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SOLVABILITY OF NON SELF-ADJOINT

AND HIGHER ORDER DIFFERENTIAL

EQUATIONS WITH JUMPING NONLINEARITIES

PETER J. POPE

This thesis is concerned with problems of the type

Lu - g(u) = f(x) (1)

We assume that the nonlinearity in (1) can be written as

g(u) = \iu + VM + ty(u) where y., v e J?, \i = lim u J g(u) ,

v = lim u g(u) . In the Ambrosetti-Prodi result the nonlinearity
M-*-°>

'jumps' over the first eigenvalue of the linear problem, that is,

v < Xi < v (see [J]).

Knowledge of the set AQ = {(y, v) e JR2 : there exists a non-

trivial solution of Lu = ]m + vu } is important if one wishes to apply

homotopy invariant index methods to establish the existence of solutions.

We obtain results for the set Ao for a wide class of operators L

AQ is in general difficult to calculate but one problem for which

results are known is the second-order self-adjoint problem:
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-u" (x) - yw (a;) - vu~(x) = 0, x e (O,TT)

M(0) = U(T\) = 0

Knowledge of AQ for th is problem has been suggestive of a number of

more general r e su l t s . (See [2].)

We calculate the set AQ explici t ly for two problems:

(il The second-order non self-adjoint problem,

-u" (x) - \M te) - vw (x) = 0 , x e (O,TT)

w(0) + M(TT) = 0, W (TT) = 0

(i i ) The fourth-order self-adjoint problem suggested by Fucik in [4],

- u v v ( x ) - \ i u + ( x ) - v u ~ ( x ) = 0 , x e ( 0 , i O

u(0) = U(TT) = w"(0) + U"(TT) = 0

These results compare interestingly with the known case and in the second-

order case we obtain a counter-example to a potential generalisation of a

classic theorem of Dolph.

Dancer's results in [2] for the complementary set, JR \AQ , are

extended for higher-order and non self-adjoint problems. Here the use of

the Maximum Principle is foregone and the theory of Positive Operators

used instead.

More general theorems are obtained concerning the local behaviour of

the set AQ near (X-,, A,) both when X^ is a simple eigenvalue and when

X-K is an eigenvalue of higher multiplicity for the corresponding linear

problem. The difficulty here is the non-smoothness of the nonlinearity in

(1) . (It is not even C ) . A modification of the Implicit Function

Theorem is used.

Finally, in the case when the linearisation has one-dimensional

kernel, we provide a negative answer to a question posed by Dancer in [3]:

Does AQ contain an open set?
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