ, eitLBe−itL ] = 0, t ∈ R, A,B ∈ A. (21.48)

Let us now prove (21.48).
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First note that, for any A0 , Bβ/2 ∈ L∞(Q), we have

A0U−sBβ/2Us = U−sBβ/2UsA0 . (21.49)

Assume now that A0 ∈ L∞(Q,S{0}, μ) and Bβ/2 ∈ L∞(Q,S{β/2}, μ). Let Ψ =
E{0,β/2}f for f ∈ L2(Q,S[ε,β/2], μ), 0 < ε < β/2. Since Bβ/2Usf and Bβ/2UsA0f

belong to L2(Q,S[s,β/2], μ), we see that

E{0,β/2}Bβ/2Usf = Bβ/2e−sLΨ,

E{0,β/2}Bβ/2UsA0f = Bβ/2e−sLA0Ψ

belong to Dom esL and (21.49) can be rewritten as

A0esLBβ/2e−sLΨ = esLBβ/2e−sLA0Ψ. (21.50)

Hence, to prove (21.48) it suffices to show that

s �→ esLBβ/2e−sLA0Ψ

can be holomorphically extended to {0 ≤ Re z ≤ ε}, and that its analytic exten-
sion to s = −it equals e−itLBβ/2eitLA0Ψ.

Let us take a vector Ψ of the form

Ψ =
1
Π

j=n
e−tj LAjΩ

for tj ≥ 0, t1 + · · ·+ tn ≤ ε and Aj ∈ A. Recall from Prop. 21.48 that the linear
span of such vectors is dense in H.

Let B0 ∈ A such that Bβ/2 = JB0J . By (2), we have

esLBβ/2e−sLA0 = Je−sLB0Je−sLA0 .

Hence,

esLBβ/2e−sLA0Ψ = Je−sLB0Je−sLA0Ψ

= Je−sLB0Je−sLA0
1
Π

j=n
e−tj LAjΩ

= Je−sLB0esL−(β/2−∑ n
j = 1 tj )L n

Π
j=1

(A∗
j e

−tj L )A∗
0Ω,

using (21.43). By Prop. 21.49, this can be analytically continued to s = it to give

JeitLB0e−itL−(β/2−∑ n
j = 1 tj )L n

Π
j=1

(A∗
j e

−tj L )A∗
0Ω

= JeitLB0eitLJA0
1
Π

j=n
e−tj LAjΩ

= eitLJB0Je−itLA0Ψ = eitLBβ/2e−itLA0Ψ,

once again using (21.43). This completes the proof of (3). �

Proof of Thm. 21.47, Part 2. We will use the Tomita–Takesaki theory described
in Subsect. 6.4.2. Let us check first that Ω is cyclic and separating for F. Let
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Ψ ∈ {F0Ω}⊥. It follows that, for all t1 , · · · , tn ∈ R, Ai ∈ A, one has(
Ψ| 1

Π
j=n

(Aj eitj L )Ω
)

= 0.

By analytic continuation and Prop. 21.49, this implies that for all (t1 , . . . , tn ) ∈
Jβ (n) one has (

Ψ| 1
Π

j=n
(Aj e−tj L )Ω

)
= 0.

Since the vectors of the form
1
Π

j=n
(Aj e−tj L )Ω span H, this implies that Ψ = 0,

and hence Ω is cyclic for F.
Since JΩ = Ω, Ω is also cyclic for JFJ . By (3) of Lemma 21.50, this implies

that Ω is separating for F.
By (1) of Lemma 21.50,

e−βL/2BΩ = JB∗Ω, B ∈ F. (21.51)

Therefore, the operator S of the Tomita–Takesaki theory is

S = Je−βL/2 .

