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Abstract

A similarity method is used to develop a solution of the wave equation
within a sector with mixed boundary conditions. In this manner the field
which results from the diffraction of an incident pulse of step function time
dependence is found.

1. Introduction

There have been two methods described recently by which the two dimen-
sional problem of the diffraction of steady sinusoidal acoustic waves by an
imperfectly reflecting infinite wedge may be examined. These methods, which
were derived in the solution of problems involving waves in a shallow fluid,
are those of Stoker [1] and Peters [2] (1952).

For the wave diffraction problem the precise nature of the disturbance
within the imperfectly reflecting wedge has been ignored, and its effect re-
placed by the imposition of an impedance type of boundary condition at the
surface. Stoker's method has been applied by Karp and others [3, 4, 5] and
Peters' method by Senior [6] (1959) to the idealized problem which may be
summarized as follows. A quantity <p(r, 6) is to be calculated which satisfies,
in the region d0 < 6 < 0X, the reduced wave equation

(V* + k*)<p{r, 6) = 0,

under boundary conditions

dq> ( = ik T)0 tp for 0 = 0O,
dd [ = —ikr\x <p for 0 = d1,

for various incident fields. The quantities r\ which represent the reciprocal
of the complex refractive index at the surface of the wedge are taken to be
constant on the surface. The problem as stated is a little more general than
that solved either by Senior, who specified that i)0 = Vi> o r by Karp who
restricted his calculation to right-angled wedges.
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The present paper, which follows a number of others which utilize the same
method, is intended to show that formal closed solutions which demonstrate
the most important features of the diffracted field may be found more simply
if the usual assumption of steady harmonic time dependence is not made.
Rather we can consider an incident plane wave of step function time de-
pendence and we can use the method of dynamic similarity to derive the
solution for an incident pulse. This solution may then be converted, if
necessary, to the steady solution.

The method of dynamic similarity is very closely related to the method of
conical flows which has been described in detail by Goldstein and Ward [7].
Its application to certain transient two dimensional problems of supersonic
flow was made by Craggs [7, 8]. It has also been applied to a series of prob-
lems of wave diffraction and refraction by the author [10, 11, 12]. Pulse
diffraction by a perfectly conducting wedge was also examined by a similari-
ty method by Keller and Blank [13].

The essence of the method of dynamic similarity is to consider in a two
dimensional problem a function q>(r, 6, t) which satisfies the wave equation,

and for which it is possible to assume that after a particular instant t = 0,
the solution is of the specific form (p{r\t, 0). It will be seen that the scattered
field which follows the arrival of a plane pulse at the vertex of the wedge is
of this form. Following this assumption it is easily shown that for r > ct,
under the transformation r = ct sec u, <p satisfies the hyperbolic equation

82w 8q>

-isr + s l - 0 ' <2>
for which the general solution is

9=f(u-6)+g{u + 6), (3)

where/and g are arbitrary functions which are constant on the character-
istic lines u + 0 = const and u — 0 = const respectively.

If r < ct, under the transformation r = ct sech (—v), q> satisfies the
elliptic equation

in a strip 0O < 0 <r- 8l,v < 0, in the (v, d) pls-e The minus sign is introduced
to define the correct branch for the inverse relationship, viz.
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The method is therefore seen to be one of reducing the diffraction problem
to a problem in harmonic function theory. This was also the aim of Peters'
method which was applied to the steady state problem. And this harmonic
function problem has received further attention in an interesting series of
papers by Van Dantzig [14] and Lauwerier [15].

2. The solution in the hyperbolic region r > ct

The problem is first set up as a problem in acoustics. In the linearized
theory we may set up a velocity potential <p such that the velocity
v (= —V<p) and the infinitesimal pressure change p (= p dqp/dt) satisfy
the momentum equation to the first order, where p is the density of the
medium at rest. Then if c is the velocity of sound in the medium at rest, <p
satisfies the wave equation (1).

