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Conceptually, tidal rivers are seen as narrow channels along which the cross-section
geometry remains constant and the bed is horizontal. As tidal waves propagate along
such a channel, they decrease exponentially in height. The more rapid the decrease,
the stronger the river flow. Near the coast, the tidally averaged width and depth
change little throughout the year, even if the river discharge varies strongly between
the seasons. However, further upstream, the water depth varies considerably with the
river discharge. Recent observations from the Kapuas River, Indonesia, show that the
water surface forms a backwater profile when the river flow is low. In this case, the
depth converges, i.e. it gradually decreases between the river mouth and the point
where the bed reaches sea level. This effect distinctly influences how tidal waves
propagate up river so that their wave height does not decrease exponentially any more.
We present a theoretical analysis of this phenomenon, which reveals several so far
overlooked aspects of river tides. These aspects are particularly relevant to low river
flow. Along the downstream part of the tidal river, depth convergence counteracts
frictional damping so that the tidal range is higher than expected. Along the upstream
parts of the tidal river, the low depth increases the damping so that the tide more
rapidly attenuates. The point where the bed reaches sea level effectively limits the
tidal intrusion, which carries over to the overtide and the subtidal water level set-up.

Key words: river dynamics, shallow water flows, topographic effects

1. Introduction
The tide in the ocean can readily be predicted, as it constitutes a direct response

to the harmonic movement of the celestial bodies (Foreman 1996; Ray, Egbert &
Erofeeva 2011). Unlike ocean tides, tides in rivers are modulated by variable rainfall

† Email address for correspondence: karl.kastner@wur.nl

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

33
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-2096-2242
https://orcid.org/0000-0003-4996-185X
https://orcid.org/0000-0003-0346-9667
https://orcid.org/0000-0002-4428-0433
mailto:karl.kastner@wur.nl
https://doi.org/10.1017/jfm.2019.331


40 K. Kästner and others

Along-channel Across-channelPlan view

Q0
←

x x

w

w

|z1|

|z1|

}

}
}}

z0

h0

h0

zb {{
(a) (b) (c)

FIGURE 1. (Colour online) Idealized geometry of a tidal river: the width w and bed slope
∂zb/∂x remain constant along the river, except for the short funnel-shaped section that
connects the river to the sea. The tidally averaged surface elevation z0 (dashed) depends
on the river discharge Q0. It forms a backwater profile (black) when the river discharge
is low and a drawdown curve when the river discharge is high (blue). Both the tidally
averaged depth h0 and tidal amplitude |z1| gradually vary along the channel depending on
the river discharge. For normal flow (Q0=Qn) (green), the tidally averaged depth remains
constant along the river (∂h/∂x= ∂zs/∂x− ∂zb/∂x= 0).

runoff (Hoitink & Jay 2016). While the tide propagates up river, its amplitude and
phase are modified by changes in the cross-section geometry (Green 1838) as well
as by friction (Lorentz 1926; Ippen 1966). A decrease in the cross-sectional area
increases the amplitudes of surface elevation and velocity, while friction has the
opposite effect (Jay 1991; Savenije et al. 2008). Eventually, far upstream, friction
prevails and the tidal wave diminishes. It decays the more rapidly, the stronger the
river flow (LeBlond 1978; Godin 1985). The cross-section geometry is conventionally
considered to be constant (Savenije et al. 2008), with the exception of tidal flats
in some studies (e.g. Friedrichs & Madsen 1992). While this assumption holds
for strongly width-converging estuaries, it is inappropriate for long rivers with little
variation of width. Here, the sloping river bed (Seminara, Pittaluga & Tambroni 2012),
as well as the seasonal variation of river discharge (Dai & Trenberth 2002) lead to
strongly different backwater profiles throughout the year. Based on a theoretical
analysis, this contribution explains why backwater dynamics causes the tide to
propagate very differently between periods of high and low river flow. During high
flow, the tidal range decreases exponentially along the channel. During low flow,
the convergence of the depth into the upstream direction causes the tidal range to
decrease less rapidly along the downstream part of the tidal river, while the shallow
depth causes the tidal range to decrease more rapidly along the upstream part of the
tidal river.

River tides are described by the nonlinear shallow-water equations, which, in
general, do not admit a closed-form solution. Theoretical insight into river tides,
therefore, builds on simplifications of the underlying equations, as well as a reduced
complexity of the river geometry. We focus here on tidal rivers that form long
channels of nearly constant width. Seasonally averaged, the net discharge of a tidal
river is stronger than that of the tide, so that the flow does not reverse, and where
the water remains fresh (Godin 1985). Tidal rivers are connected to the sea by a
short, width-converging reach, the tidal funnel (figure 1), where the tidal influence is
considerable even during periods of strong river flow. The tide travels up the river
at a length that exceeds many times the length of the funnel. This geometry sets
tidal rivers apart from tidally dominated estuaries that strongly converge in width
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Bed slope effects on river tides 41

along their entire length and have brackish water (Pritchard 1967). The bed of long
non-converging estuaries is typically horizontal (Savenije 2015) except at the mouth,
where there are shallow sandbars. Idealized models thus represent tidal rivers as
non-converging channels with a horizontal bed, along which width and depth remain
constant (Godin 1985, 1991a).

The dependence of the water depth on the river discharge is commonly ignored
in models of tidal propagation (Godin 1984; Horrevoets et al. 2004; Savenije et al.
2008). This allows for an analytic solution of the propagation of tidal waves up river,
with an amplitude that is much smaller than the water depth (Godin 1991a). If there
is no river flow, then the tide is gradually damped and delayed proportionally to the
tidal amplitude and the amplitude decreases exponentially along the channel (Ippen
1966; Friedrichs 2010). River discharge superimposes a mean flow velocity so that
friction increases. The tidal amplitude still decreases exponentially when the river flow
is strong, but at a higher rate that is proportional to the square root of the mean flow
velocity (LeBlond 1978; Godin 1985, 1991a; Jay 1991; Jay & Flinchem 1997; Godin
1999; Alebregtse & de Swart 2016). Even the few models that do consider the water
level set-up neglect the slope of the bed (Cai, Savenije & Toffolon 2014). However,
the bed of tidal rivers typically slopes up beyond the upstream end of tidal funnels
(Seminara et al. 2012; Kästner et al. 2017). It is well known that the rising river bed
limits the tidal intrusion approximately to the point where the bed reaches sea level
(Dalrymple et al. 2015; Nienhuis, Hoitink & Törnqvist 2018). Here, we demonstrate
that this limit is not because the waves cannot run up the slope, but rather because
friction is always strong in the upstream part of the tidal river. The sloping bed causes
the tidally averaged water depth to gradually vary along the river except for periods
where the river is at normal flow, when the water surface slope is identical to the bed
slope (figure 1). The depth can thus converge over a long distance, even though the
width may only converge along the short tidal funnel. This contribution explores the
implications of systematic depth variations.

Our study is motivated by observations in the Kapuas River, Indonesia, which
features a seasonal backwater variation that strongly influences tidal propagation.
These observations are not well predicted by conventional models that do not take
the backwater effect into account. This paper extends the conceptual understanding
of river tides by providing a theoretical model that explains how the tide propagates
along a backwater affected river, such as the Kapuas. Section 2 presents observations
of the tide and backwater variation in the Kapuas River. Section 3 develops a
general theory of river tides, following the classical approach by transforming the
shallow-water equations into the wave equation (Lamb 1932; Dronkers 1964; Ippen
1966; Parker 1984). We show that the propagation of the tide along a channel with
varying geometry can be interpreted as the transmission and reflection at a sequence
of infinitesimal steps. This analogy is used to determine the damping and celerity
of the tidal wave along a channel with a gradually varying cross-section geometry.
Based on the theory developed in § 3, § 4 shows how the tide propagates along a
river with a sloping bed. Section 5 discusses the main results, and in § 6, conclusions
are drawn.

2. Tidal propagation along the Kapuas River

The Kapuas River is located in West Kalimantan, Indonesia (figure 2). The
catchment is situated in the humid tropics so that the river discharge varies strongly
with the monsoon (Kästner et al. 2018). The bed of the Kapuas is moderately sloping
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FIGURE 2. (Colour online) Coastal zone of the Kapuas River: selected gauging stations
are labelled with their respective distance to the river mouth.

(Kästner et al. 2017). These conditions result in different backwater profiles between
the wet and the dry season, which in turn strongly affect the propagation of the tide.
The Kapuas River has one large distributary, from which three smaller distributaries
branch off. The smaller distributaries only slightly affect the tide in the main stem of
the river. Due to the microtidal regime, the distributaries only funnel along a short
reach close to the sea. This renders the Kapuas an ideal case to study the propagation
of tides along a backwater affected tidal river.

The tidally averaged water surface forms a pronounced backwater profile during
low flow but remains nearly parallel to the river bed during high flow (figure 4a).
The tidally averaged water level increases with the river discharge the further that a
station is located from the sea. The tidally averaged water level ranges over 10 m
at Sanggau, 285 km from the sea, but only by 2 m at Mendawat, 130 km from
the sea. The tidal range decreases with the distance from the coast and with the
river discharge (figures 3 and 4b). At high flow, the damping is nearly exponential,
and the tidal range drops to half the initial value at 50 km. For lower discharges,
the admittance, i.e. the ratio of the tidal surface elevation amplitude along the river
and the amplitude at the river mouth, is higher. During low flow, the shape of the
admittance along the river is very different from that of a decaying exponential. Close
to 150 km, the admittance has a knickpoint, where the damping strongly increases.
Up to this point, the tidal amplitude is isosynchronous, i.e. remains constant during
low flow. Below a river discharge of 5000 m3 s−1, the tide becomes noticeable at
Sanggau. At extremely low flow, the tidal range at Sanggau is still half as large as
the range at sea. Conventional tidal models that do not include the backwater effect
predict that the tidal admittance decreases exponentially with increasing distance from
the sea and thus fail to explain the observed isosynchronous admittance during low
flow. The following section extends the theory of river tides by variable backwater
effects, which predicts the tide in agreement with the observation.
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FIGURE 3. (Colour online) Time series of the surface elevation zs (black) and its tidal
average z0 (red) at five gauging stations along the Kapuas River; z0 is determined by low
pass filtering with a cutoff period of one tidal cycle so that the subtidal variation over the
spring-neap cycle remains.
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FIGURE 4. (Colour online) (a) Observed tidally averaged water level and (b) admittance
of tidal range along the Kapuas River at different river discharges.