By the uniqueness of the polar decomposition of S, this implies that J is the
modular conjugation and e−βL/2 the modular operator for the state Ω. This
completes the proof of the theorem. �

21.4.5 Gaussian β-Markov path spaces I

We would like to describe a β-periodic version of the construction described in
Subsect. 21.2.4. Let X be a real Hilbert space and ε > 0 a self-adjoint operator on
X . (Again, we assume the reality just for definiteness.) Consider the real Hilbert
space

L2(Sβ ,X ) � L2(Sβ , R)⊗X
and the covariance

C = (D2
t + ε2)−1

with β-periodic boundary conditions. (This means −D2
t is the Laplacian on the

circle Sβ .)
Consider also the space Q := C− 1

2 L2(Sβ ,X ) and its dual, that is, Q# , which
can be identified with C

1
2 L2(Sβ ,X ).

Lemma 21.51 Let us define for t ∈ Sβ the map

jt :
(
2ε tanh(βε/2)

) 1
2 X � g �→ δt ⊗ g ∈ Q. (21.52)
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Then

(jt1 g1 |jt2 g2)Q =
(
g1 |e

−|t1 −t2 |ε + e−(β−|t1 −t2 |)ε

2ε(1l− e−βε)
g2

)
X

.

In particular jt is isometric.

Proof The proof is analogous to the proof of Lemma 21.15. In particular, we
use the discrete unitary Fourier transform

L2(Sβ ) � f �→ (fn ) ∈ l2(Z), fn = β− 1
2

ˆ
Sβ

e−i2πnt/β f(t)dt,

and apply

1
β

∑
n∈Z

ei2πnt/β

(2πn/β)21l + ε2 =
e−|t|ε + e−(β−|t|)ε

2ε(1l− e−βε)
(21.53)

instead of (21.8). �

Definition 21.52 For t ∈ R, resp. for I ⊂ R we define Qt , et , et , resp. QI , eI ,
eI , as in Subsect. 21.2.4.

Definition 21.53 We define

rf(s) := f(−s), utf(s) = f(s− t), f ∈ Q, s, t ∈ Sβ .

Proposition 21.54 (1) Let t, t1 , t2 ∈ Sβ , t1 < t2 and f ∈ Q# . We have

etf(s) = (eβε − e−βε)−1(e−|t−s|ε(eβε − 1l) + e|t−s|ε(1l− e−βε)
)
f(t),

e[t1 ,t2 ]f(s) = 1l[t1 ,t2 ](s)f(s) +
(
sinh(β + t1 − t2)ε

)−1

×
(

1l]−β/2,t1 [(s)
(
sinh
(
(s + β − t2)ε

)
f(t1)− sinh

(
(s− t1)ε

)
f(t2)

)
+1l]t2 ,β/2[(s)

(
sinh
(
(s− t2)ε

)
f(t1)− sinh

(
(s− β − t1)ε

)
f(t2)

))
.

(2) C∞
c
(
]t1 , t2 [,Dom ε

)
is dense in Q]t1 ,t2 [.

(3) R � t �→ ut is an orthogonal β-periodic C0-group on Q.
(4) r is an orthogonal operator satisfying rut = u−tr and r2 = 1l.
(5)

∑
t∈Sβ

utQ0 is dense in Q.

(6) re0 = e0 .
(7) e[0,β/2]e[−β/2,0] = e{0,β/2}.

21.4.6 Gaussian β-Markov path spaces II

As in Subsect. 21.2.4, we consider the Gaussian L2 space with covariance C.
According to the notation introduced in Subsect. 5.4.2, this will be denoted

L2(L2(Sβ ,X ), eφ·C −1 φdφ
)
, (21.54)
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where we use φ as the generic variable in L2(Sβ ,X ). Let L2(Q,dμ) be a concrete
realization of (21.54).

Definition 21.55 For s ∈ Sβ and g ∈ (2ε tanh(βε/2)
) 1

2 X , we define

φs(g) := φ(δs ⊗ g) ∈
⋂

1≤p<∞
Lp(Q),

called the sharp-time fields.

Set

Reiφ(f ) := eiφ(rf ) , Uteiφ(f ) := eiφ(u−t f ) , f ∈ Q, t ∈ Sβ , (21.55)

and extend R and Ut to L2(Q,dμ) by linearity and density.
We obtain the following proposition, whose proof is completely analogous to

Prop. 21.23.