We consider the walls of the wedge to be soft in the sense that the pressure
is proportional to the normal velocity. If we take the boundaries to be the
planes 0 = 0, and 6 = y>, the appropriate conditions have the form

and (5)

where a and /3 are constants which give a measure of the softness of the
boundaries. For the purpose of generality we do not take a and /S to be equal.

We now consider the case of a plane pulse of potential q> which is travelling
towards the vertex of the wedge within a region of angle y>. We take the pulse
to have a step function profile so that it corresponds to a plane pressure im-
pulse. Depending on the angle of incidence y of the pulse and the angle y> of
the wedge there may be a number of reflected pulses which accompany the
incident pulse. The determination of the complete incident field which
satisfies the correct boundary conditions is not a difficult matter since the
situation is a steady one with no diffraction effects present.

For simplicity, however, we will examine only the case as depicted in
fig. 1 where the incident pulse does not meet the walls of the wedge until
after it arrives at the vertex at time t = 0. We can now assert that the sub-
sequent disturbance has a potential which depends only on the variables r/t
and 6, and for this disturbance we can use the transformation described in
the introduction. The hyperbolic region r > ct is one in which the solution
takes the form given in equation (3), and since the initial field at t = 0 de-
termines the field as r/t -*• oo we are able to determine the field in the whole
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region r > ct. The field structure is shown in figure 2, where the polar co-
ordinates rjt and 0 are used. In this co-ordinate system the characteristic
lines, u ± 0 = constant, are the half-tangents to the circle r = ct, which
being the envelope of characteristics is itself a characteristic separating the

Fig. 1. Initial state with pulse FC
moving steadily to the right.

Fig. 2. Subsequent state showing
the field structure.

hyperbolic from the elliptic region. The initial condition of an incident pulse
just reaching the vertex fixes the value of the potential at rjt — oo, and this
immediately leads to the result that the lines BC, EF, BG and EH are the
characteristic lines which separate distinct regions of constant potential.
To the right of the lines BC and EF the potential is 0, and to the left it is 1,
except within the regions ABG where it is I + Ro and within DEH where
it is 1 + R#. These constants Ro and R# are the reflexion coefficients to be
expected when a pulse is reflected under the boundary condition (5) on an
infinite plane surface.

In particular near the surface 0 = 0 we have the result

<p = U(6 + y - u) + R0U(y - 6 - u),

where U(z) is the unit step function, and from (5) the boundary condition
to be satisfied is that

It follows that

c 3? a<ty> = Q
sin u 8u 86

a sin y — c
a sin y + c

Similarly near the surface 0 = y>

<p = U(—y + 2n — u — 0) + R+ U(6 -

since the boundary condition on ft — y> is

(6)

— u — y);
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c 8<P _°ty = Q
sin u 8u dd

it follows that
P s i n (2?t ~ y ~ y ) ~ c

 mR -
sin (2n — v — y)

We may note in passing that when the angle of incidence at the surface
6 = 0O is sin"1 c/a, the reflexion coefficient Ro vanishes, and if the angle of
incidence at the other surface is sin"1 c//3, R^ vanishes; this is a situation when
an incident pulse is completely absorbed at one surface or the other.

The principal result, however, is that just outside the circle r — ct the
potential is piecewise constant, and therefore in particular that the tangen-
tial derivative d<pjdd vanishes on this circle except at the singular points
0 = y and 0 = 2ip — y + 2n.

3. The solution in the elliptic region r < ct

The calculations so far have been of a rather trivial nature. They have
served, however, to separate the main reflection effects of the surfaces of the
wedge from the diffraction effects of the vertex.