3. Generic model of river tides
3.1. Tidal waves

The tide causes the water surface elevation zs and discharge Q to periodically oscillate
over time t, which suggests separating them into the components zj=Re{zj} and Qj=

Re{Qj} with frequencies ωj (Godin 1991b),

zs(t, x) =
∞∑

j=0

zj(t, x)= z0(x)+
∞∑

j=1

Re{zj(x) exp (iωjt)}, (3.1a)

Q(t, x) =
∞∑

j=0

Q(t, x)=Q0 +

∞∑
j=1

Re{Qj(x) exp (iωjt)}. (3.1b)
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For brevity, the explicit dependence on x is omitted from the notation further on. The
subscript j denotes the frequency. The frequency components are determined by the
inner product (y)j = (1/T)

∫
T y(cos ωjt + i sin ωjt) dt, where the time T is the least

common multiple of all periods.
The surface elevation of each frequency component has a distinct amplitude |zj| and

phase ϕjz= arctan (Im(zj)/Re{zj}). The astronomical tide consists of an infinite number
of constituents (Pugh 1987). Their frequencies are integer combinations of basic
frequencies derived from the orbits of the celestial bodies (Doodson 1921; Cartwright
& Tayler 1971; Souchay, Mathis & Tokieda 2012). Several dozen constituents are
required to accurately predict ocean tides, of which many constituents are of similar
frequency and magnitude. Long time series are required to separate these constituents
from each other.

River discharge not only determines the means z0 and Q0 (ω0 = 0) but also
modulates the tide. River discharge varies in an irregular manner over much shorter
periods than necessary for a meaningful harmonic analysis. Therefore, we consider
the tide for successive periods of just one tidal cycle and decompose it into a Fourier
series, where the frequencies of the components are integer multiples of a single
fundamental frequency, ωj= jω1. The Fourier components decay rapidly in amplitude,
which allows a meaningful truncation of the series to just a few components. These
components are referred to as tidal species and effectively lump tidal constituents of
similar frequencies together (Kukulka & Jay 2003b; Guo et al. 2015). Alternatively
to species, the tidal wave can be interpreted as a periodic function of arbitrary
shape that is described by low water and high water (Savenije 2001; Savenije et al.
2008). This approach is supported by the observation that tidal waves travel upstream
individually after each other and that the discharge of large rivers changes little over
the time it takes a single wave to travel upstream. The incoming tide is thus roughly
represented by a single frequency component that has an amplitude equal to half the
tidal range. The range of the incoming tide changes from one tidal cycle to the next,
most notably over to the spring-neap cycle. The river tide has therefore be predicted
for each cycle individually, depending on the incoming tide and the river flow. The
amplitude and phase of a wave change as a wave propagates up river, depending on
the cross-section geometry and river discharge. For convenience, this is expressed in
the form of the admittance |zj(x)|/|zj(0)| and phase difference ϕjz(x) − ϕjz(0), where
x is the distance from the river mouth. The remainder of this section develops the
theory of tidal wave propagation. It builds on previous works by Godin (1985) and
Jay (1991). This section advances the theory on how tides propagate along rivers
with varying cross-section geometry. The theory is held general and covers both mild
depth and width convergence. Section 4 then analyses the backwater effect caused by
a varying river discharge and a sloping bed.

3.2. Shallow-water equations
The flow in open channels is described by the one-dimensional shallow-water
equations (Cunge, Holly & Verwey 1980; Savenije 2012). These are the equation
of continuity,

∂A
∂t
+
∂Q
∂x
= 0, (3.2a)

as well as the equation of motion,

∂Q
∂t
+
∂

∂x

(
Q2

A

)
+

1
2

g
w
∂A2

∂x
=−gA

∂zb

∂x
+ g

A2

w2

∂w
∂x
− cdw

Q|Q|
A2

, (3.2b)
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where A is the cross-sectional area, Q the discharge, w the channel width, zb the bed
level, g the gravitational acceleration and cd the drag coefficient. We analyse here only
the case of a straight non-meandering channel that has a rectangular cross-section, i.e.
no intertidal areas (figure 1), so that the depth h = A/w and the surface elevation
zs = zb + h. The terms on the right-hand side in (3.2b) represent the forces acting
on the flow per unit distance along the channel. The forces determine how the tidal
wave changes while propagating up river. Tidal flats are not taken into account, as
intertidal areas are small in rivers. The reader is referred to Speer & Aubrey (1985),
Jay (1991), Friedrichs & Madsen (1992), Savenije et al. (2008) for the treatment of
intertidal storage, and for tidal propagation along channels of arbitrary cross-sections,
to Li & Valle-Levinson (1999). We assume that the channel is wide enough so that
the hydraulic radius is well approximated by the water depth and narrow enough for
Rossby circulation to be relatively small. We also neglect spatio-temporal variation of
the drag coefficient cd between high and low river flow as well as between flood and
ebb flow.

3.3. Wave equation
As the tide is a periodic function, it is purposeful to decompose the shallow-water
equations into their frequency components. The equations are coupled by the
interaction of the species due to the nonlinear terms. To transform the shallow-water
equations into the wave equation, we consider the case where the tidal amplitude is
small compared to the tidally averaged water depth h0 = (1/T1)

∫ T1

0 h dt; T1 = 2π/ω1
is the tidal period. We neglect the small effect of nonlinearity in 1/h, which has been
discussed in the literature (Godin 1985). We also neglect the advective acceleration
term (∂/∂x)(Q2/A) because its magnitude is small (Savenije 2012). This holds as
long as h0 > |z1|, which is the case as long as the bed slope is moderate or the river
flow is strong.

For the mean flow ωj = 0, continuity is trivial (∂Q0/∂t = ∂Q0/∂x = 0), and the
momentum equation simplifies to the backwater equation that determines the tidally
averaged water level z0,

∂z0

∂x
+

cdw
πgA3

0
F0 = 0, ωj = 0, (3.3)

where A0 = wh0 is the tidally averaged cross-sectional area, and F0 is the mean
component of (1/π)F= |Q|Q, the signed square of the friction term.

The oscillatory components (ωj > 0) are determined by the wave equation. We
obtain the wave equation by first differentiating the continuity equation in time and
the momentum equation in space and then eliminating the surface elevation z by
combining the equations,

−
1

gh0w
∂2Q
∂t2
+

1
w
∂2Q
∂x2
+

1
w2

∂w
∂x
∂Q
∂x
−

cd

gh0
3w2

∂Q|Q|
∂t
= 0. (3.4)

We approximate the signed square of the friction term with a quadratic Chebyshev
polynomial (Dronkers 1964),

1
π

F≈ |Q|Q, (3.5)

F= f0Q2
hr + f1QhrQ+ f2Q2, (3.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

33
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.331
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where Qhr is half the tidal range. The complex conjugate is indicated by the asterisk:
f0,1,2 are coefficients that depend on the relative strength of the river and the tidal flow;
f0 is always small. When the river flow is low so that Q0 <Qhr, then f1 = 8/2 and f2
is small. When the river flow is strong so that Q0 > Qhr, then f1 = 0 and f2 equals π.
Appendix C gives the detailed expressions for f0,1,2.

The expansion of the discharge as a Fourier series (3.1b), yields one equation for
each frequency component. By continuity, the tidal discharge is proportional to its
derivative with respect to time so that the wave equation reduces to a second-order
ordinary differential equation (Ippen 1966). As the surface elevation has been
eliminated, the system consists only of one equation per frequency component,

∂2Qj

∂t2
+ g

A0

w2

∂w
∂x
∂Qj

∂x
− g

A0

w
∂2Qj

∂x2
+

cdw
πA2

0
F′j = 0, ωj > 0, (3.7)

where (1/π)F′j are the frequency components of (∂/∂t)(|Q|Q).
With the Chebyshev approximation, the frequency components Fj and F′j for ωj= 0,

ωj =ω1 and ωj = 2ω1 are

F0 = f0 Q2
hr + f1 Q0 Qhr + f2(Q0|Q0| +

1
2(|Q1|

2
+ |Q2|

2)), (3.8a)
F′1 = iω1(( f1Qhr + 2 f2 Q0)Q1 + f2 Q2 Q∗1), (3.8b)
F′2 = iω2(( f1Qhr + 2 f2 Q0)Q2 +

1
2 f2 Q2

1), (3.8c)

where ω1 is the angular frequency of the main tidal species entering the river.
Further analysis is limited to two frequency components, representing the main tidal

species. For the main tidal species, we use the shorthand notation

c2
∂2Qj

∂x2
+ c1

∂Qj

∂x
+ c0Qj = 0, (3.9a)

with

c1

c2
= −

1
w
∂w
∂x
, (3.9b)

c0

c2
=

ω2
1

gh0
−

iω1cd

πwgh3
0
( f1Qhr + 2 f2 Q0), (3.9c)

where we consider the case in which the magnitude of the overtide is small so that its
feedback on the main tidal species through f2 Q2 Q∗1 can be neglected. As the frequency
components are trigonometric functions in time (cf. (3.1b)), they are proportional to
their derivative ∂zj/∂t= iωjzj. The surface elevation amplitude of each component can
thus be determined by differentiating the discharge along x.

Substitution of the tidal average of the friction term (3.8a) into the backwater
equation (3.3) yields h0 ≈ zb + ( f1 Q0 Qhr + f2 Q0|Q0|)x near the sea, which shows
that the water surface slope increases linearly with the river discharge when the
river discharge is low and quadratically when it is high. Conversely, the frequency
component of the friction term that corresponds to the main tidal species (3.8b)
increases linearly with the tidal discharge when the tidal discharge is low and
quadratically when it is high.

As the friction term is nonlinear, it couples the equations between the frequency
components. The friction term damps and delays the tide. In addition, it generates
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components of higher frequency, the overtide (Parker 1991). The overtide changes the
shape of the tidal wave as it propagates up river (Parker 1991). River flow forces an
overtide with twice the frequency of the incoming tide so that high water is advanced
and low water is delayed (Godin 1999). The overtide is different in estuaries with
wide tidal flats, where the falling limb of the tide lasts shorter than the rising limb
(Friedrichs & Madsen 1992).

