ON A THEOREM OF COHEN AND LYNDON ABOUT FREE BASES FOR NORMAL SUBGROUPS

A. KARRASS AND D. SOLITAR

1. Introduction. Let $S(\neq 1)$ be a subgroup of a group G. We consider the question: when are the conjugates of S "as independent as possible"? Specifically, suppose S^{G} (the normal subgroup generated by S in G) is the free product $\Pi^* S^{g_{\alpha}}$ where $S^{g_{\alpha}} = g_{\alpha} S g_{\alpha}^{-1}$ and g_{α} ranges over a subset J of G. Then J must be part of a (left) coset representative system for $G \mod S^{G} \cdot N$ where N is the normalizer of S in G. (For, $g \in S^{G} g_{\alpha} N$ implies S^{g} is conjugate to $S^{g_{\alpha}}$ in S^{G} ; however, distinct non-trivial free factors of a free product are never conjugate.)

We say that S^{a} is the free product of maximally many conjugates of S in Gif $S^{G} = \Pi^{*}S^{g_{\alpha}}$ where g_{α} ranges over a (complete) left coset representative system for $G \mod S^{G}N$ (or equivalently, g_{α} ranges over a double coset representative system for $G \mod (S^{G}, N)$); in this case we say briefly that S has the fpmmc property in G.

If S has the *fpmmc* property in G and $S^{G} = \Pi^* S^{h_{\beta}}$, then h_{β} must range over a double coset representative system for $G \mod (S^{G}, N)$. (For, if $h_{\beta} \in S^{G}g_{\beta}N$, then S^{G} is the normal subgroup of itself generated by all $S^{g_{\beta}}$, and so the g_{β} must include all the g_{α} .)

It is easy to see that if $S^G = \prod^* S^{g_\alpha}$ then S has the *fpmmc* property in G if and only if for every $g \in G$, S^g is conjugate in S^G to some S^{g_α} .

Theorem 1 gives a necessary and sufficient condition for certain subgroups of a free product with amalgamated subgroup or of an HNN group to have the *fpmmc* property in the whole group. The proof is based on the subgroup theorems in [3] and [4]. From Theorem 1 we derive the "Main Theorem" of Cohen and Lyndon [2] which (in the above terminology) states that a cyclic subgroup has the *fpmmc* property in a free group.

2. A lemma. It is shown in [3] that if H is a subgroup of (A * B; U) and H has trivial intersection with each conjugate of U, then H is the free product of a free group F and the factors $D_{\alpha}AD_{\alpha}^{-1} \cap H$, $D_{\beta}BD_{\beta}^{-1} \cap H$ where D_{α} and D_{β} range over double coset representative systems for $G \mod (H, A)$ and $G \mod (H, B)$ respectively (see Corollary 3 of Theorem 5 in [3]); moreover if H is generated by its intersection with conjugates of A and B, then F = 1. The analogous result for HNN groups is the following, which is a refinement of Theorem 6 of [4]:

Received October 13, 1971 and in revised form, November 18, 1971. This research was supported by the National Research Council of Canada, Grants A5602 and A5614.

LEMMA 1. Let G be an HNN group

(1)
$$G = \langle t_1, t_2, \ldots, K; \text{ rel } K, t_1 L_1 t_1^{-1} = M_1, t_2 L_2 t_2^{-1} = M_2, \ldots \rangle,$$

and let H be a subgroup of G having trivial intersection with each conjugate of each L_i . Then H is the free product of a free group F and the factors $gKg^{-1} \cap H$ where g ranges over a double coset representative system for G mod (H, K). Moreover, if H is generated by its intersections with conjugates of K, then F = 1.

Proof. By Theorem 6 of [4], H is the free product of a free group F and factors different from 1 of the form $g_i K g_i^{-1} \cap H$ where g_i ranges over a certain subset of G; moreover, by Corollary 3 to Theorem 1 of [4], each subgroup $gKg^{-1} \cap H$ ($\neq 1$), $g \in G$, is conjugate in H to one of the subgroups $g_i K g_i^{-1} \cap H$. Furthermore, by the last part of Lemma 3 of [4], if $gKg^{-1} \cap H = hg_i K g_i^{-1} \cap H \neq 1$ for some $h \in H$, then $HgK = Hg_i K$. Hence if g_α ranges over a double coset representative system for $G \mod (H, K)$, then for each g_α such that $g_\alpha K g_\alpha^{-1} \cap H \neq 1$ there is an unique g_i defining the same double coset; and so supplementing the g_i with those g_α such that $g_\alpha K g_\alpha^{-1} \cap H = 1$, we have that H is the free product of F and subgroups $gKg^{-1} \cap H$ where g ranges over a double coset representative system for $G \mod (H, K)$.

Finally, if *H* is generated by its intersections with conjugates of *K*, then *H* is contained within the normal subgroup of *H* generated by its free factors $g_i K g_i^{-1} \cap H$, so that F = 1.