Within the sonic circle, we have seen that the potential is an harmonic
function in v and 0. Because this circle, being'the envelope of the character-
istics in the hyperbolic region, is also a characteristic, the only link which can
subsist between the elliptic and the hyperbolic region is that the tangential
derivative of <p (or the tangential velocity component) must be continuous.
On introducing a conjugate harmonic we are led to consider a complex
potential W with Rl(W) = <p. Conditions to be satisfied by W which are
relevant to the solution may be derived as follows:

The situation as already depicted leads us to expect singularities on the
sonic circle at the points, G and H, and in addition we can expect singulari-
ties only at the vertex of the wedge and possibly at the points A and D.
Within the strip 0 < 0 < y>, t><Oof the complex (v + t'0)-plane, W and its
complex derivatives must be regular functions, since all the possible singular-
ities are on the boundary. The Cauchy Riemann conditions enable us to
make the identity

dW _ 3<p . d<p

~dv ~ dv t~ffl'

and it follows that on the boundary with v = 0, 0 < 6 < y>, dW/dv is real,
with simple poles at 6 = y, 0 = 2n + 2y — y, where q> has a step discon-
tinuity, the residues at these poles being proportional to the jumps in q>.

The boundary conditions on the absorbing wedge likewise take the form
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C dtp

sinh v dv

Hence on 6 = 0

8a>
« - on 8 = 0

I • I rt

dv Lsinh v

or
dWarg —— = — arc tan c/x sinh v, (9)

while on 6 = y>

T - ^ - +.*/jl = 0 ,sinh v J
Rl— \-

dv Lsinh:
or

dW
arg —— = + arc tan c//S sinh v. (10)

dv

It is convenient in writing down the solution to map the strip in the complex
(v + id)-plane into the upper half C (= I + «?) plane by the transformation
C = sech —n(v + iO)ly> or (v + id)njrp = In [1 — (1 — C2)1/2]/C- The con-
ditions to be satisfied on the f-axis by the derivative dW/dC are that

1. dW/dC is imaginary on the segments £ < — 1, f > 1 except at simple
poles at the points £ = sec ynjy and sec (y — 2n)njy>. These conditions follow
from the vanishing of dcpjdO on the sonic circle, as mentioned above.

2. On the segment 0 < £ < 1, which corresponds to the boundary 0 = 0
r < ct, it follows from equation 9 that

dW

- arc tan j — £*/» / [1 - ( 1 - f»)V«]*/» - (l + (1 - f«)V«]#7»| = - L(f, «).

3. On the segment — 1 < | < 0 which corresponds to the boundary
8 = %p, r < ct it follows from equation 10 that

dW
a r g — = +£(£/?).

4. The point at infinity in the £-plane which corresponds to the point
0 = y/2 on the sonic circle can only be an ordinary point so that both W
and dW/dC must be regular at infinity. This restricts the solution to the class
of those for which as |f | -> oo, dW/dt; = O^-1'1) with <5 a positive constant.

5. The singularity at the origin is one which cannot be regarded as a
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source of energy. It follows that as £ -*• 0, dWjdt, is 0(£~1+e) with e positive.
It is the conditions (2) and (3) to which we must turn first. We may ex-

amine the subsidiary potential problem of finding an expression for dW/d£
which has the required argument on the two segments — 1 < I < 0 and
0 < £ < 1 and which is real on the remainder of the real |-axis. If we write
In dW/dC in the form of a Cauchy integral

i d W i
ln IF = ln

dQ

dW dw = - ^U
nJ-i z — dz

dQ ni-xz-Q

then it is easily seen that when Q approaches the real axis on the segment
from above with f(z) a real function, the imaginary part of the integral is
/(£), and if Q approaches real values outside the segment — 1 < | < 1 the
imaginary part is zero. Accordingly we can identify the function f{z) with
the argument defined in conditions (2) and (3), so that we may write

t — Q nJ-i t — Q

where we may choose A (C) in order to satisfy the remaining conditions. The
exponential factors are bounded both at f = 0 and as |£| -> oo. The presence
of these factors enables us to take A (Q) to be real on the segment — 1 < f < 1.
We may combine the remaining conditions under the assertion that if

,11)

A(Q)= ( + )
(1 _ fi)i/t If _ sec ynjf Q - sec (y - 2n)nlrp)

