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Summary

Equations of motion of a vibrating string are established in terms of
the transverse and longitudinal displacements. These equations contain the
terms of lowest order which are neglected in the classical treatment with
vanishing amplitude. These extra terms lead to the natural modes being
dependent on amplitude. By a simple procedure a solution of these equations
is obtained which separates, as in the classical theory. The familiar circular
functions are replaced by a Mathiew Function of position and a Jacobi
elliptic function of time. Agreement with a previous study is shown.

1. Introduction

This is a study of the plane motion of a length of stretched string, the
end of which are fixed in the plane of motion.

A consistent account is taken of the lowest order terms which involve
the dependence of the modes of oscillation on the amplitude. These terms
are the largest terms neglected in the classical treatment when the as-
sumption is made that the amplitude is small.

The string is stretched and is assumed to be elastic. Since its ends are
fixed, in order to bow, the string must stretch further. In so doing it must
experience an increase in tension. This increase in tension varies with both
position and time since the longitudinal motion is coupled to the transverse
motion. Thus we must take account of both the longitudinal displacement
and the transverse displacement, and introduce a parameter to describe
the increase of tension with length of the string.

Carrier [1, 2] has studied the motion of a string vibrating at finite
amplitude. Some aspects of his work are considered in the discussion.

The main result of this investigation is a demonstration that the dis-
placements may be separated into products of functions of position and of
time, with amplitude as a further parameter in each case.
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370 I. M. Stuart [2]

2. Analysis

2.1. PREAMBLE

This analysis falls into three steps. Firstly we define dimensionless
variables and in terms of these we establish the equations of motion. These
equations are partial differential equations in the transverse displacement
(y) and the longitudinal displacement (u), which are functions of time (T)
and the position (x) along the string, measured in the quiescent state.

These equations ((5) and (6)) contain order terms in powers of the
amplitude (̂ 4) of the transverse displacement. These terms correspond to
the lowest order terms neglected when the new equations of motion are
deduced. These equations also contain a parameter e which is the strain
in the string in its quiescent stretched state referred to its unstretched length.

Secondly we proceed to examine the equations of motion and substitute
in the higher order terms approximations based on the form of the solution
sought at vanishingly small amplitude. For example, we use in a modified
form of equation (5) the approximation

~(yxcos2x) = yTT(2 + 3cos2x)
ex

which is exact if y = A sin a; cos r. We substitute thus for the left side in a
term in equation (5) which has been shown to be O(A3) when terms 0{Ab)
are being neglected.

This procedure is directed at and eventually leads to a reduction of
equation (5) to the form

G(x)yTT = F{r)yxx+0{A*).

If terms O(A5) are neglected, the solution of this equation separates.
That is

y = 0{x)<f>(r),

where 6(x) and <j>(z) are solutions of the differential equations

exx+K^G(x)d = o,
<f>TT+K*F(T)<f> = 0.

Here, K2 is the separation constant.
Thirdly we complete the solution of these two differential equations.

The solution of the linear differential equation in the position function, 0(x),
which satisfies the boundary condition is a periodic Mathiew Function.

3y4
d(x) = se, (x) — sin x sin 3a;+OlA*).w 1 w 128(l + e) v
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The separation constant K2 is also determined in the process of ensuring
that the boundary conditions

2/(0, T) = y{n, x) = 0 for all x

are satisfied.
The solution of this equation in 6(x) is straight forward as the function

G(x) is determined in the course of the analysis in the second step. However,
the function F(x) is not determined, but contains a function of time, f(x)
which arises in an indefinite integration with respect to a; of a modified
form of equation (6). This unknown function is found by substituting
y = se1(x)<f>(x) in a modified form of equation (6).

The non-linear differential equation in <f>(x) can then be solved. The
solution satisfying the boundary conditions

3d>
<£(0) = A, - = 0 at T = 0

ex
is a Jacobi elliptic function

(f>(x) = A en AT.