Similarly, the friction term generates lower frequency components when the
incoming tide contains components with close frequencies (LeBlond 1979; Buschman
et al. 2009). These modulate the daily mean water level over the spring-neap cycle.
Subtidal variations of the surface elevation are captured by the Qhr-terms in (3.8a).
Modelling of subtidal harmonics is discussed in Kukulka & Jay (2003a). The overtide
and subtidal harmonics are small in magnitude so that we ignore their feedback on
the main tidal component in further analysis.

3.4. Propagation of tidal waves
The discharge and tidal amplitude can be expressed as the product of the initial values
Qj(0), zj(0) at the river mouth and a complex admittance factor that we define as

zj(x)= zj(0) exp
(
−i
∫ x

0
kjz dx′

)
, (3.10a)

Qj(x)=Qj(0) exp
(
−i
∫ x

0
kjQ dx′

)
. (3.10b)

The along-channel change of the tidal wave {z1, Q1} is thus uniquely determined by
the wavenumbers k1Q and k1z as

1
Q1

∂Q1

∂x
= −ik1Q, (3.11a)

1
z1

∂z1

∂x
= −ik1z =

(
1

k1Q

∂k1Q

∂x
−

1
w
∂w
∂x
− ik1Q

)
. (3.11b)

When the coefficients of (3.9a) are constant, the wavenumbers are identical k1Q =

k1z = k1 and remain constant along the channel. This is only the case in a channel
of constant width during normal river flow, i.e. when the tidally averaged depth does
not change along the river. In this special case, the frequency components of (3.1a)
and (3.1b) become

zj(t, x) = zj(t, 0) exp (i(ω1t− k1x)), (3.12a)
Qj(t, x) = Qj(t, 0) exp (i(ω1t− k1x)). (3.12b)

The identity Re{exp (i(ω1t− k1x))} = exp (Im{k1}x) cos (ω1t−Re{k1}x) reveals the two
principal changes the tide undergoes while propagating up river. First, while the tide
travels upstream, the wave is delayed in time at a rate equal to Re{k1}. In upstream
parts, high water occurs later than downstream. Second, as friction dissipates energy,
the tide is damped at a rate equal to Im(k1). The tidal range is decreased in the
upstream direction. The dimension of k1 is one over length and assumes typical values
of the order of 1/100 km−1. When the cross-section geometry varies along the river,
k1Q and k1z vary as well. The remainder of this section shows how k1Q depends on
the river discharge and on variation in cross-section geometry.
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The wave equation (3.9a) can be separated into two first-order ordinary differential
equations when (3.11a) is inserted into (3.9a). This yields a Riccati equation, from
which k1Q can be obtained,

∂k1Q

∂x
= ik2

1Q −
c1

c2
k1Q − i

c0

c2
. (3.13a)

Far upstream, the flow is uniform and k1Q does not change along the channel. The
left-hand side of (3.13a) is then zero so that −ik1Q is a root of the characteristic
polynomial c2r2

+ c1r+ c0 = 0. The roots of the characteristic polynomial are

r±(x)=
i

2w
∂w
∂x
±

√
ω2

gh
−

1
4w2

(
∂w
∂x

)2

+
icdω

πwgh3
(2 f2 Q0 + f1 Q1). (3.13b)

For a river of constant width and depth, the roots remain constant along the channel.
In this case, the roots have well-known limits for the case of no river flow: r2

=

−ω2/gh + i(8/3π)cdω(Qhr/gwh3), (Lorentz 1926) and when the river flow is strong,
r2
= 2iωcd(Q0/gwh3

0) (Godin 1985). When the width changes along the channel, the
roots can still remain constant as long as the change is exponential.

Downstream, where both width and depth converge, k1Q changes along the river.
Thus, k1Q can be determined by integrating the initial value problem (3.13a) from
upstream to downstream. In general, there is no closed-form solution to this initial
value problem. Further simplifications are necessary to determine how the tide
propagates up river.

3.5. Wave propagation along rivers with a gradually varying cross-section
The solution to the wave equation is the superposition of two waves. One wave travels
upstream, and the other one travels downstream. These are analogous to the Riemann
invariants of the shallow-water equations. In the case of constant coefficients, which
holds in channels of constant cross-section,

Q1(x) = Q+1 (0) exp (r+x)+Q−1 (0) exp (r−x), (3.14a)
z1(x) = z+1 (0) exp (r+x)+ z−1 (0) exp (r−x), (3.14b)

where r± are the two roots of the characteristic polynomial. The signs of the real and
imaginary parts of the roots are equal. The positive root corresponds to the seaward
travelling wave and the negative root to the landward travelling wave. The real part of
the wavenumber k1 is positive, and its imaginary part is negative, as k1=+ir−. When
no wave enters at the upstream end, then Q+1 (x)= 0, z+1 (x)= 0 and Q1 =Q−1 , z1 = z−1 .

The wave propagates as a pure exponentially damped sine. The rate at which it
travels corresponds to the imaginary part, and at which it is damped, to the real part
of the respective root. When the cross-section geometry varies along the channel, then
the incoming wave is partially reflected. It follows from (3.13a) that in this case, the
wavenumber differs from the corresponding root of the characteristic polynomial. The
coefficients c{0,1,2} vary as well, and the wave propagates as

∂Q−1
∂x
=

r− +
−1

r− − r+
∂r−

∂x︸ ︷︷ ︸
T−

Q−1 +
−1

r− − r+
∂r+

∂x︸ ︷︷ ︸
R+

Q+1 , (3.15a)
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∂Q+1
∂x
=

+1
r− − r+

∂r−

∂x︸ ︷︷ ︸
R−

Q−1 +

r+ +
+1

r− − r+
∂r+

∂x︸ ︷︷ ︸
T+

Q+1 , (3.15b)

which is derived in appendix D; T− and T+ are the coefficients of transmission,
whereas R− and R+ are the coefficients of reflection of the upstream and downstream
travelling waves, respectively.

When the cross-section geometry varies smoothly at a low rate, then the amplitude
of the reflected wave is negligible so that Q1 ≈ Q−1 and k1 ≈ −i (r− + (1/(r− − r+))
(∂r−/∂x)). Thus, even when the reflected wave is small, the incoming wave can
change considerably by transmission. For infinitesimally small waves, r± does not
depend on Q1, and (3.15a) gives direct insight into the propagation of the tidal wave
along a river with known geometry.

For the sake of illustration, consider the case where the width remains constant
along the channel so that r− = −r+. When the cross-section geometry changes
smoothly at a low rate, (3.15a) and (3.15b) simplify to

1
Q1

∂Q1

∂x
= r− −

1
2r−

∂r−

∂x
, (3.16a)

1
z1

∂z1

∂x
= r− +

1
2r−

∂r−

∂x
, (3.16b)

where higher powers of ∂r±/∂x and higher derivatives are neglected, as only a small
part of the wave is reflected when the geometry changes gradually.

Equations (3.15b) and (3.15a) show that a convergence of the cross-section has the
opposite effect on the upstream travelling wave (Q−, z−) and reflected waves (Q+, z+),
as the sign in front of ∂r±/∂x is equal. In contrast, friction damps the incoming and
outgoing waves at the same rate, as the sign in front r± is the opposite. For the same
reason, equations (3.16a) and (3.16b) show that convergence likewise has the opposite
effect on the discharge Q1 and surface elevation z1, while they are also damped at the
same rate.

The tide can be approximated by integrating the approximate wavenumber (3.10a)
along the river (3.16a). The wavenumber thus corresponds to the sum of the negative
root of the characteristic polynomial and the coefficient of transmission k1Q≈−i(r−+
T−). The admittance is consequently the product of two factors. The first accounts for
the effect of gravity and friction, and the second for the effect of width and depth
convergence. Gravity and friction always act on the tide, even if the cross-section
geometry does not vary along the river (3.2b). They form the zero-order terms that
enter r±. There is only convergence when the cross-section geometry varies along the
river, which is represented by the partial derivatives that enter T± and R±.

3.6. The effect of gravity and friction
When only gravity acts on the wave, i.e. when both friction and ∂w/∂x are zero,
the wavenumber (3.16a) is identical to i-times the negative root of the characteristic
polynomial (3.13b) and simplifies to

k1,0 =
ω1
√

gh
, a= 0. (3.17)
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When both gravity and friction act, i.e. ∂w/∂x is zero, the wavenumber is (cf. Godin
(1985))

k1,a = k1,0

√
1+ 2ia, (3.18)

where a is measures the strength of friction (cf. (3.8b))

a=
1
π

cd

ωwh2
0

(
f2 Q0 +

1
2

f1 Qhr

)
. (3.19)

The wave travels in the direction into which it is driven by gravity, and friction acts
against it. The surface amplitude and discharge are thus affected in the same manner,
k1,0 Q = k1,0 z. The friction scale a varies along the river and with the strength of the
flow. A Puiseux series expansion with respect to the parameter a reveals the effect of
friction for low river flow

k1,a = k1,0(1+ ia), a→ 0 (3.20a)

and high river flow, respectively,

k1,a = k1,0(1+ i)
√

a, a→∞. (3.20b)

The imaginary and real parts of (3.20a) and (3.20b) determine the rates of damping
and phase change. Substitution of (3.17) and (3.19) into (3.20a) reveals that when the
flow is low, the friction damps the tide proportionally to the discharge and h−5/2

0 , but it
does not influence the phase. When the flow is strong (3.20b), the friction determines
both the rates of damping and phase change. Both rates approach the same value that
is proportional to the square root of the discharge and h−3/2

0 .