L andM being constants, then B(C) is a function which is real and bounded
on the whole of the real axis with no singularities on the axis, as well as being
regular in the whole upper half C-plane. Accordingly by an extension of
Liouville's theorem, following a reflection in the real axis of the upper into
the lower half plane, 13 (J) must be a constant. Since we already have avail-
able the constants L and M, this may be taken to be 1. The constants L and
M may now be found since the residue of dWjdC at the poles f = sec ny/ip
and sec (2n — y)i/v must be proportional to the discontinuity in potential.
It follows that L and M are defined by the identities

Ro = TIL cot ynjrp exp jT[sec {ynjy)],
and

Rf = —nM cot (y — 2n)nly) exp !T[sec (y — 2}i)nly>].

Thus the complete solution for the complex derivative is that

dW _ exp T(f) (Ro tan yn/rp exp — T(sec

. tan (y — 27t)nly> exp — T(sec (y — 2n)nly>)

Q — sec (y — 2n)nlrp
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with Ro and R# defined in (6) and (7) and T(£) in (11). This result is suffi-
cient to determine the pressure and the velocity components everywhere
within the sonic circle since we have the identities

rp = -ps28<pl8s, rVT = —s8tpj8s and rVe = —dcpjSQ,

where s = r/t and Vr, Ve are the velocity components. The derivatives
and 8q>jdd are given by the equations

8<p 71

8s ( sV/2

and

£? = - E
86 ~ rp

£ being given explicitly by the relation

GT
exp (*6w/v»)[l - (1 -r*l<&yi*\*l* + exp -

4. The results for incident plane waves of steady sinusoidal time
dependence

The results given in the previous sections are associated with plane waves
of potential which have a step function profile. What is more to the point,
since we have more explicit information about the pressure, the incident field
is a plane impulse of pressure of delta function profile. Since the diffraction
problem is a linear one the superposition principle may be used to set up an
incident plane wave of arbitrary form, but since there is considerable interest
in the case of steady sinusoidal waves we shall only consider this case. The
means of deriving the scattered field which corresponds to the incident field

p = pc8[ct — r cos (6 + y)]

is the Laplace transform. Given the corresponding scattered field p,e as
derived from equation 12, and its Laplace transform J~^>,,.exp —otdt it
follows that the scattered field which corresponds to an incident field of form
exp iw\tc — r cos (6 + y)]/c is

expiwt f00
p,c exp — vwt dt

pc Jo

and this may be transformed on putting s = r/t in the integrand into the
formula
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expiwt C°°d<p: r°°da>
— exp (-iwrls)ds

Jo cs
Pc

And since this integral is essentially an integral over the range of tr1, keeping
r and 0 fixed, the integral will still be correct if we regard the constants a and
/? to be complex with a non-negative real part, this being a case of interest in
electromagnetic theory. Indeed we may also take the quantity c to be a com-
plex constant without altering the fact that we have a solution of the reduced
wave equation. Thus we have a formal solution which holds for a medium
with finite conductivity in the presence of a complex impedance boundary
condition.

5. Electromagnetic theory

Although the solution has been given for a problem in acoustics, it is
exceedingly simple to make the change to electromagnetic theory. For the
two dimensional problem of diffraction by a wedge we have the usual sep-
aration into E and H polarizations with independent fields linearly depend-
ent on the electric and magnetic field components parallel to the edge of the
wedge.

Thus if we take a vector potential with on the ^-component non-zero and
equal to q> we can construct either the electrical polarization with

k • E = Ez = dtpldt, B = —V x k<p,

or the magnetic polarization with

c2k B = c2Bz = tyldt, E = V x lsxp.

The corresponding boundary conditions in the two cases depend on the sur-
face resistance R and the magnetic permeability (i of the region 0 < 0 < y>;
they have the form

on 0 = 0,
Bz = EJR

and
B. =

on 0 = 0.

For the electric polarization then we have the conditions that a = RJ/i,
ft = R^lfi and for the magnetic polarization the conditions are that
a = fic2/Rl, (} = fic2/R2; the results follow directly from the solution of the
acoustic problem.
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