3. An fpmmc theorem for generalized free products and HNN groups.

THEOREM 1. Let G be a generalized free product (A * K; U) or an HNN group as in (1). Suppose S is a subgroup of K such that S^{κ} has trivial intersection with U or with each L_i , M_i . Then S has the fpmmc property in G if and only if S has the property in K.

Proof. We may assume $S \neq 1$.

We first show that the conclusion of the theorem holds for any group G > K > S if G, K, S satisfy the following conditions:

(i) $gSg^{-1} \cap K \neq 1$ implies $g \in K$;

(ii) $S^G \cap K = S^K$;

(iii) $S^{G} = \prod^{*}(gKg^{-1} \cap S^{G})$ where g ranges over a double coset representative system for $G \mod (S^{G}, K)$.

Condition (i) implies that if S has the *fpmmc* property in G, then it has it in K. For, clearly (i) implies that the normalizer N of S in K is the normalizer of S in G. Let $S^{G} = \prod^{*} S^{g_{\alpha}}$ where g_{α} ranges over a double coset representative system for G mod (S^{G} , N). Now S^{K} is generated by all S^{k} , $k \in K$, and so S^{K} is generated by its intersection in S^{G} with conjugates of the factors $S^{g_{\alpha}}$. Hence by the Kurosh subgroup theorem,

$$S^{\kappa} = \prod_{\alpha} * (\prod_{j} * (D_{\alpha j} S^{g_{\alpha}} D_{\alpha j}^{-1} \cap S^{\kappa}))$$

where for each g_{α} , $D_{\alpha j}$ runs over a double coset representative system for $S^{G} \mod (S^{K}, S^{g_{\alpha}})$. But (i) implies $D_{\alpha j}S^{g_{\alpha}}D_{\alpha j}^{-1} \cap S^{K}$ is 1 unless $D_{\alpha j}g_{\alpha} \in K$; moreover, if $D_{\alpha j}g_{\alpha} \in K$, then $D_{\alpha j}S^{g_{\alpha}}D_{\alpha j}^{-1} \cap S^{K} = S^{D_{\alpha j}g_{\alpha}}$. Thus $S^{K} = \prod *S^{D_{\alpha j}g_{\alpha}}$ where $D_{\alpha j}g_{\alpha} \in K$. Furthermore, since for each g_{α} , $S^{G} = \bigcup S^{K}D_{\alpha j}S^{g_{\alpha}}$, it follows that $S^{G}g_{\alpha}N = \bigcup S^{K}D_{\alpha j}g_{\alpha}N$ for each g_{α} . Hence $G = \bigcup S^{G}g_{\alpha}N = \bigcup S^{K}D_{\alpha j}g_{\alpha}N$, so that $K = \bigcup S^{K}D_{\alpha j}g_{\alpha}N$ where $D_{\alpha j}g_{\alpha} \in K$. Consequently, S has the fpmmc property in K.

On the other hand, if (i), (ii), and (iii) hold and S has the *fpmmc* property in K, then S has the property in G. For, since S^{G} is normal in G, properties (ii) and (iii) imply $S^{G} = \prod^{*} g_{\alpha} S^{K} g_{\alpha}^{-1}$ where g_{α} ranges over a double coset representative system for G mod (S^{G}, K) . By hypothesis, $S^{K} = \prod^{*} S^{k_{j}}$ where k_{j} ranges over a double coset representative system for K mod (S^{K}, N) . Therefor $S^{G} = \prod^{*} S^{g_{\alpha}k_{j}}$ and $G = \bigcup S^{G} g_{\alpha} K = \bigcup S^{G} g_{\alpha} S^{K} k_{j} N = \bigcup S^{G} g_{\alpha} k_{j} N$. Consequently, S has the *fpmmc* property in G.

To establish conditions (i), (ii), and (iii), first suppose G is (A * K; U). Since $S^{\kappa} \cap U = 1$, condition (i) holds. Moreover, $G/S^{q} = (A * K/S^{\kappa}; U)$, so that (ii) holds and $S^{q} \cap A = 1$. By the remark preceding Lemma 1, condition (iii) holds.

Finally, suppose G is an HNN group as in (1). Then G/S^{q} is also an HNN group with base K/S^{κ} and the same free part and associated subgroups L_{i} , M_{i} as in G. Therefore condition (ii) holds, and S^{q} has trivial intersection with each L_{i} . Therefore by Lemma 1, condition (iii) follows. Moreover, by the last part of Lemma 3 of [4], if $g \notin K$ then $K \cap gSg^{-1}$ is contained in some conjugate of L_{i} , and so condition (ii) also holds.

Clearly, if G, K, S are as in Theorem 1, and S is normal in K, then S has the fpmmc property in G.