3.6.1. Low river flow
During periods when the river discharge is much smaller than the tidal discharge,

the friction coefficients in (3.8a) and (3.8b) attain the values f1= 3/8 and f2= 0. This
is identical to the approximation by Lorentz (Terra, van de Berg & Maas 2005). In
this case,

a=
cd

ωwh2
0

8
3π

Q1

(
1− 4

Q2
0

|Q1|
2

)
, |Q1| � |Q0|. (3.21)

Damping is thus asymptotically insensitive to river discharge when the tide is strong.
River discharge does not add noticeably to the damping as long as Q0 < (4/3π)|Q1|

(figure 5b). The water depth increases linearly with the river discharge when the
river discharge is low, as from (3.3) and (3.8a), it follows that h0 ≈ h0|Q0=0 +

x(8/3π)(cdw/gA3
0)QhrQ0 (figure 5a). Damping can thus even decrease with the river

discharge before a threshold is reached, as the linear increase in water depth can
reduce the friction by a larger amount than it is increased by the square of the river
discharge, as long as the river flow does not considerably increase the roughness.

3.6.2. Strong river flow
When the river discharge is so strong that the flow does not reverse over the tidal

cycle, then the friction coefficients (3.8a) and (3.8b) obtain the values f1 = 0 and
f2 =π.

a=
cd

ωwh2
0
2Q0, |Q0|> |Q1|. (3.22)

The tide only contributes to the damping rate by modulating the water depth when
the river discharge is large, which does not affect the first-order approximation of the
damping.
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FIGURE 5. Magnitudes of the frequency components of the friction term ((3.8a)–(3.8c),
bold), depending on the relative strength of river and tidal flow (|Q0|/|Q1|), as well as their
low flow asymptotes (|Q0|/|Q1|→ 0, dash-dotted) and high flow asymptotes (|Q0|/|Q1|→

∞, dashed). Note that the discharge scale is identical to the velocity scale as |u0|/|u1| =

|Q0|/|Q1|.

3.7. The effect of width and depth convergence
Width and depth convergence modify the wavenumber by the term 1k1. When the
cross-section geometry changes smoothly along the river, the term is,

1k1 =
1

4(i− a)

(
(1+ 3ia)

1
h0

∂h0

∂x
+ (2+ 3ia)

1
w
∂w
∂x

)
, (3.23a)

k1z = k1,a +1k1, (3.23b)
k1Q = k1,a −1k1. (3.23c)

This expression is obtained by substituting the roots of the characteristic polynomials
(3.13b) in (3.15a), followed by omitting higher-order derivatives as well as higher
powers of the first derivatives.

In contrast to damping, width and depth convergence have the opposite effect on the
surface amplitude and the discharge. This corollary of Green’s law (Green 1838; Jay
1991) thus also holds in the presence of friction. The sign of the convergence term
also depends on the direction in which the wave travels and in which the cross-section
changes. Convergence increases the tidal amplitude when the cross-section becomes
narrower and shallower.

In the limit of low friction, the change in wavenumber with the rate of convergence
is

1k1 =−i
1
4

1
h0

∂h0

∂x
− i

1
2

1
w
∂w
∂x
, a→ 0. (3.24)

A relative change in width thus has a larger effect than a relative change in depth of
the same magnitude. This is known as Green’s Law (Green 1838; Jay 1991). When
friction is strong, the rate of convergence is

1k1 =−i
3
4

1
h0

∂h0

∂x
− i

3
4

1
w
∂w
∂x
, a→∞. (3.25)

Strong friction enhances the effect of convergence, and in contrast to low friction, the
relative changes of width and depth have the same effect.

However, the river discharge influences the effect of convergence not only indirectly
by increasing friction but also directly, as depth convergence decreases with increasing
discharge as ∂h0/∂x = ∂z0/∂x − ∂zb/∂x (figure 6a). The effects of width and depth
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FIGURE 6. (Colour online) (a) Relative depth convergence (black) and friction scale (red)
at the river mouth depending on the river discharge for infinitesimal waves; (b) effect of
depth convergence on the damping rate (black) and rate of phase change (red) depending
on the river discharge (solid) or tidal discharge (dashed); damping rate depending on
friction and depth convergence (c) as well as width convergence (d) as approximated by
(3.23a), red line shows critical convergence (Im(k) = 0), blue and black are asymptotes
for high and low friction, respectively.

convergence on the admittance of the tide increase monotonically with the friction and
thus with the river and tidal discharge (figure 6b). However, the depth convergence
itself decreases with the river discharge as well, as the upstream water level rises, so
that the effect on the admittance has a maximum for intermediate river discharges.
Both width and depth convergence primarily affect the amplitude. The rate of phase
change is only affected when friction is intermediate.

4. Hydrodynamics of tidal rivers with a sloping bed

This section considers a river with moderate bed slope, where reflection along the
channel is small. For illustration, it adopts dimensions that are similar to those of the
Kapuas River. At the downstream boundary, the amplitude of the incoming wave is
prescribed, and the reflected wave is allowed to pass freely, i.e. without reflection,
to the sea. If not otherwise mentioned, the amplitude of this wave is infinitesimal
so that the damping is entirely caused by the river flow (3.22). The computational
domain ends upstream of the point where the bed reaches sea level, where the tidal
wave is allowed to leave the domain without reflection. The examples contrast the
propagation of the tide in the presence of backwater effects to that predicted with a
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FIGURE 7. (Colour online) (a) Tidally averaged water level along the river, where the
backwater drawdown lengths are indicated by dots; (b) backwater and drawdown length L
for various states of river flow, defined as the distance to point where water depth deviates
no more than 5 % (L95) and approximated by simplified relations.

conventional model that assumes the tidally averaged water depth to remain constant
along the channel and not to change with the river discharge.

4.1. Tidally averaged water level
The tidally averaged water level changes along a river depending on the river
discharge. When the river discharge is low, it forms a backwater profile, and depth
decreases in the upstream direction (figure 8 black and red). Far upstream, the water
surface slope asymptotically approaches the bed slope, so that the tidally averaged
water depth remains constant along the river.

There are no analytic solutions to the backwater profile (3.3), with the exception
of those of the Bresse type (Vatankhah & Easa 2011), which cannot be integrated
into a general solution of the tide because they swap the dependent and independent
variables. For the analysis of the river tide, we thus linearize the backwater equation
(3.3) and (3.8a) at the river mouth,

h0(x)= h0(0)+
(
∂z0

∂x

∣∣∣∣
0

−
∂zb

∂x

)
x+O

(
∂2z0

∂x2

∣∣∣∣
0

x2

)
=

cd

g
Q0|Q0|

w2h3
0
, (4.1)

for the reach between the river mouth and the point where the flow becomes
approximately uniform (x = |h0(0) − hu|((∂h0/∂x)|0)−1); hu is the depth in the reach
of uniform flow far upstream.

When the river is at normal flow (Q=Qn), then the water surface slope is identical
to the bed slope, and the tidally averaged water depth does not change along the river
(blue in figure 7a). When the river discharge is below normal flow, then the river
forms a backwater curve (black, red and green in figure 7a). When the river discharge
is above normal flow, then the water surface forms a drawdown curve so that the
depth increases into the upstream direction (orange in figure 7a). For extremely low
river discharge, the point where the flow becomes uniform approaches the point where
the bed reaches sea level x= L0 = h0(∂zb/∂x)−1. As long as the river is in a state of
backwater, this point is located the closer to the river mouth, the higher the discharge
is (figure 7b). As the wavenumber depends on the water depth, the backwater profile
strongly influences the admittance of the tide.
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FIGURE 8. (Colour online) (a) Admittance of the tide for the case where the depth varies
along the river (bold) and for the case where the depth remains constant along the river
(dashed); inflexion points are indicated by dots, maxima by chevrons; (b) the logarithmic
y-axis reveals the inversion of the stage–amplitude relation in the asymptotic reach;
scenarios as in figure 7(a).
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FIGURE 9. (Colour online) (a) Phase difference between the tidal surface elevation along
the river with respect to that at the mouth; (b) phase lag between the tidal velocity and
surface level variation along the river. Without backwater effects, the phase difference is
zero during low flow, as expected for a progressive wave (black dashed). During high flow,
the phase difference is apparently half-way between that of a progressive and a standing
wave, although there is no reflection. With the backwater effect, the phase of the tide
always appears to be between that of a progressive and a standing wave (solid lines);
scenarios as in figure 8.

4.2. Admittance along the river
In the case of normal flow, the depth does not converge. The tidal amplitude decreases
exponentially along the channel so that the tidal amplitude drops most rapidly near
the sea and less rapidly farther upstream (figure 8b). The wave propagates with
constant celerity (figure 9a). At normal flow, the frictional damping is strong so that
the damping rate is proportional to the square root of the river discharge, as given by
(3.20a). This is a well-known relation for the propagation of a tidal wave along a river
with constant depth (LeBlond 1978; Godin 1985; Jay 1991; Jay & Flinchem 1997).

However, when the river is not at normal flow, then the depth changes along the
river, and the tide propagates differently compared to the case where the depth remains
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constant along the river. At low flow (black and red lines in figure 8a), the tidally
averaged water surface forms a backwater profile. The tidal amplitude decreases only
slowly near the river mouth, and more rapidly farther upstream (black and red in
figure 8b). The transition is marked by an inflexion point at which ∂2

|z1|/∂x2
= 0. As

(3.11b) implies (1/|z1|)(∂|z1|/∂x)= Im(k1z), this implies

∂Im(k1z)

∂x
− Im(k1z)

2
= 0. (4.2)

The inflexion point is located closer to the sea for higher river discharges, similar to
the transition point where the asymptotic flow is reached. For discharges higher than
a particular value, the inflexion point is not observed anymore. Only when the river
discharge is above this threshold is the tide admitted similarly to the conventional case
where the depth is assumed to be constant along the river.

For very low discharges (black), the tidal range even increases in the landward
direction to a point where a maximum is reached. The tidal admittance is hypersyn-
chronous. At this point, the imaginary part of the wavenumber is zero,

Im(k1z)= 0. (4.3)

The maximum is located closer to the sea than the inflexion point. This point
is related to the concept of critical damping that is used to characterize tidally
dominated estuaries (Jay 1991). Along such estuaries, width convergence can cancel
frictional damping. If the tidally averaged water depth remains constant along an
estuary, it can be critically damped along its entire length so that the tidal amplitude
neither increases nor decreases, in which case, an estuary is considered to be ‘ideal’.
A fundamental difference between tide-dominated estuaries and tidal rivers with a
sloping bed is thus that tidal rivers cannot represent ideal estuaries, as the damping
can be critical only at one point, and not along the entire tidally influenced reach.
The location of this point furthermore depends on the river discharge. Similar to the
location of the inflexion point, the maximum is located closer to the sea for higher
river discharges and vanishes when the discharge exceeds a certain threshold.