Proposition 21.56 Let S be the completion of the Borel σ-algebra on Q. Let
S0 be the σ-algebra generated by the functions eiφ0 (g) for g ∈ (2ε tanh(βε/2)

) 1
2 X .

Let R,Ut be defined in (21.55). Then (Q,S,S0 , Ut , R, μ) is a β-Markov path
space.

Definition 21.57 (Q,S,S0 , Ut , R, μ) defined above will be called the Gaussian
β-Markov path space with covariance C.

The β-KMS system obtained from the Gaussian path space can be interpreted
in terms of Araki–Woods CCR representations. We set

ρ = (eβε − 1l)−1 .

Recall that in Subsect. 17.1.5 we defined the (left) Araki–Woods CCR repre-
sentation, denoted g �→ Wρ,l(g). Recall also that Js denoted the corresponding
modular conjugation on the Araki–Woods W ∗-algebra.

Theorem 21.58 There exists a unique unitary map

Teucl : H → Γs
(
(2ε)

1
2 CX ⊕ (2ε)

1
2 CX )

intertwining the CCR representation of the time-zero fields with the Araki–Woods
CCR representation at density ρ, that is,

Teucl1 = Ω,

Teucleiφ0 (g)T−1
eucl = Wρ,l(g) = eiφ((1l+2ρ)

1
2 g⊕ρ

1
2 g) , g ∈ (2ε tanh(βε/2)

) 1
2 X .

It satisfies

TeuclL = dΓ(ε⊕−ε)Teucl, (21.56)

TeuclJ = JsTeucl. (21.57)
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Proof The proof is similar to Thm. 21.26. To construct Teucl , it suffices by
linearity and density to check thatˆ

Q

eiφ0 (g)dμ = e−
1
2 (δ0 ⊗g |C δ0 ⊗g) = exp

(
−1

2
(
g|(2ε)−1(1l− e−βε)−1(1l + e−βε)g

)
X
)

=
(
Ω|eiφρ , l (g)Ω

)
,

which is immediate. To check (21.56) we verify using Lemma 21.25 thatˆ
Q

e−iφ0 (g1 )eiφt (g2 )dμ =
(
Wρ,l(g1)Ω|e−tdΓ(ε⊕−ε)Wρ,l(g2)Ω

)
, 0 ≤ t ≤ β/2.

(21.57) can be checked similarly. �

21.5 Perturbations of β-Markov path spaces

Let us fix a β-Markov path space (Q,S,S0 , Ut , R, μ). In this section we describe
a large class of perturbations of the measure μ that still satisfy the axioms of
a β-Markov path space. We also describe the corresponding new physical space
and Liouvillean.

We will restrict ourselves to perturbations given by a real S0-measurable func-
tion V such that

V, e−βV ∈ L1(Q). (21.58)

As in Sect. 21.3, it is also possible to consider more singular perturbations asso-
ciated with the equivalent of a Feynman–Kac–Nelson kernel; see Klein–Landau
(1981b).

21.5.1 Perturbed path spaces

By Lemma 21.32, we know that the function

F := e
− ´

S β
Us (V )ds

belongs to L1(Q).

Definition 21.59 We introduce the perturbed measure

dμV :=
Fdμ´
Q

Fdμ
.

Clearly, μV is a probability measure.
Note that we can write F = F[−β/2,0]F[0,β/2] for

F[0,β/2] = e−
´ β / 2
0 Us (V )ds ,

F[−β/2,0] = e−
´ 0
−β / 2 Us (V )ds = R(F[0,β/2]).

F[0,β/2], resp. F[−β/2,0] is S[0,β/2]-, resp. S[−β/2,0]-measurable.
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Proposition 21.60 The perturbed path space (Q,S,S0 , Ut , R, μV ) is β-Markov.

Proof We first check the properties of Def. 21.41. Since F > 0 μ−a.e., the sets
of measure 0 for μ and μV coincide, so S is complete for μV and L∞(Q,μ) =
L∞(Q,μV ). The function F is clearly R and Ut invariant, hence R and Ut pre-
serve μV .

