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AN ABSTRACT COMMON FIXED POINT PRINCIPLE
AND ITS APPLICATIONS

JACEK R. JACHYMSKI

We establish a common fixed point principle for a commutative family of self-maps
on an abstract set. This principle easily yields the Markoff-Kakutani theorem
for affine maps, Kirk's theorem for nonexpansive maps and Cano's theorem for
maps on the unit interval. As another application we obtain a new common fixed
point theorem for a commutative family of maps on an arbitrary interval, which
generalises an earlier result of Mitchell.

1. INTRODUCTION

There are several common fixed point theorems involving different families of maps,
but having similar proofs after all. We mean here the Markoff-Kakutani theorem for
affine maps (see for example, [3, p.75]), Kirk's theorem for nonexpansive maps (see for
example, [6, p.485—486]) and a theorem of Cano [1, Theorem 1] for maps on the unit
interval. Our purpose here is to establish a common fixed point principle, which will
subsume each of the above mentioned results. This is done in the next section (see
Theorem 1). We want to emphasise that our principle involves maps on an abstract
set equipped with neither topology nor order structure. Nevertheless, our Theorem 1
combined with a suitable fixed point result for a single map enables us to obtain the
above theorems as immediate corollaries. Furthermore, it gives us also the possibility to
get some new results in this direction, such as, for example, an extension of Theorem 3
of Mitchell [5] to a family of maps on an arbitrary (not necessarily compact) interval (see
Theorem 2). As a by-product of the proof of Theorem 2, we give a characterisation of
the set of periodic points of a map, for which the family of its iterates is equicontinuous.
This improves upon the recent results of Liu [4].

The letter N denotes the set of all positive integers. For a map g and n £ N,
gn is the nth iterate of g, F(g) and P(g) denote the sets of all fixed points and all
periodic points of g, respectively (a point x is a periodic point of g if x = gn(x) for
some n 6 N). The letters / and J denote the unit interval and an arbitrary interval,
respectively. A set A is said to be ^-invariant if g(A) C A.
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14 J.R. Jachymski [2]

2 . A COMMON FIXED POINT PRINCIPLE

Let X be a nonempty set and E be a family of its subsets. We begin with the
following defiintion.

DEFINITION 1: A family £ has the property (P) if and only if 0 £ E, X £ E and
for any sets A,B in E, A n B e E .

For a family S with the property (P), we define the class .F(£) of self-maps of X
by

g £ ^"(S) if and only if F(g) / 0, F(g) £ S,

and for any nonempty ^-invariant set A £ E, F(g) D A ^ 0.

To illuminate the above notions, we give a few examples of families E and corre-
sponding classes

EXAMPLE 1. Let X := I and S := {0} U {[a,b] : a,b £ I,a < 6}. Following Cano [1]
define the class Ci by

Ci := {g : 11—> / | g is continuous and F(g) is a closed interval }.

Let g : I *-* I be continuous. It is easy to verify that g £ ^"(S) if and only if g £ C i .

EXAMPLE 2. Let X := I and S be the family of all closed subsets of / . Following
Cano [1] define the class C2 by

C2 := {g : / 1—» / I g is continuous and F(g) — P(g)}.

Let g : 11—> I be continuous. Then g £ ^"(E) if and only if g £ C2. This equivalence
follows from Theorem 1 [2].

EXAMPLE 3. Let X be a nonempty closed bounded and convex set in a uniformly
convex Banach space. Let S be the family of all closed and convex subsets of X.
It follows from the Browder-Gohde-Kirk Theorem (see, for example, [6, p.478]), that

contains the family of all nonexpansive self-maps of X.

EXAMPLE 4. Let X be a nonempty compact convex set in a locally convex topological
space. Let E be the family of all closed and convex subsets of X. It follows from
the Schauder-Tychonoff Theorem (see for example, [3, p.74]), that ^"(E) contains the
family of all continuous affine self-maps of X.

The main result is preceded by the following useful lemma.
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LEMMA 1 . Let X be a nonempty set and E be a family of its subsets possessing
the property (P). If T C ^"(E) is a commutative family of self-maps of X then the
family {F(g) : g £ J7} has the finite intersection property.

PROOF: Fix a positive integer n and let gi £ T for i = 1 , . . . ,n . We must prove
n

that (~) F(gt) ^ 0. We shall apply induction with respect to k to show that for all

k £ l , . . . , n ,
k

(1) Ck := p| F(9i) ± 0,

n

in particular, f) F(gi) ^ 0. By the definition of J"(E), (1) holds if k = 1. The case
»=i

when n = 1 is trivial. So let n ^ 2. Assuming (1) to hold for some fc, 1 ^ fc $ n — 1,
we shall prove it for k + 1. By commutativity, we obtain that ĵb+iC-^Gft)) — F[gi)
for i = 1 , . . . ,k, which immediately yields that Ck is gk+1-invariant. By the definition
of E, we may infer that Ct € E, since F(gi) £ E for i — l,...,k. Further, Ck is
nonempty by our induction hypothesis. Therefore, using the definition of ^"(E), we
obtain that F(gk+i) D Ck ^ 0, that is, Ck+i j^ 0, which completes the induction. U

THEOREM 1 . Let X be a nonempty set, Ej and E2 be families of subsets of X
with the property (P), and Ei C E 2 . Further, let f : X H-• X satisfy the following
condition:

F(f) # 0, F(f) e S2,
(2) and for any nonempty f-invariant set A £ S j , F(f) C\ A ^%.