4.3. Damping and convergence rates
The rate of amplitude change along the river is the combined effect of frictional
damping and convergence of the width and depth. For large depths, the damping rate
is proportional to h−5/2

0 (3.20a), while depth convergence is proportional to h−1
0 (3.23a).

At low flow, the river forms a backwater profile, and the depth increases towards
the sea. The effects of both the frictional damping and convergence thus decrease
towards the sea, but frictional damping decreases more rapidly so that close to the
sea, the effect of convergence is larger than that of damping, and the amplitude of
waves travelling upstream increases along the downstream part of the tidal river. In
this reach, the imaginary part of k1z is thus positive (figure 10). Conversely, the water
depth decreases into the upstream direction towards the point where the bed reaches
sea level when the river discharge is low. For small depths, damping is proportional
to h−3/2

0 , while convergence is still proportional to h−1
0 . The effects of both damping

and convergence thus increase in the upstream direction, but damping increases more
rapidly so that eventually frictional damping dominates, and the tidal amplitude is
reduced in the upstream part of the tidal river. In this reach, the imaginary part of
k1z is thus negative (figure 10). The depth only increases into the upstream direction
when the river discharge is very large so that the water surface forms a drawdown
curve. In that case, damping is very strong, and convergence has the opposite effect
compared to the situation for low flow, so the tidal amplitude rapidly decreases.
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FIGURE 10. (Colour online) (a) Imaginary (dashed) and real (solid) parts of the
wavenumber z1, corresponding to the rate of damping and phase change, respectively;
critical damping occurs at Im(k1z)= 0. (b) Relative strength of convergence compared to
that of gravity and friction (Im(1k1/k1,0), solid) and its approximation by (3.23a) (dashed),
critical damping occurs at −1; scenarios correspond to those in figure 8.

4.4. Asymptotic admittance
The influence of the river discharge on the propagation of the tide in the upstream
reach where the flow becomes uniform has been studied by Godin (1985). However,
this study does not pay attention to the influence of the river flow on the tidally
averaged water depth. When the slope of the river bed is very small, the tidally
averaged water depth does not strongly change with the river discharge. In such a
case, the damping decreases with the river discharge so that the tide intrudes far
upstream during low flow (figure 8b). However, this is not the case when the slope
of the river bed is not small. The admittance is always marginal beyond the point
where the bed reaches sea level (figure 8b). In the asymptotic reach (inset in figure 8),
the tidal amplitude even slightly increases with the river discharge. Far upstream, the
river flow becomes asymptotically uniform. The ordinary differential equation for the
water surface elevation (3.3) simplifies to an algebraic equation referred to as the
Chézy formula. The algebraic relation between discharge and surface elevation allows
one to eliminate either the river discharge or the water depth from the expression
for the wavenumber. Far upstream, damping is strong so that the wavenumber is
approximated by (3.20b),

k1z = −(1− i)

√
cdωQ0

gwh3
0
, (4.4a)

= −(1− i)

√
ωw
Q0

∂zb

∂x
, (4.4b)

= −(1− i) 4

√
cdω2

gh3
0

∂zb

∂x
, x>

(
1
h0

∂zb

∂x

)−1

. (4.4c)

As intuition suggests, the damping becomes the stronger, the larger the slope, due
to the higher flow velocity and shallower depth. The expression also shows that
damping is indeed asymptotically inversely proportional to the square root of the
river discharge so that in the asymptotic reach, the amplitude increases with the river
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FIGURE 11. (Colour online) Tidal admittance for three stations located at a tidal
river subject to backwater effects (black) and as predicted by a conventional model
that neglects the backwater (red); dashed lines show the admittance of a wave with
infinitesimal amplitude, solid lines show the admittance of a wave with finite amplitude;
without backwater effects, the admittance decays exponentially; with backwater effects, the
admittance decreases hyperbolically along the river.

discharge, which is the opposite of what is predicted by conventional models, where
the depth remains constant along the river. The expression bears yet another surprise:
neither the rate of frictional damping nor that of the phase change asymptotically
depend on the drag coefficient for a particular river discharge. The tidal damping
along the upstream reach has thus to be calibrated by adjusting other parameters,
such as bed slope or channel geometry, rather than the drag coefficient, which is a
common parameter for the calibration of hydrodynamic models. Similarly, the rate of
damping and phase change are asymptotically independent of the water depth for a
particular river discharge.

We point out that upstream propagation of tidal waves is not primarily inhibited by
the pull of gravity down the slope, but rather by high friction caused by either the low
water depth during low discharges, or by high flow velocities during high discharges.
For small discharges, the region where the damping is low extends farther upstream;
however, in the asymptotic reach beyond the point where the bed reaches sea level,
the tidal amplitude always decreases along the channel. The transition between the
reach where friction is low and the asymptotic reach where friction is high is thus
more rapid during periods of low river flow than during periods of high river flow.

4.5. At-a-station admittance
The tidal amplitude that is observed at a gauging station depends on the river
discharge, in analogy to the admittance of the tide along the river (§ 4.2). Figure 11
shows the admittance of the tide at three stations along a tidal river with a sloping
bed in comparison to the admittance that is predicted by a conventional model, which
neglects the backwater dynamics and assumes a constant depth along the river.

At a station near the sea, the tidal amplitude is always higher than that predicted
by the conventional model (figure 11a) except at normal flow, when the amplitudes
are equal. At a station in the transition reach (figure 11b), the admittance is higher
during low flow and high flow but lower during intermediate river flow. Beyond the
point where the river bed reaches sea level (figure 11c), the admittance is much
smaller during low flow and slightly larger during high flow than predicted without
bed slope. In general, when the backwater dynamics is neglected, the admittance
is predicted to decrease exponentially with the river discharge. The backwater
introduces a hyperbolic factor to the admittance due to the gradual change in
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depth. The tidal amplitude drops less rapidly than predicted by the exponential
approximation when the river discharge is low, and more rapidly when the river
discharge is high. The hyperbolicity of the tidal admittance can be shown on hand of
the propagation of the upstream travelling wave ∂z−1 /∂x = −i(k1,a − 1k1)z−1 (3.23c),
when the reflected wave is neglected (z1≈ z−1 ). The admittance is found by integration
z1(x) = z1(0) exp (

∫ x
0 −i(k1,a −1k) dx′). The linearization of the backwater equation

leads to 1k1 = −i(p/(1+ (1/h0(0))(∂h0/∂x)x))(∂h0/∂x), and an admittance of the
form

z1(x) ≈
(

h0(0)
h0(x)

)p

exp
(∫ x

0
−ik1,a dx′

)
z1(0) (4.5a)

=
1(

1+
1

h0(0)
∂h
∂x

x
)p exp

(∫ x

0
−ik1,a dx′

)
z1(0), (4.5b)

where p approaches 1/4 for low river flow and 3/4 for high river flow, according to
(3.24) and (3.25).

4.6. Reflected wave
The approximation (3.16a) considers only the effect of transmission on the tide
but not reflection. However, waves are partially reflected whenever they propagate
along a channel where the cross-section changes over a distance that is shorter than
its wavelength (Lighthill 2001). The tide is thus gradually reflected, as the depth
diminishes along the backwater affected reach of a tidal river.

When the tidal amplitude is small, the wave reflected back downstream can be
approximated by the following double integral,

Q+1 (x)=
∫
∞

x
R−Q−1 (x

′) exp
(∫ x

x′
r+ + T+ dx′′

)
dx. (4.6)

The wave that is reflected back downstream is again partially reflected so that the
upstream and downstream travelling waves are linearly dependent on each other
(Witting 1981) ((3.15a) and (3.15b)). The step (4.6) can be iterated to decompose the
tide into a series that can be interpreted as recursively reflected waves (Wilmer III &
Costa 2008). The reflected waves decrease rapidly in magnitude, due to the damping
and gradual change in depth (|R±| � 1).

A decomposition of the tidal wave into the incoming and the reflected parts shows
that the magnitude of the reflected wave is indeed not entirely negligible (figure 12).
The reflected wave increases the amplitude of the total wave. As the reflected wave
leaves the river, the amplitude and phase of the tide at the river mouth slightly
differ from that of the incoming wave (figure 12, inset). The tide at the river mouth
thus depends on the river geometry and river discharge. This is important for the
prescription of boundary conditions. It seems natural to specify the surface level
zs(t, 0) at the river mouth, as the astronomical tide can reliably be predicted (Egbert
& Erofeeva 2002). This approach is typically applied in one-dimensional models
of tidal rivers that do not include the adjacent sea (Bolla Pittaluga et al. 2015).
In § 3.6, we apply this to approximate the propagation of the wave. However, this
implicitly reduces the amplitude of the tide entering from the sea by the amplitude
of the reflected wave and thus violates causality, as it implies that the astronomical
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FIGURE 12. (Colour online) (a) Admittance of the combined incoming and reflected
waves (|z1(x)|/|z−1 (0)|, solid) and only of the upstream travelling wave (|z−1 (x)|/|z

−

1 (0)|,
dash-dotted) along the river. (b) amplitude (solid) and phase (dashed) of the combined
wave with respect to the incoming wave at the river mouth, depending on the river
discharge. Scenarios as in figure 8.

tide depended on the estuarine geometry and river discharge. For the numerical
computation of the tide in § 4, we therefore only prescribe a value for the incoming
wave ẑ−1 at the seaward boundary, and let the seaward travelling wave ẑ+1 pass without
reflection. As only one value is specified per frequency component at each boundary,
we express it as a linear combination of the incoming and seaward travelling wave,
according to (3.14b). The mean water level at the mouth also varies over a Metonic
cycle (Woodworth 2017) and is due to the river discharge, but these variations are
negligible.

Conversely, a trivial boundary condition of zero tidal amplitude or discharge causes
reflection at the upstream boundary. Reflection at the upstream boundary can be
reduced by placing the upstream boundary far from the sea (Godin & Martínez 1994;
Cai et al. 2014). We avoid reflection by expressing the upstream boundary condition
as a linear combination of the upstream and downstream travelling waves and set
only the amplitude of the downstream travelling wave to zero as Q+1 = 0.