This elliptic function is expanded into the leading terms of its Fourier
representation to obtain the complete solution

r 3^2 1
y = A sin x sin 3a:
a L 128 (1 + e) J

A2 i 1 \
= sin 2x |-cos 2wx\ +0(Ai),

16 \ l + £ /
where

3 A 2 A2

32e T 32(l+e) V ;

2.2. PROCEDURE

(i) Equations of motion
If we are to take into account the lowest order terms neglected in the

classical treatment of the vibrating string two additional features must
be recognised. Firstly we must allow for the variation of the tension in the
string, with both time and position. Secondly we must consider the longitu-
dinal displacement.

Thus the equations of motion which express the inertial equilibrium
of the element of string which originates from the element dX in the quiescent
state are (see Carrier [1, 2])
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(1)

and

(2)
d

-

8*Y

82U

where T = T(x, t) is the tension in the element from dX at time t. The
transverse displacement of the element is Y = Y(X, t) and its longitudinal
displacement is U = U(X, t). With p the density of the stretched string in
its quiescent state, the mass of the element is pdX. d is the inclination of
the element, and it can be shown that

The length of the element is SdX, where

(3)

In its quiescent state the string is stretched to tension To, and to
length / between X = 0 and X = I. The resulting strain is e, referred to
the unstretched length. If the string is elastic, and obeys Hooke's law,
then the tension in the element dX is given by

(4)

We now introduce dimensionless parameters to simplify subsequent
manipulation (see Figure 1).

rr Y

TT

Fig. 1. Transverse and longitudinal displacements of the string in an intermediate bowed
position.
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For time: T = njl VTJp; and for position, displacements: (x; y, u) = n\l
(X; Y, U).

Using these parameters in the equations of motion, and substituting
for T by equation (4) with 5 given by equation (3), we find on performing
the differentiations with respect to x and collecting terms to the order
terms indicated

(5) yrr = ^

and

(6) euTT

Here we have assumed that u = 0(A2). This is an a posteriori assump-
tion though there is some justification for making it at this stage. There is a
simple solution of equations (5) and (6) which satisfies the boundary
conditions

u(o, T) = u(n, T) = y{o, r) = y(n, x) = 0,
namely y = 0

u = uL = ^Bn sin nx cos /n y —— • r+en\,

the natural longitudinal oscillations.
We assume that any such longitudinal vibration is damped out, and

will subsequently be neglected. The the "particular integral" of equation
(6) would be such that u = O(A2) where A is the amplitude of the dimen-
sionless transverse displacement y.

(ii) Reduction of equation (5) to the form

To solve equations (5) and (6) for the transverse mode we first eliminate
u from equation (5) by using an integrated form of equation (6).

If y = A sin x cos T, the solution of equation (5) for A -> 0 in the
form we seek, then we can solve equation (6) to obtain

A2 / I \
u = — — sin 2x I hcos 2TI +UL.16

Assuming the natural longitudinal motion to be damped out, uh = 0,
and

A2 e
(7) e{uTT-uxx) = - — • — • sin 2x.

We find a posteriori that this equation is exact if an order term 0{Ai)
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is added to the right side and so it can be substituted into equation (6) in
the form

( 6 ) 8x ( w - + ^ ) = e(u"~u^

(8) = - f i 2 . - ^ - - s i n 2^+0 (A*).

We integrate with respect to x to obtain

(9) ux+yi = ~-^r-cos2x+f(r) + 0(A*),

where /(T) is an as yet undetermined function of x arising in this integration.
Substituting thus for ux-\-\y\ in equation (5), we obtain

!
1

A2 8

Next this equation is reduced to a form which has a separated solution.
Now, if y = A sin x cos T,

h I <*-cos 2x) = mT) ^(2+3 cos 2x)-
It is found a posteriori that this equation is exact if an order term

0(A5) is added to the right side. Consequently we can substitute equation
(11) into equation (10) to obtain

{
1 ~

If the order term is neglected, the solution of this partial differential
equation separates, giving

3 A2

• • 2 cos 2x I =

(13)

where

(14)

and

(15)

Here K2

dx* +h

dx2 +

2/ =

^ 2

4(l + e

1
F e

is the separation constant.
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[7] String vibrating at finite amplitude 375