As an illustration of Theorem 1, we show that in a Fuchsian group G with positive periods $\gamma_1, \ldots, \gamma_t$ and positive genus n,

 $G = \langle c_1, \ldots, c_t, a_1, b_1, \ldots, a_n, b_n; c_1^{\gamma_1}, \ldots, c_t^{\gamma_t}, c_1^{-1} \ldots c_t^{-1}[a_1, b_1] \ldots [a_n, b_n] \rangle,$

that the subgroup $S = gp(c_1, \ldots, c_t)$ has the *fpmmc* property in G. Write G as an HNN group

$$\langle a_1, c_1, \ldots, c_t, b_1, \ldots, a_n, b_n; c_1^{\gamma_1}, \ldots, c_t^{\gamma_t}, a_1 b_1 a_1^{-1} = c_t \ldots c_1 [b_n, a_n] \ldots [b_2, a_2] b_1 \rangle,$$

with free part $gp(a_1)$, base K, the free product of $S = \prod^* \langle c_i; c_i^{\gamma_i} \rangle$ and the free group $\langle b_1, a_2, b_2, \ldots, a_n, b_n \rangle$, and associated subgroups $L = gp(b_1)$ and $M = gp(c_1 \ldots c_1[b_n, a_n] \ldots [b_2, a_2]b_1)$. Clearly, S^K has trivial intersection with L and M. Since S has the *fpmmc* property in K, S has the property in G.

COROLLARY. Let G > K > S > H. Suppose S has the fpmmc property in G. Then S has the fpmmc property in K provided $gSg^{-1} \cap K \neq 1$ implies $g \in K$. Moreover, the image of S in G/H^{G} has the fpmmc property in G/H^{G} .

1088

FREE BASES

Proof. The first conclusion was established in the course of the proof of Theorem 1.

To establish the last assertion, let $S^{G} = \prod^{*} S^{g_{\alpha}}$ where g_{α} ranges over a double coset representative system for $G \mod (S^{G}, N)$ and N is the normalizer of Sin G. Let φ be the natural homomorphism of G onto G/S^{G} . We may assume that H is normal in N (otherwise replace H by H^{N}). Then H^{g} , $g \in G$, is conjugate in S^{G} to some $H^{g_{\alpha}}$, and so $S^{G}/H^{G} = \prod^{*} (\varphi(S))^{\varphi(g_{\alpha})} \simeq \prod^{*} (S/H)^{\varphi(g_{\alpha})}$. Moreover, every conjugate of $\varphi(S)$ in G/H^{G} is conjugate in $\varphi(S^{G})$ to one of the factors $(\varphi(S))^{\varphi(g_{\alpha})}$. Hence $\varphi(S)$ has the *fpmmc* property in G/H^{G} .

The theorem of Cohen and Lyndon, which we derive in the next section from Theorem 1, states that a cyclic subgroup has the *fpmmc* property in a free group. Using the last part of the above corollary it then follows that in a one-relator group

$$P = \langle a, b, \ldots; r^n \rangle, \quad n > 1,$$

where r is not a proper power, the gp(r) has the *fpmmc* property in P. G. Baumslag [1] has used this last result to show that the group P is hopfian if the group obtained by dividing out the elements of finite order, namely,

$$P_1 = \langle a, b, \ldots; r \rangle$$

is hopfian.

Using his method of proof we obtain the following generalization. Let S be the free product of finitely many finite groups S_i , $1 \leq i \leq m$. Suppose S has the fpmmc property in G, the normalizer of S in G is S itself, and S^G contains all elements of finite order in G. Then G is hopfian if G/S^G is hopfian.

For, suppose G/S^{α} is hopfian and β is an endomorphism of G onto itself. Since S^{α} is generated by all the elements of finite order, β maps S^{α} into S^{α} . Moreover, since β induces an automorphism on G/S^{α} , it follows that $\beta^{-1}(S^G) = S^G$. Thus the kernel of β is in S^G and β maps S^G onto itself. Now $S^{G} = \prod^{*} S_{i}^{g_{\alpha}}$ where g_{α} ranges over a coset representative system for $G \mod S^{G}$. We show β is a one-one mapping of S_i into S^{G} . For, $\beta(S_i) < S_{j_i}{}^{h_i}$, $h_i \in G$; since S^{G} is not the normal subgroup of G generated by a proper subset of S_1, \ldots, S_m (any S_i^{q} is conjugate in S^{q} to $S_i^{q_{\alpha}}$ for some g_{α}), the range of j_i consists of the integers from 1 to m. Replacing β by its m!-th power, we may assume that β maps each S_i into a conjugate of itself. If $\beta(S_i) = T_i^{h_i}$ where $T_i < S_i$, then $S^G = \operatorname{gp}(S_i^{g_\alpha}) = \operatorname{gp}(T_i^{\beta(g_\alpha)h_i})$. For each *i*, $\beta(g_\alpha)h_i$ ranges over a coset representative system for $G \mod S^{G}$, so that $S^{G} = \operatorname{gp}(T_{i}^{h_{\alpha} i g_{\alpha}})$ where $h_{\alpha i} \in S^{G}$. But then mapping S^{G} into the direct product of the $S_{i}{}^{g_{\alpha}}$, we have that $T_i^{h_{\alpha}ig_{\alpha}}$ goes into $U_i^{g_{\alpha}}$ where U_i is conjugate to T_i in S_i ; therefore $T_i = S_i$. Thus β maps S_i one-one into $S^{\mathcal{G}}$. Since distinct subgroups in $\{\beta(S_i)^{\mathfrak{g}_a}\}$ are conjugate in S^{G} to distinct free factors $S_{i}^{g_{\alpha}}$, the collection $\{\beta(S_{i}^{g_{\alpha}})\}$ generates its free product. Consequently, β maps S^{α} one-one onto S^{α} , and so β is an automorphism of G.