If T C /"(Ei)UJ"(E2)U{/} is a commutative famiij of self-maps of X, then thefamily
{F(g) : g £ T} has the finite intersection property.

PROOF: Let n £ N and g\,... ,gn £ T. We may assume, without loss of general-
ity, that n ^ 3 and for some k, k <n,

gi,--,gk-i £ ^ " ( E i ) , gk = f, gk+\,---,gn £

By Lemma 1, A := f) F(gj) ^ 0; moreover, .4. £ S i . By commutativity, A is

/-invariant so, by hypothesis, A C\ F(f) ^ 0, that is, B := fl ^(ff;) ^ 0- Since
7=1

6 £2
 a n d s i ^ S 2 , we may infer that B £ E2. Define

E : = { £ n S : 5 £ E2} and ^ ' := {ffi|B : j = k + 1,.. . ,n}.
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We leave it to the reader to verify that then the assumptions of Lemma 1 are satisfied
(with the set B and the family T' substituted for X and T, respectively). In partic-
ular, that F(gj\B) (= F(gj) ("1 B) is nonempty for j = k + 1,... ,n, follows from the
definition of ^(£2) and the fact that for such j , B € £2 and B is g^-invariant. By

n n
Lemma 1, f| F{gj\B) ^ 0, that is, f) F(gj) ^ 0, which completes the proof. D

>=fc+i " i=i

COROLLARY 1. Let (X,T) be a compact topological space and £1 , £2 be fam-
ilies of subsets of X as in Theorem 1. Let f be a continuous self-map satisfying (2). If
T C J r (£1) U ^"(£2) U {/} is a commutative family of continuous self-maps of X, then
there is a common fixed point for T.

PROOF: Apply Theorem 1 and the compactness argument. LJ

REMARK 1. Corollary 1 immediately yields the Markoff-Kakutani theorem [3, p.75].
To see this, define the family £1 as in Example 4, and put £2 := £1 and / := id, the
identity map on X. In the same way, a common fixed point theorem for nonexpansive
maps [6, p.485] can be deduced (see Example 3; this time equip the set X with the
weak topology). We emphasise that, in both cases, we could apply Corollary 1 thanks
to the suitable geometrical and topological properties of a set of fixed points of a single
map.

REMARK 2. Theorem 1 of Cano [1] is subsumed by Corollary 1. To see this, define the
families £1 and £2 as in Examples 1 and 2, respectively.

3. COMMUTING MAPS ON AN ARBITRARY INTERVAL

In this section we shall apply Theorem 1 to obtain extensions of Cano's Theorem 1
[1] and Mitchell's Theorem 3 [5] by involving self-maps of an arbitrary nonempty interval
J. Define the following classes of maps on J.

Cj := {g : J 1—> J \ g is continuous and F(g) is a nonempty

compact interval},

C2 := {g : J 1—> J \ g is continuous and for any nonempty closed

in J, g — invariant set AC. J, F(g) ("I A ^ 0} .

Obviously, if J = I then C'j — C i . Simultaneously, it follows from Theorem 1
[2] that C'2 = C2 if J = I. However, in case of an arbitrary interval, the condition
that P(g) — F(g) need not imply g £ C2. (For example, consider J := [0,oo),
g(x) := 2x (x £ J), and C : = { 2 " : n £ N}.)

Now, if we put X := J and define families £1, £2 analogously as in Examples 1 and
2, respectively, then applying Theorem 1 one can easily obtain the following extension
of Cano's Theorem 1 [1].
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PROPOSITION 1 . Let f : J >-> J be continuous and F C Ci U Cj U {/} be a
commutative family of continuous maps. If for each g £ T, P{g) ^ 0, then the family

{^(9) '• 9 £ ?} has tne finite intersection property.

However, the assumptions of Proposition 1 have the disadvantage that given any
particular map g, it may be difficult to verify whether g £ C\ or g £ C2 . The following
theorem has more easily verifiable assumptions; it extends Mitchell's Theorem 3 [5].

THEOREM 2 . Let f : J ••-» J be continuous and .FU{/} be a commutative family
of continuous self-maps of a nonempty interval J and such that for each g € T, the
family {gn : n £ N} is equicontinuous. Then we have:

(i) the family {F(g) : g £ JrU{/}} has the finite intersection property if and
only if each map g £ T U {/} has a periodic point;

(ii) if there is an h £ T such that F(h) is nonempty compact then the family
T U {/} has a common fixed point.

We precede the proof with the following lemma.

LEMMA 2 . Let g : J i-» J be a continuous map such that the family {gn : n £ N}
is equicontinuous. Then F{g) is an interval.