Approximating F by Fn = F1l[0,n ](F ) and using that Ut is strongly continuous
in measure for μ, we see that Ut is also strongly continuous in measure for μV .
By Lemma 5.33, this implies that Ut is strongly continuous on L2(Q,μV ).

Property (21.5) of Def. 21.7 is obvious. It remains to check the Markov prop-
erty. To simplify notation we set E0 = E{0,β/2}, E+ = E[0,β/2], E− = E[−β/2,0]

and decorate with the superscript V the corresponding objects for μV . We also
set F+ = F[0,β/2], F− = F[−β/2,0], so that F = F+F−.

Property (6) of Prop. 5.27 can be rewritten as the following operator identity,
where we identify a function and the associated multiplication operator:

EV
I =

(
EI (F )

)−1
EI F, I ⊂ Sβ .

Using R(F ) = F and RE0 = E0 , we see that REV
0 = EV

0 .
Then using (2) of Prop. 5.27, we obtain that

EV
± =

(
E±(F+F−)

)−1
E±F+F− =

(
E±(F∓)

)−1
E±F∓ =

(
E0(F∓)

)−1
E±F∓,

where in the last step we used the β-Markov property for μ. This yields

EV
+ EV

− =
(
E0(F−)

)−1
E+F−

(
E0(F+)

)−1
E−F+

=
(
E0(F−)

)−1(
E0(F+)

)−1
E+F−E−F+

=
(
E0(F−)

)−1(
E0(F+)

)−1
E+E−F−F+

=
(
E0(F−)

)−1(
E0(F+)

)−1
E+E−F

=
(
E0(F−)

)−1(
E0(F+)

)−1
E0F. (21.59)

Next we compute, as an identity between functions,

E0(F−)E0(F+) = E+(F−)E−(F+) = (E+E−)(F−F+) = E0(F ). (21.60)

Combining (21.59) and (21.60), we obtain that EV
+ EV

− = EV
0 , which implies the

Markov property for μV . �

21.5.2 Perturbed Liouvilleans

Applying Subsect. 21.4.2, we can associate with the path space
(Q,S,S0 , Ut , R, μV ) a perturbed β-KMS system. In particular, the perturbed
physical space is

Hint
V = L2(Q,S{0,β/2}, μV ).
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It is convenient to relate this perturbed KMS system with the free KMS system
obtained with the measure μ and living on the free physical space H. We will
decorate with the subscript V and the superscript int the objects obtained by
Subsect. 21.4.2 for the path space involving the perturbed measure μV . The
corresponding objects transported to H will be decorated with just the subscript
V .

Let us first unitarily identify H with Hint
V .

Lemma 21.61 Let TV : Hint
V → H be defined by

TV Ψ :=
1

(
´

Q
Fdμ)

1
2
E{0,β/2}(F[0,β/2]Ψ).

Then TV is unitary.

Proof Without loss of generality we can assume that
´

Q
Fdμ = 1. Let Ψ,Φ ∈

L2(Q,S{0,β/2}, μV ) = Hint
V . Using the reflection property and (21.60), we have

(TV Φ|TV Ψ)H =
ˆ

Q

E{0,β/2}(F[0,β/2]Φ)E{0,β/2}(F[0,β/2]Ψ)dμ

=
ˆ

Q

F[0,β/2]ΦΨE{0,β/2}(F[−β/2,0])dμ

=
ˆ

Q

F[0,β/2]ΦΨE[0,β/2]E[−β/2,0](F[−β/2,0])dμ

=
ˆ

Q

F[0,β/2]ΦΨF[−β/2,0]dμ

=
ˆ

Q

F[0,β ]ΦΨdμ = (Φ|Ψ)Hin t
V

. �

The following result is shown in Klein–Landau (1981b).

Proposition 21.62 Let V be a real S0-measurable function satisfying (21.58).
Set

F[0,t] := e−
´ t
0 Us (V )ds

and, for 0 < t < β/2,

Mt := Span

( ⋃
0≤s≤β/2−t

F[0,s]L
∞(Q,S[0,β/2−t], μ)

)
,

Dt := E{0,β/2}Mt .