1089

For example, the group

$$G = \langle a, b, c_1, \dots, c_i, d; c_1^{\gamma_1}, \dots, c_i^{\gamma_i}, c_1^{-1} \dots c_i^{-1}[a, b], d^k = a^m b^n \rangle$$

where $km \neq 0$ or $kn \neq 0$ is hopfian. For, letting $S = \text{gp}(c_1, \ldots, c_t)$, we have that S is its own normalizer, has the *fpmmc* property in G, and S is a free product of finitely many finite cyclic groups. Moreover, G/S^{σ} is the free product of the free abelian group on a, b and the infinite cyclic group on dwith an infinite cyclic group amalgamated. Now it is easy to show that this last group is residually finite and therefore hopfian. Hence G is hopfian.

4. The theorem of Cohen and Lyndon.

THEOREM 2. Let F be the free group on a, b, c, ... and let r^m be an element of F where r is not a true power. Then $gp(r^m)$ has the fpmmc property in F, i.e., $gp(r^m)^F = \prod^* gp(r^m)^{f_\alpha}$ where f_α ranges over a double coset representative system for F mod $(gp(r^m)^F, gp(r))$.

Proof. The proof is by induction on the length of r. If r has syllable length one, then r is a free generator of F, and $gp(r^m)$ is normal in gp(r), which in turn is a free factor of F. Hence by Theorem 1, $gp(r^m)$ has the *fpmmc* property in F.

Suppose r has syllable length greater than one. If some generator occurs in r with zero exponent sum, take P = F. Otherwise we enlarge F using the standard Magnus method so as to introduce a generator on which r will have zero exponent sum. Specifically, if r involves the free generators a, b of F with non-zero exponent sums α, β respectively, then we form

(2)
$$P = (\langle x \rangle * F; x^{\beta} = a),$$

introduce the generator $y = bx^{\alpha}$, and replace b by $yx^{-\alpha}$. Suppose that when r(a, b, c, ...) is rewritten in terms of x, y, c, ... we obtain r'(x, y, c, ...), which when rewritten in terms of the conjugates $y_i = x^i yx^{-i}$, $c_i = x^i cx^{-i}$, ... of the generators y, c, ... of P becomes $r_0(y_i, c_j, ...)$.

Then the free group P can be written as an HNN group

$$\langle x, K; xLx^{-1} = M \rangle$$

where K is the free group on y_i, c_j, \ldots where *i* ranges from the smallest to the largest subscript occurring on y in r_0 and is zero if no subscript occurs on y in r_0 ; similarly for the range of $j, \ldots; L$ and M are freely generated by the subsets of the generators of K which exclude those generators y_i, c_j, \ldots with largest and smallest subscripts respectively. By the Magnus Freiheitssatz (see, e.g., [5]), L, M have trivial intersection with $gp(r_0^m)^K$. Since r_0 has shorter length than r, it follows that $gp(r_0^m)$ has the *fpmmc* property in K, and therefore by Theorem 1, $gp((r')^m)$ has this property in P. Since $gp(r^m)^F$ has trivial intersection with $gp(r_0^m)$ has the *fpmmc* property in F.

1090

FREE BASES

References

- 1. G. Baumslag, Residually finite one-relator groups, Bull. Amer. Math. Soc. 73 (1967), 618-620.
- D. E. Cohen and R. C. Lyndon, Free bases for normal subgroups of free groups, Trans. Amer. Math. Soc. 108 (1963), 526-537.
- 3. A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227-255.
- 4. —— Subgroups of HNN groups and groups with one defining relation, Can. J. Math. 23 (1971), 627–643.
- 5. W. Magnus, A. Karrass, and D. Solitar, *Combinatorial group theory*, Pure and Appl. Math., Vol. 13 (Interscience, New York 1966).

York University, Downsview, Ontario