(iii) Solution of differential equations in 6(x) and^(r). Equation (14)
is the Mathiew equation

d2d
h 6(a — 2q cos 2x) = 0,

ax2

with

K2 • 3A2

q =

The solution satisfying the boundary conditions y = 0 when x = 0, n is x

the periodic Mathiew function (of integral order)

(16) d = sex(x, q) = sin x — — sin 3x+O(#2)
8

obtaining when a = 1—q-\-O(q2).
This condition determines the separation constant K2. Thus

whence

and

(18) 0(x) = sin x - i 2 8
 2

+ sin

We can now determine the unknown function /(T) in equation (12).
Using equations (13), (18) to substitute for y in equation (8), and noting
that^(r) = 0{A),

A2 e
u^ = isin 2X^2(T) • sin 2x+0{Ai).

4 1 + ^

On integrating with respect to x

A2 e
(19) ux = —^cos 2x<f>2{r) -\ • cos 2x+h(r)+O(Ai)

o 1 I &

and integrating again
u=-\ sin 2x p(r) + ^ ^ - sin

1 See McLachlan [3] pages 13 and 14.
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The boundary conditions

w(0, T) = u{n, T) = 0 for all x give

h(r) = 0, /(T) = 0.

Hence equation (19) can be written (after some manipulation)

(20) ux+yi = ^ • _f_ • cos

Comparison of equation (20) with equation (9) gives

(21) /(r) = i ^ ( r ) .

Substituting for /(T) using equation (21) and for K2 using equation
(17) in the differential equation for <f>(t), equation (15), we thus obtain

(22)

Now the Jacobi elliptic function cn(u, k) has the property

d2cnu

du2 +cnu(l—2k2+2k2cn2u) = 0.

(This has been obtained from Byrd and Friedman [4], page 25, equation
128.01:

T d I 2

_ (cnu)\ = {l~cn2u){l—k2+k2cn2u)

by differentiation with respect to en u.)
It follows that the solution of equation (22) satisfying the boundary

conditions
dd>

$ = A,— = 0 when T = 0,
at

is
<f> = A en (AT, k)

where

1+A2l4e
and

A2\ I A2

A2 = H 1 IH ) •
It is convenient to represent en (Xr, k) by the leading terms of its

Fourier expansion.
From Byrd and Friedman [4], page 304, equation 908.02,
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2qi m=°° qm nuC W M = ? c o s ( 2 m + 1 )

where, from the same source, page 297, equation 900.00,

and from page 299, equation 901.01,

It follows that

kK
and

nu

where

so

w = —
2K

(23) <f> = A | ( l ) c o s wr -\ cos 3wr+0{ki)
L\ 16/ 16 J

where

(24) w =

where
3A2 A2

32e

The complete solution can then be written

( &42 \[( A \
y = A {sin x r sm Zx\ {11 cos wr
y \ 128(l+«) \\\ 12%e)

\
( ' A2 \

cos 3wr\ + 0{A5)
)

(26) u= sin2x( \-cos 2wr\ + 0{A1).
v ' 1 6 \l+e I

3. Discussion

3.1. THE NATURE OF THE SEPARATED SOLUTION

In a sense, the separation of the transverse displacement y amounts
to the non-appearance in y of a term O(A3) of the form A3 sin 3x cos 3wt.

https://doi.org/10.1017/S1446788700004328 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004328


378 I. M. Stuart [10]

The result of this paper could thus be summarised: There is no term of the
iorm A3 sin 3x cos wr in y(x, r).

The separated solution

y = <f>(T,A)0(x,A)

means that, at a given amplitude, the form of the y displacement is
described by d(x, A), with a magnitude which varies periodically with time.
The form of d(x, A) changes with amplitude as does the nature of the
periodic variation (f>(r, A) of the magnitude of the transverse displacement.
The departure of these functions from simple circular functions is 0(A2)
in the case of the position function and O(A2le), for the time function.