4.7. Tidal propagation where the bed reaches sea level
When the river discharge is very low, the water is shallow near the point where the
bed reaches sea level so that the relative change in depth along the river is large.
The wave is therefore partially reflected according to (3.15a). Locally, the reflected
wave adds noticeably to the water surface oscillation, but as it travels back, it rapidly
decreases in amplitude because the friction is high and the divergence of the cross-
sectional area reduces the amplitude of the reflected wave. Near the head of the tidal
river, the amplitude of the main tidal species can exceed that of the water depth. The
overtide rises low water by changing the shape of the tide so that the river bed does
not necessarily fall dry during periods of low river flow.

Without river discharge, the bed dries up beyond the point where the bed reaches
sea level so that the tide cannot propagate much farther upstream. The model (3.9a)
forces the tidal amplitude to zero at the point where the bed reaches sea level. The
phase of the tide changes at an ever-increasing rate towards the point where the depth
reaches zero so that the phase is undefined at this point. This is the case for all
waves of zero amplitude and is not an artefact of the model. In practice, a short reach
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FIGURE 13. (Colour online) Magnitudes of tidal discharge (a) and tidal velocity (b),
along a tidal river with a sloping bed (solid), and constant depth (dashed); river discharge
indicated by dash-dotted line in (a); scenarios as in figure 8.

upstream of the head of the tidal river can periodically flood and dry over the tidal
cycle. The flow furthermore concentrates near the thalweg, and shallow parts of the
cross-section are periodically flooded. A model that has a bed that is not flat across the
river can better predict how the tide propagates near the head. However, the solution
is sensitive to unevenness of the river bed, to seasonal variation of the sea level as
well as to the residual river flow. Wetting and drying of the entire cross-section is also
beyond the scope of the shallow-water equations (3.2a) and (3.2b), as those require
the depth to be non-zero at all time. In any case, the tide does not propagate far
beyond the point where the bed reaches sea level during periods without river flow,
as it rapidly decays due to the shallow depth as well as storage on the higher parts of
the bed that are periodically flooded. The case of the wave vanishing when running up
the slope thus contrasts with the case where the wave runs against a wall, where the
surface amplitude obtains a maximum, as well as the case with a wave propagation
along a channel with a horizontal bed, where the wave propagates incessantly, without
ever entirely decaying to zero. A minimum base flow ensures that the bed of the
Kapuas never falls entirely dry. However, bars and dunes emerge during low flow
beyond the point where the bed reaches sea level, which is slightly upstream of the
city of Sanggau.

4.8. Tidal discharge
The tidal discharge decreases with increasing river discharge (figure 13a). It
diminishes gradually along the river so that no extrema or inflexion points occur.

As long as the river discharge is low, the tidally averaged water surface forms a
backwater profile, and the tidal discharge at the river mouth decreases at a higher rate
than that predicted without a sloping bed.

The most upstream point of flow reversal is located closer to the sea, compared
to the conventional model. Similar to the tidal water surface amplitude, the tidal
discharge amplitude is marginal beyond the point where the river bed reaches sea level.
The higher rate at which the discharge is reduced is caused by depth convergence,
which, recalling (3.23a), has an effect on the discharge that is opposite to the effect
on the tidal surface level amplitude. The lower initial discharge at the river mouth is
also a direct consequence of depth convergence. Recalling the continuity (3.2a), the
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tidal discharge of the main species is

Q1 = iw
ω

k1Q
z1, (4.7)

which can be directly evaluated at the river mouth in combination with the
approximate wavenumber (3.16a). The tidal discharge at the river mouth is thus
smaller because it is inversely proportional to the wavenumber k1Q, which itself is
larger in magnitude, due to depth convergence.

4.9. Tidal velocity
The cross-section averaged flow velocity is directly proportional to the discharge
u = 1/A0Q and can thus also be explicitly evaluated at the river mouth. The tidal
velocity amplitude decreases with the river discharge. However, the magnitude of
the tidal velocity amplitude decreases along the river at a lower rate than the tidal
discharge when the river is below normal flow, which follows from the chain rule,

k1u =−i
1
u1

∂u1

∂x
= i

1
h0

∂h0

∂x
+ i

1
w
∂w
∂x
+ k1Q. (4.8)

Width and depth convergence increase the magnitude of the velocity compared to the
discharge, similar to the surface elevation amplitude, but the phase is similar to that
of the discharge. An inflexion point marks the transition to the upstream reach of the
tidal river, where the tidal velocity amplitude is rapidly reduced. The inflexion point
of the velocity is located the closer to the river mouth, the higher the river discharge
(figure 13), similarly to the inflection point of the tidal surface elevation amplitude.
Overall, the magnitude of the tidal velocity amplitude decreases at a slightly higher
rate than the magnitude of the tidal surface elevation, and the inflexion point of the
velocity is located closer to the sea.

When the river flow is very low, the tidal velocity amplitudes are higher than
that predicted by a conventional model along the downstream reach of a tidal river.
The value is furthermore lower for intermediate discharges compared to that predicted
without a sloping bed. The tidal excursion length near the sea is similar but decreases
more rapidly towards upstream than that predicted without bed slope (not shown).
As the salinity intrusion depends on the tidal excursion (Savenije 2012), this implies
that a sloping bed shortens the distance that salinity intrudes up river, as long as the
slope does not strongly change the mixing.

4.10. Phase lag
The damping of the tide is related to the phase lag 1ϕ1= arg(u1)− arg(z1) between the
oscillation of the water surface and velocity. When the tidally averaged water depth
does not change along the river, then the damping rate and phase lag are directly
proportional as long as the damping is low, which follows from (3.20a)

1ϕ1 = arctan (a)≈ a, a< 1, (4.9)

which coincides with the definition of Savenije (2012) for the case of non-converging
estuaries. For weak damping (a → 0), the velocity is in phase with the surface
elevation, as expected for a progressive wave. For strong damping (a� 1), the phase
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FIGURE 14. (Colour online) (a) At a station, water level variation over a tidal cycle for
z1(0) = 0.1h0(0); (b) along river amplitude of the even overtide; (c) along river subtidal
water level set-up; solid lines show the tide in a backwater affected river, and dashed lines
show the prediction of the tide when the backwater is neglected; scenarios as in figure 8.

lag is close to π/4, according to (3.20b). The phase lag is apparently in between that
of a progressive and a standing wave, although the wave is not reflected.

Along rivers with a sloping bed, the tidal amplitudes of the surface level and
discharge change at different rates so that damping is no longer proportional to
the phase lag (figure 9b). This is the case because friction is always strong in the
upstream part of the tidal river and because a part of the wave is reflected gradually
along the backwater affected reach. As a consequence, the phase lag is close to π/4
independent of the river flow and can even exceed π/4 in the upstream part of the
tidal river. The phase lag thus does not linearly increase with the river discharge
along the backwater affected reach. In the asymptotic flow reach, the phase lag even
decreases with the river discharge, opposite to what occurs in a river with a horizontal
bed.

4.11. Overtide generation
Friction not only damps the tide but also generates higher frequency components,
referred to as the overtide. The principal overtide advances high water and delays
low water so that the tidal wave changes its shape while travelling upstream (figure
14a). The river discharge forces the principal overtide with twice the frequency and
an amplitude proportional to the square of the main tidal species, which is evident
from the frequency decomposition of the friction (3.8a).

When the tidally averaged width and water depth do not change along the river,
then the even overtide is determined by the equation

∂2Q2

∂x2
− 2ir2Q2 =−i

r2
1

w
Q2

1

Q0
, (4.10)

which is a simplification of (3.4) and (3.8c) for the limit that the river flow is much
stronger than the tidal flow. The wavenumber k1 is given by (3.18); r1 is its imaginary
part, and k2=

√
2k1 as well as r2=

√
2r1. This gives the amplitude of the overtide as

z2 =
ω1w

8r1Q0
z1(0)2(exp (−2ik1x)− exp (−1ik2x)), (4.11)

for the case when the amplitude of the overtide is zero at the river mouth. Note that
even if the surface elevation amplitude of the overtide is zero at the river mouth, the
amplitude of the velocity is not, which is due to continuity (4.7). Equation (4.11) is
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the sum of two decaying exponentials, which add to zero at the river mouth. Near
the mouth the principal overtide increases by 0.6 times the rate of that at which the
amplitude of the main tidal species decreases, and far upstream, it decreases by 1.4
times the rate of that of the main tidal species.

In a river with a sloping bed, the principal overtide increases near the sea, similar
to the case when the tidally averaged water depth remains constant. However, in the
upstream part of the tidal river, the tide is damped more rapidly when the bed is
sloping. Similar to the main tidal species, the amplitude becomes marginal beyond
the point where the bed level reaches sea level (figure 14b).

4.12. Water level set-up
The tidal flow raises the tidally averaged water level by increasing friction (3.3). The
water level, therefore, oscillates with the tidal range over the spring-neap cycle. Such
subtidal harmonics have been described by LeBlond (1979), Kukulka & Jay (2003a),
Buschman et al. (2009) and Sassi & Hoitink (2013). The water level set-up z′0 caused
by the tide with respect to the water depth h′0 that is only due to river flow can
be approximated by a perturbation expansion of the backwater equation (3.3). For
dominant river flow, this is done by substituting h′0+ z′0 for h0, expanding the equations
as a series in z′0 and keeping only the terms of largest magnitude,

∂z′0
∂x
=

cd

gw2h4
0

(
1
2
|Q1|

2h0 − 3Q2
0z′0

)
. (4.12)

The first term generates and the second term damps the water level set-up. For a river
at normal flow, where the tidally averaged water depth remains constant along the
channel, the water level set-up is,

z′0 =
h0

6
r0

r0 − r1

|Q1(0)|2

|Q0|
2
(exp (−2r0x)− exp (−2r1x)), (4.13)

r0 =
1
2

cdQ2
0

gw2h4
0
. (4.14)

A similar relation has recently been published by Tolkova (2018). Here, r1= Im(k1,a)
is the damping rate of the main tidal species as given by (3.18), and r0 is the damping
rate of the mean water level set-up; Q1(0) is the discharge at the river mouth as
given by (4.7). The water level set-up is the difference of two decaying exponentials,
which are zero at the river mouth. The water level set-up rises along the river twice
as rapidly as the main tidal species is damped but thereafter, decays at a lower rate
than the main tidal species, because r0� r1 (figure 14c).