PROOF: Suppose, on the contrary, F(g) is not an interval. Then there exist points
a, 6 £ F{g), a < b, such that (a, 6) D F(g) = 0. One can use the same argument as in
the proof of Theorem 2 [1] to obtain that {gn : n £ N} could not be equicontinuous at
point o or b, a contradiction. D

COROLLARY 2 . Let g : J >-> J be a continuous map such that the family {gn :
n £ N} is equicontinuous. Then P(g) is an interval. Hence, P(g) is either uncountable,
or it has at most one element.

PROOF: If P(g) = F(g), the result follows from Lemma 2. So suppose P(g) £
F(g). This implies that P(g) is nonempty, so F(g) is nonempty; for otherwise, either
g(x) > x for a: £ J , or g(x) < x for a; £ J , which contradicts that P(g) ^ 0. Obviously,
for each k £ N, the family {gkn : n £ N} is equicontinuous so, by Lemma 2, -̂ (ff*) is

oo

an interval. This easily yields the connectivity of -P(fif), since P(g) = (J F(p*), and

n F{9k) (= F(9)) »s nonempty. D
Jt=i

REMARK 3. Corollary 2 generalises and unifies Theorems 1 and 2 of Liu [4].

PROOF OF THEOREM 2: We start with part (ii). If such a map exists then, by
Lemma 2, F(h) = [a, 6] for some a,b £ J. By commutativity, [a,b] is ^-invariant
for each g £ T U {/}. To get the results, it suffices to apply Proposition 1 with [a,b]
substituted for J and considering the family {<?|[ai&] : g £ -^"U{/}}, since by Theorem 2
[1], we have then {g\[a,b] •g£Jr}QC'1.
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18 J.R. Jachymski [6]

The necessity part of (i) is trivial. In the proof of the sufficiency part of (i) we
may restrict to the case, when F(g) is not compact for each g £ T\ for otherwise, we
could apply (ii). We shall show that J C C j in this case, so the result will follow from
Proposition 1. Note that F(g) is nonempty for each g £ T U {/} (see the proof of
Corollary 2). Now, fix a map g £ T. In the sequel we consider two cases: the first, for
a bounded and half-open interval, and the second, for an unbounded and open interval.
The analysis of the remaining cases is similar and we omit it.

1°. J = [a, b) where a < b. Then F(g) must be of a form [c, b), where a ^ c <b.
The case when c = a is trivial. So assume a < c. Then, either g(x) > x for x £ [a, c), or
g(x) < x for x £ [a, c); for otherwise, F(g)n[a, c) ^ 0, a contradiction. Since g{a) > a
we get g(x) > a; for x £ [o,c). Fix an x £ [a, c). If there exists a k in N such that
gk(x) £ [c,b) then gn(x) = gk(x) for n ^ k. If not, that is, gn(x) £ [a,c) for n £ N
then {gn(x)}^L1 is increasing, hence convergent. Since lim gn(x) £ [a,c] fl F(g), we

n—»oo

get lim gn(x) = c. In both cases {5n(^)}^Li is convergent and lim gn(x) £ J. This
n—>oo n—>oo

easily implies that g £ C2 .

2°. J = (a, oo). Assume .F(<7) ^ J; for otherwise that, g £ C2 is trivial. Then

the following two cases are possible:

(a) F(g) = (a, b], a < b. Then, either g(x) > x for x > b, or g(x) < x for

x > b. Suppose g(x) > x for x > b. Then {^n(a;)}^Li is increasing, hence either
lim gn(x) £ (6,oo), or lim gn(x) = oo. But lim gn(x) cannot be finite; for other-

n—»oo n—>oo n—>oo

wise, lim gn(x) £ F(g) (1 (6, oo), a contradiction. Thus we get lim gn(x) = oo for
TI—>oo n—>oo

x > b. Then, however, {gn : n £ N} cannot be equicontinuous at point b, a contra-
diction. Therefore, we have g(x) < x for x > 6. Using a similar argument as in 1° we
infer that {gn{x)}^L1 is convergent and lim gn(x) £ J for x £ J, which implies that

n—»oo

g£C'2.
(b) F{g) = [6,oo), b > a. Suppose g(x) < x for x £ (a,b). Then {gn(x)}™=1

converges to some c(x) in [a, b). But c cannot be in (a,b), since then it would be a
fixed point of g. Thus we get c(x) = a for x £ (a,b). Then, however, {gn : n £ N}
would not be equicontinuous at point b. Therefore, g(x) > x for x £ (a,b). Hence,
for x £ (a,b), either {gn(z)}%L1 is constant for sufficiently large n, or lim gn(x) = b.

n—•oo

Thus, for all x £ J, {^"(x)}^! is convergent and lim gn(x) £ J so g £ C2 . D

EXAMPLE 5. Let J := (0,oo), T ~ {gk • k £ N} , where gk(x) :- x for 0 < x < l/k,
and gk(x) :— l/k for x ^ 1/fc. It is easy to verify that T satisfies the assumptions of
Theorem 2 and there is no common fixed point for T'. On the other hand, according
to Theorem 2, the family {F(g) : g £ T} has the finite intersection property.
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