3.2. THE BEHAVIOUR OF THE TENSION

From equations (3) and (4),

T = To (

whence from equations (20) and (23),

/ H-l-e) 42 A2 1
(27) T=T0\l+

 V ; ' cos aw H cos2a:+O(^4) .
( 4e 8 j

Now, for most conditions met in practice the strain e is much smaller
than 1 (e <c 1), and terms O(A2) would be negligible compared with terms
O(A2je). If we ignore terms O(A2) but account for terms O(A2le),

(28) T = Ta (l + \—^—\ 1- - i ^ cos 2crrj

where the prime indicates the less precise analysis. Then T' is independent
of position but varies periodically in phase with the bowing of the string
away from its quiescent position about an elevated mean value,

A2

3.3. A SIMPLER SOLUTION WHICH COLLECTS TERMS O(A2je)

If we concern ourselves only with terms O(A2/e) but choose to ignore
terms O(A2), equation (28) shows that the tension is a function only of
time. So we can write the equation of transverse motion

(29) y'rr = ~y'x*-
1 0
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Now let

{ e I

where Al is the increase in the length of the string over I at time T.
If y' = A sin x cos wx, where w is as yet unknown,

Al- l

IAI —
71
I A2

= (1+cos 2wr),
8

and
T 1+e A2 1+e A2

(31) _ = l -| 1 1 ! 2 cos wx.
10 e 8 e 16

Thus the equation of motion, equation (29), becomes

, i 1+e A2 1+eA2

yTT = yxx\l-\ • 1-
e 8 e 16

which has the separated solution

Here

(32) Q'xx+K26' = 0

and

(33) (f>'TT+K2<l>' {l+ - i ^ • — • 2 cos 2wr) = 0.
I e 16 J

The solution of equation (32) which satisfies the boundary condition
0'(O) = 0'{n) = 0, and corresponds to the fundamental mode is d'(x) = sin x,
with

K2 = 1.

If we write into equation (33) v = wx, this equation becomes

— cos 2v\ = 0.
16 )

This is in the form of the Mathiew equation. The relevant periodic solution
with boundary conditions </>'(0) = A, $,(0) = 0 is 2

2 McLachlan [3], page 3, equations (16) and (17).
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A ( a
<£' = cos v — — cos 3v+O(q2]

l—ql$ I 8
where

1 / 1+eA2

and
1 1+e A2

q ' w2 ' e ' 16 '

The condition that the solution be periodic,

a = l+q+O(q*)
gives

1+e 3 2

or

w = 1 + A \-O(A2 etc.).
3 2 e

This technique is useful when investigating the effect of amplitude on
resonant frequency when the boundary conditions are more complicated
(see Stuart (5)).

3.4. COMPARISON WITH PREVIOUS WORK

G. F. Carrier [1, 2] has studied the motion of a string vibrating at
finite amplitude, using the slope d and a measure of the tension increment
T as the descriptive functions. He forms the exact equations of motion

with boundary conditions

Jo

These equations correspond to the ends of the string, 1 = 0 and f = rj
being fixed both longitudinally and transversely, a2 is the strain of the
string in the quiescent state referred to the stretched length, and | and r\
are dimensionless position and time coordinates. He puts

6 = a.w

and proceeds, with a2 as the perturbation parameter, to find the coefficient
of cos f in w which satisfies the equations of motion and the boundary
conditions with terms of order 0 (a4) neglected.
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In the present treatment the definition of elasticity is different to that
of Carrier. It can be shown that the two treatments are consistent in regard
to this aspect if we make the following transformations. With a2, e2 as
defined in the above papers and A and e as in this paper,

e* = ~ (1+e).
40

Using then the notation of this paper, Carrier's result may be written,
to the order to which we can make comparisons,

t an" 1 yx = A cos x<f>(r),
where

dr2 '
with

Thus
<f> = en (Xr, k)

where

and

A 2 3A
X = 1 -\ + higher order terms

C 2

A 2 A 2

k2 = 1- higher order terms.
$6 2

The frequency of the function en (AT, k),

nX
w = —

2K

3A2 A2

= 1 H 1 (- higher order terms,

which is that given by equation (24).
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