In rivers with a sloping bed, the tidally averaged water level set-up is always
marginal beyond the point where the bed reaches sea level (figure 14c). The water
level set-up has thus a pronounced local maximum. This maximum is lower and
closer to the river mouth for higher river discharge. The rapid reduction of the water
level set-up in the upstream part of the tidal river is, as the reduction of the tidal
amplitude, caused by the variation of the water depth with the river discharge.

Far upstream, where the flow becomes asymptotically uniform, the damping rate can
be expressed as a function of the water level only, similar to that of the main tidal
species (4.4c)

r0 =−
1
2

1
h0

∂zb

∂x
, x→∞. (4.15)
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This rate is higher than that of the main tidal species (4.4c), and similar to it,
decreases with the river discharge.

The amplitude of the principal overtide and the subtidal water level set-up change
along the channel in a similar manner because they are both forced by the part of
the friction term that is proportional to Q2

1; however, the overtide damps out more
rapidly. When the main tidal species is diurnal, as in the Kapuas, then the overtide is
superimposed on the semi-diurnal tide that enters the river from the sea so that the
semi-diurnal tide along the river strongly depends on the river flow.

5. Discussion
In a channel with a horizontal bed, the tide would intrude thousands of kilometres

upstream during low river flow (Godin & Martínez 1994; Cai et al. 2014). The limit
of tidal intrusion observed in natural rivers is often related to dams or cataracts (Parker
2007; Jay et al. 2015). However, a sloping bed sufficiently explains the extinction of
the tide and no physical obstacle is required.

Even when the bed is horizontal, the water depth varies with the river discharge (Cai
et al. 2016). Without a sloping bed, the water surface elevation forms a drawdown
curve even during low flow, and the river does not asymptotically approach uniform
flow. The assumption of a horizontal bed is thus not realistic. With a sloping bed, the
water surface forms a backwater profile during low flow so that the tide propagates
distinctly differently. This is important because the tide is strongest when the river
discharge is low. Tidal rivers can be expected to be more often in a state of backwater
than subject to drawdown, as their morphology is shaped by high flows, which occur
infrequently.

Near the river mouth, the tidal flow is strong, which is relevant in the context of
sediment transport and the intrusion of salinity. The tidal influence is particularly large
in the region where the flow reverses. At some point along the river, the amplitude
of the tidal discharge approximately equals the river discharge. The tidal discharge
decreases more rapidly along the river for a higher bed slope, which moves the most
upstream point of flow reversal, and thus the fluvial–tidal transition, closer to the sea
(§ 4.8). This more rapid transition between the tidally influenced and the exclusively
fluvial reach also leaves traces in the morphology. In the Kapuas, for example, the
fluvial–tidal transition is marked by a rapid reduction in bed material grain size as
well as of the bed form height (Kästner et al. 2017).

In rivers with a horizontal bed, the water level set-up induced by the tide reaches far
upstream, where the amplitude of the main tidal species has long become insignificant
(Hoitink & Jay 2016). The point where the tidally averaged water level set-up elevates
the spring tidal range more than the tidal range difference between the spring tide and
the neap tide is considered to be the upstream end of the fluvial–tidal transition (Jay
et al. 2015). At this point, the lowest low water occurs at neap tide, not at spring
tide anymore. In rivers with a sloping bed, the water level set-up becomes marginally
small beyond the point where the bed reaches sea level; thus, it does not reach far
upstream (§ 4.12).

One important effect of a sloping bed is that the tidal amplitude rapidly decreases
beyond the point where the bed level reaches sea level under all flow conditions. This
effect limits the extent to which sea level rise poses a risk to upstream areas. A rise in
sea level merely shifts the head of tides farther upstream, leaving the reaches beyond
the point where the bed reaches the higher sea level unaffected. Surprisingly, the bed
slope has so far not been considered to be a major factor that influences the resilience
of estuaries and rivers with respect to sea level rise (Prandle & Lane 2015).
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However, the land adjoined to those reaches can be at risk of overland flooding
during storm surges in gently sloping coastal lowlands (Frazier et al. 2010). In
our idealized analysis, we keep the drag coefficients constant. In practice, the bed
roughness varies with the tidal and river discharge in a complex manner (van Rijn
1984). As the idealized model still reproduces the observations of the river tide in
the Kapuas, we conclude that the variation of roughness is less important than that
of the water depth and that therefore, the bed slope is a more important factor to
consider than varying roughness. This notwithstanding, changes in roughness can be
relevant for operational flood forecasting (Reef et al. 2018).

The backwater dynamics explains the tidal admittance in the Kapuas, where
the tidal amplitude does not decay exponentially during low flow as predicted by
conventional models of river tides. Waves joining from the subordinary distributaries
may partially increase the tidal amplitude in the main channel, the Kapuas Besar.
However, bifurcations only locally affect the tidal amplitude and thus cannot explain
the observed gradual deviation from an exponential decay. A small increase of
the amplitude can be observed at the bifurcation of the largest side distributary,
the Kapuas Kecil. This observation is in line with the theory of transmission and
reflection at bifurcations (Lighthill 2001), according to which a small channel that
joins a larger one only exerts a small influence on the latter. In turn, the Kapuas
Besar strongly forces the subordinate distributaries. Backwater dynamics is thus the
most likely cause for the observed low flow admittance in the Kapuas River.

The estuarine geometry strongly influences how the tide propagates (Friedrichs
2010). We analyse the tidal propagation along a river with idealized geometry, as this
reveals the general effects of a sloping bed and allows for a mathematical explanation.
Our findings are relevant for rivers that do not converge in width and where depth
converges approximately linearly during low flow (§ 4.1). This is different from
tide-dominated estuaries, where the width converges exponentially and where the
tidally averaged water level varies only slightly between the seasons (Savenije et al.
2008; van Rijn 2011; Garel & Cai 2018). The bed slope in our models is constant,
whereas on the basin scale, the slope decreases along rivers in the downstream
direction (Richards 1982). A constant slope approach can be justified based on the
results of Seminara et al. (2012), who showed the bed slope is approximately constant
along tidal rivers in morphological equilibrium.

6. Conclusion

Our observations from the Kapuas River show that the tide propagates distinctly
differently during low flow than that expected from idealized models that ignore
the bed slope. Rather than decreasing exponentially in amplitude and intruding far
upstream, the tide remains isosynchronous near the sea, and then rapidly diminishes
where the bed reaches sea level. Conventionally, tidal rivers are conceptualized as
non-converging channels with a horizontal bed, where the tidally averaged width
and depth neither change along the channel nor over time. However, the tidally
averaged water depth remains only constant near the sea, and the bed rises along
the river. Farther upstream, the depth thus varies with the river discharge so that
the water surface forms a backwater profile during low flow. The backwater effect
is relevant because tides are strongest during low flow. We extend the idealized
model of tidal rivers to include the effects of backwater. Our idealized model shows
that the backwater profile considerably influences how the tide propagates during
low flow. The principal effect is a larger than expected tidal range near the sea,
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due to convergence of the depth, as well as a lower than expected tidal range far
upstream, due to lower depth and higher friction. Tidal intrusion is effectively limited
to the point where the bed reaches sea level, which also applies to the overtide
and the tidally averaged water level set-up. Our extended model not only explains
the observed tidal dynamics in the Kapuas River but resembles, in general, a more
comprehensive model of river tides, since variation of the river discharge and a
sloping bed are common to all rivers.
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Appendix A. Transformation the shallow water into the wave equation
The cross-sectionally averaged shallow-water equations (3.2a) and (3.2b) rely on the

following assumptions

(i) hydrostatic flow;
(ii) rectangular cross-section without tidal flats;

(iii) straight channel;
(iv) negligible side inflow;
(v) negligible variation of velocity within the cross-section (unit Boussinesq

coefficient);
(vi) negligible Coriolis force;

(vii) negligible density gradients.

The following steps transform the shallow-water equation into the wave equation
(3.4):

(i) rewrite the momentum equation (3.2b) in its reduced form:

∂Q
∂t
+
∂

∂x

(
Q
A2

)
+ gA

∂zs

∂x
+ cd
|Q|Q
ARh
= 0; (A 1)

(ii) ignore advective acceleration ((∂/∂x)(Q/A)� ∂Q/∂t);
(iii) divide the momentum equation by A;
(iv) approximate the hydraulic radius for a wide channel Rh→ h;
(v) A→wh;

(vi) expand 1/hp as a truncated Taylor series (1/hp
→ 1/hp

0);
(vii) h→ h0 + z, where h0 = z0 − zb;

(viii) differentiate the continuity equation with respect to x;
(ix) divide the continuity equation by w;
(x) differentiate the momentum equation with respect to t;

(xi) divide the momentum equation by g;
(xii) eliminate z by subtracting the continuity from the momentum equation.