Then, for any 0 ≤ s ≤ t ≤ β/2, there exists a unique PV (s) : Dt → Dt−s such
that

PV (s)E{0,β/2}f = E{0,β/2}F[0,t]Usf, f ∈ L2(Q,μ).

{Dt , PV (t)}t∈[0,β/2] is a local Hermitian semi-group on H.
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Definition 21.63 The self-adjoint operator associated with {Dt , PV (t)}t∈[0,β/2]

is denoted by L̃V .

The following theorem is an analog of Thms. 21.37, 21.38.

Theorem 21.64 Assume in addition to (21.58) that either

V ∈ L2(Q,dμ), V ≥ 0, (21.61)

or

V ∈ L2+ε(Q,dμ). (21.62)

Let L be the free Liouvillean constructed in Def. 21.44. Then

L̃V = (L + V )cl.

We denote by τ t
V the dynamics on F generated by eitL̃V . We set

ΩV := ‖e−βL̃V /2Ω‖−1e−βL̃V /2Ω

and denote by ωV the state on F generated by the vector ΩV . Clearly, (F, τV , ωV )
is a β-KMS system. We denote by LV the associated standard Liouvillean (see
Def. 6.55). Note that both L̃V and LV generate the same dynamics on F, even
though they are different operators.

We have the following result:

Theorem 21.65 Let V be a real S0-measurable function satisfying (21.58) and
either (21.61) or

V ∈ Lp(Q,μ), e−
β
2 V ∈ Lq (Q,μ), p−1 + q−1 =

1
2
, 2 < p, q < ∞. (21.63)

Then

LV = (L̃V − JV J)cl.

The relationship between the two kinds of perturbed β-KMS system –
(F, τV , ωV ), which lives on the free space, and (Fint

V , τ int
V , ωint

V ), which lives on
on the perturbed space – is described in the following theorem:

Theorem 21.66 Let V be a real S0-measurable function satisfying the assump-
tions of Thm. 21.64. Then

(1) Aint
V = T−1

V ATV , Fint
V = T−1

V FTV ;
(2) TV Ωint

V = ΩV ;
(3) TV τ int,t

V (A)T−1
V = τ t

V

(
TV AT−1

V

)
, A ∈ Fint

V , t ∈ R;
(4) TV J int

V T−1
V = J .

21.6 Notes

As explained in the introduction, the name “Euclidean approach” comes from
the fact that the Minkowski space R1,d is turned into the Euclidean space R1+d
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by the Wick rotation. Hence, the Euclidean approach is usually associated with
relativistic quantum field theory. As we saw, it can also be applied in other
situations, as in the usual non-relativistic quantum mechanics. In constructive
quantum field theory, the use of the Wick rotation was advocated by Symanzik
(1965). The construction of interacting Hamiltonians through the corresponding
heat semi-group appeared earlier in works of Nelson (1965) and Segal (1970). The
monographs by Glimm–Jaffe (1987) and Simon (1974) contain a more detailed
treatment of Euclidean methods at zero temperature, essentially in two space-
time dimensions. Osterwalder–Schrader (1973, 1975) formulated a set of axioms
for a Euclidean quantum theory, parallel to the Wightman axioms on Minkowski
space, allowing the reconstruction of a physical theory in a way similar to the
one explained here.

The treatment of this chapter follows a series of interesting papers by Klein
(1978) and Klein–Landau (1975, 1981b). In particular, the proof of Thm. 21.37
can be found in Klein–Landau (1975), Thm. 3.4, and the proof of Thm. 21.38 in
Klein–Landau (1981a), Sect. 2.

Our treatment of path spaces at positive temperature follows Klein–Landau
(1981b) and Gérard–Jaekel (2005). In particular, Thms. 21.43 and 21.47 are due
to Klein–Landau (1981b). Thms. 21.65 and 21.66 are proven in Gérard–Jaekel
(2005).
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