The result is the wave equation (3.4).
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Appendix B. Friction term
This section derives the frequency components (3.8a)–(3.8b) of the Chebyshev

approximation of the signed square |Q|Q of the friction term (3.6). The products and
powers of complex exponentials are reduced by the following identities,

Re{c1eiω1t
}Re{c2eiω2t

} =
1
2 Re{c1c2ei(ω1+ω2)t}

+
1
2 Re{c2c∗1ei(ω2−ω1)t}, (B 1a)

Im(c) = Re{−ic}, (B 1b)
cc∗ = |c|2, (B 1c)

where the asterisk ∗ denotes the complex conjugate. The expansion of the discharge
Q up to the two leading non-zero frequency components (ωj = jω1) yields

F = f0Qhr
2
+ f1(Q0Qhr +Re{eω1t1iQ1}Qhr +Re{eω1t2iQ2}Qhr)

+ f2 (|Q0|Q0 + 2Q0Re{eω1t1iQ1}

+ 2Q0Re{eω1t2iQ2} +Re{eω1t1iQ1}
2

+ 2Re{eω1t1iQ1}Re{eω1t2iQ2} +Re{eω1t2iQ2}
2
), (B 2)

with reduced powers, this is,

F = f0Qhr
2
+ f1(Q0Qhr +Q1Q2eω1t2i

+Re{eω1t1iQ1}Qhr +Re{eω1t2iQ2}Qhr)

+ f2 (|Q0|Q0 + 2Q0Re{eω1t1iQ1} + 2Q0Re{eω1t2iQ2}

+
1
2(|Q1|

2
+Re{Q2

1eω1t2i
})+Q2Re{Q∗1eω3t1i

} +
1
2(|Q2|

2
+Re{Q2

2eω4ti
})) . (B 3)

F0 (3.8a) is the mean component (ω0 = 0) of this expression. Similarly, for the time
derivative F′

F′ = f1ω1(Re{ieiω1tQ1}Qhr + 2Re{ie2iω1tQ2}Qhr)

+ 2f2ω1 (+Q0Re{ieω1t1iQ1} + 2Q0Re{ieω1t2iQ2}

+Re{eiω1tQ1}Re{ieiω1tQ1} +Re{e2iω1tQ2}Re{ieiω1tQ1}

+ 2Re{eiω1tQ1}Re{ie2iω1tQ2} + 2Re{e2iω1tQ2}Re{ie2iω1tQ2}), (B 4)
= f1ω1(Re{ieiω1tQ1}Qhr + 2Re{ie2iω1tQ2}Qhr)

+ f2ω1 (Re{i|Q1|
2
} +Re{iQ2

1eiω2t
} − (Re{iQ2Q∗1eiω1t

}

+Re{−iQ1Q2eiω3t
})+2(Re{iQ2Q∗1eiω1t

} +Re{iQ1Q2eiω3t
})

+ 2(Re{i|Q2|
2
} +Re{iQ2

2eiω4t
})+ 2Q0Re{ieiω1tQ1}

+ 4Q0Re{ieiω2tQ2}) (B 5)

F′1 and F′2 ((3.8b) and (3.8c)) are complex amplitudes of the components with
frequencies ω1 and ω2, respectively.

Appendix C. Friction coefficients
The coefficients of the quadratic Chebyshev polynomial (3.6) determined with the

method of Dronkers (1964) are

α =min
(

1,max
(
−1,

Qmax +Qmin

Qmax −Qmin

))
, (C 1)
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f0 = −

((
3
2

sin(2α)+ (2+ cos(2α))
(

1
2
−
α

π

))
+

1
π

(
cos(2α)

(
π

2
− α +

2
3

sin(2α)−
1

12
sin(4α)

))
−

1
π

(
cos(α)

(
1
3

sin(3α)+ 3 sin(α)+ cos(α)(2π− 4α)
)))

, (C 2)

f1 = −
1
π

((
1
3

sin(3α)+ 3 sin(α)+ cos(α)(2π− 4α)
)

−

(
4 cos(α)

(
π

2
− α +

2
3

sin(2α)−
1

12
sin(4α)

)))
, (C 3)

f2 =−
1
π

(
π− 2α +

4
3

sin(2α)−
1
6

sin(4α)
)
. (C 4)

Appendix D. Wave propagation for second-order ordinary differential equations
with variable coefficients

When a wave propagates across a sudden change in the cross-section geometry, its
amplitude and wavelength change and a reflected wave occurs (Schönfeld 1951; Ippen
1966; Lighthill 2001). This paragraph shows that the propagation of a wave along a
gradually varying channel can be understood as a wave travelling across a sequence
of infinitesimal steps.

A second-order ordinary differential equation has the form

c2(x)y′′(x)+ c1(x)y′(x)+ c0(x)y(x)= s(x). (D 1)

The solution is the superposition of two waves, one that travels to the left and one
that travels to the right: y = y− + y+. When the coefficients c0,1,2 are constant, then
these waves travel as y±= y±(0) exp (r±x), where r± are the roots of the characteristic
polynomial c2r2

+ c1r + c0 = 0. When the coefficients c0,1,2 vary in space, then the
solution can be approximated by partitioning the domain into segments over which the
coefficients are kept constant. In the limit where the length of each segment becomes
infinitesimal, the approximation is exact. Along a segment, the wave travels as

yl = ŷ−l exp (r−l x)+ ŷ+l exp (r+l x), (D 2)

where l is the segment index. In the case of constant coefficients ŷ±l = y±(0). When
the coefficients vary in space, then the ŷ±l differ between the segments. To determine
how the ŷ±l change, consider two segments of length 1x that border each other at x0

(figure 15).
Solutions to (3.7) are twice differentiable. Therefore, at the border x0 between two

segments,

yl(x0) = yl+1(x0), (D 3a)
∂yl

∂x
(x0) =

∂yl+1

∂x
(x0), (D 3b)
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(El)+1/2 T-(El+1)+1/2y-

(El)-1/2 R-(El)+1/2y-

(El)-1/2 T+(El+1)-1/2y+

x0 - Îx/2 x0 + 1Îx/2x0

(El+1)-1/2 R+(El+1)+1/2y+

y+

y-

FIGURE 15. Development of the left y+ and right y− waves in the case of variable
coefficients.

or in matrix form
1 0 0 0
1 1 −1 −1
r−l r+l −r−l+1 −r+l+1

0 0 0 1




ŷ−l
ŷ+l

ŷ−l+1

ŷ+l+1

=
y−(x0 −1x)

0
0

y+(x0 +1x)

 . (D 4)

When there is only one incoming wave, i.e. when either y−(x0 −1x) or y+(x0 −1x)
are zero, there occurs only transmission and reflection of a single wave. For waves
travelling to the left, the reflection and transmission coefficients are T−= ŷ−l+1/ŷ

−

l =1−
(r−l+1 − r−l )/(r

+

l − r−l+1) and R− = 1− T− = ŷ+l /ŷ
−

l = (r
−

l+1 − r−l )/(r
+

l − r−l+1). For waves
travelling to the right, these are T+ = ŷ+l /ŷ

+

l+1 = 1+ (r+l+1 − r+1 )/(r
+

l − r−l+1) and R+ =
1− T+ = ŷ−l+1/ŷ

+

l+1 = (r
+

l+1 − r+l )/(r
+

l − r−l+1).
The wave y− thus changes while travelling from the centre of the left to the centre

of the right segment as

y−
(
+
1x
2

)
= y−

(
−
1x
2

)
exp

(
+r−l

1x
2

)
T− exp

(
+r−l+1

1x
2

)
+ y+

(
+
1x
2

)
exp

(
−r+l+1

1x
2

)
R+ exp

(
+r−l+1

1x
2

)
, (D 5)

where the first term is the transmitted part of the wave that comes from the left y−,
and the second term is the reflected part of the wave y+ that comes from the right.
This is visualized in figure 15.

When the segment length is infinitesimal so that exp (r±1x)= 1+ r±1x+O(1x2),
and the coefficients c0,1,2 are smooth functions so that r±l+1 = r±l + 1x(∂r±/∂x) +
O(1x2), then the right travelling wave is described by the first-order ordinary
differential equation,

∂y−

∂x
= lim

1x→0

(
1
1x

(
y−
(
1x
2

)
− y−

(
−
1x
2

)))
(D 6a)

=

r− +
−1

r− − r+
∂r−

∂x︸ ︷︷ ︸
T−

 y− +
−1

r− − r+
∂r+

∂x︸ ︷︷ ︸
R−

y+. (D 6b)
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Similarly, the wave y+ travelling to the right develops as

y+
(
−
1x
2

)
= y+

(
+
1x
2

)
exp

(
−r+l+1

1x
2

)
T+ exp

(
−r+l

1x
2

)
+ y−

(
−
1x
2

)
exp

(
+r−l

1x
2

)
R− exp

(
−r+l

1x
2

)
, (D 7a)

∂y+

∂x
=

+r+ +
+1

r− − r+
∂r+

∂x︸ ︷︷ ︸
T+

 y+ +
+1

r− − r+
∂r−

∂x︸ ︷︷ ︸
R+

y−. (D 7b)

The waves y+ and y− experience the opposite effects due to a change in coefficients
as mass and energy are conserved.

Symbols

Quantity Unit Description
α 1 relative strength of river and tidal flow
ωj 1 s−1 angular frequency of jth-tidal species
1ϕ1 1 phase difference between surface elevation and velocity
ϕjz, ϕju 1 phase of the jth frequency component of zj and uj
a 1 strength of friction
A m2 wetted cross-sectional area
c0, c1, c2 1 coefficients of the characteristic polynomial
cd 1 drag coefficient
f0, f1, f2 1 Chebyshev coefficients of the friction term
F m6 s−2 Chebyshev approximation of the signed square Q|Q|
Fj, F′j m−6 s−2 jth-frequency component of F, time derivative thereof
g m s−2 acceleration by gravity
h m water depth
h0 m tidally averaged water depth
hu m asymptotic uniform flow depth upstream
i 1 imaginary number
k1 1 m−1 wavenumber with friction and convergence
k1z, k1Q 1 m−1 wavenumber of the surface elevation and discharge
k1,0 1 m−1 wavenumber with neither friction nor convergence
k1,a 1 m−1 wavenumber with friction but no convergence
1k1 1 m−1 change in wavenumber introduced by convergence
Q,Qj m3 s−1 discharge, frequency components thereof
Q0 m3 s−1 river discharge
Qn m3 s−1 river discharge, for which tidally averaged flow is uniform

along river
Qhr m3 s−1 half the tidal discharge range
R± 1 m−1 coefficient of reflection
r± 1 m−1 roots of the characteristic polynomial
r0 1 m−1 damping coefficient of the subtidal harmonic
r1 1 m−1 damping coefficient of the main tidal species
r2 1 m−1 damping coefficient of the first even overtide
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Rh m hydraulic radius
T1 s period of the main tidal species
t s time
T± 1 m−1 coefficient of transmission
u, uj m s−1 velocity, jth frequency component thereof
w m river width
x m distance from the river mouth
z0 m tidally averaged water level
z′0 m subtidal water level offset
zb m bed elevation with respect to datum
zs, zj m surface elevation, jth-frequency component thereof
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