AN EXTENSION OF THE ESSENTIAL SUPREMUM CONCEPT WITH APPLICATIONS TO NORMAL INTEGRANDS AND MULTIFUNCTIONS

E.J. BALDER

Let (T, T, μ) be a σ -finite measure space and X a Suslin space. Let A be a class of normal integrands on $T \times X$. We discuss the existence of an essential supremum of A, namely, a normal integrand l with

$$l = \sup\{a : a \in A_0\},\$$

where A_0 is a countable subclass of A , and, for each $a \in A$,

 $a(t, \cdot) \leq l(t, \cdot)$ for almost every t.

In this way we obtain an extension of the classical essential supremum concept. The applications include a result on measurable selectors of nonmeasurable multifunctions.

1. Countable reflection and generalized conjugation

Let X be a topological space and X' a given abstract space. Let $c : X \times X' \rightarrow (-\infty, +\infty)$ be a given functional; it will be referred to as the coupling functional [2], [7], [13].

Given a functional $f : X \rightarrow [-\infty, +\infty]$, we define its *c-conjugate* $f^{C} : X' \rightarrow [-\infty, +\infty]$ and *c-biconjugate* $f^{CC} : X \rightarrow [-\infty, +\infty]$ as follows [2], [7], [13]:

Received 7 February 1983.

(1.1)
$$f^{\mathcal{C}}(x') \equiv \sup_{x} [c(x, x')-f(x)], x' \in X';$$

(1.2)
$$f^{CC}(x) \equiv \sup_{x'} [c(x, x') - f^{C}(x')], x \in X.$$

It follows trivially from (1.1)-(1.2) that, for each functional $f : X \rightarrow [-\infty, +\infty]$,

$$(1.3) f \ge f^{\mathcal{CC}} .$$

408

A functional $f: X \rightarrow [-\infty, +\infty]$ is said to be *c*-reflexive if

$$f = f^{cc}$$
.

We denote the class of *c*-reflexive functionals on X by $\Gamma^{c}(X)$; it plays an important role in optimization theory.

Let us say that a functional $f : X \to (-\infty, +\infty)$ is a (finite) elementary *c*-functional if there exist $x' \in X'$, $n \in \mathbb{R}$, such that

 $f = c(\cdot, x') + \eta .$

Let us also denote the functional identically equal to $-\infty$ (+ ∞) by ω_1 (ω_2). The following characterization of $\Gamma^c(X)$ is elementary [7, Satz 3.6].

LEMMA 1.1. A functional $f : X \rightarrow [-\infty, \infty]$ belongs to $\Gamma^{c}(X)$ if and only if it is the supremum of a collection of elementary c-functionals.

Proof. Sufficiency follows from (1.2). (Note that if $f^{\mathcal{C}}(\bar{x}') = +\infty$ for some \bar{x}' , then \bar{x}' can be omitted from (1.2); note also that if $f(\bar{x}) = -\infty$ for some \bar{x} , then $f = \omega_1$, which is the supremum over the empty collection.)

As for necessity, suppose $f = \sup_{\alpha \in A} \left[c(\cdot, x'_{\alpha}) + \eta_{\alpha} \right]$ for some index set A. It follows for each $\alpha \in A$ that $-\eta_{\alpha} \ge f^{\mathcal{C}}(x'_{\alpha})$, by applying (1.1). Hence $f \le \sup_{\alpha \in A} \left[c(\cdot, x'_{\alpha}) - f^{\mathcal{C}}(x'_{\alpha}) \right] \le f^{\mathcal{C}\mathcal{C}}$ by applying (1.2). It must now be true that $f \in \Gamma^{\mathcal{C}}(X)$, in view of (1.3). It follows from the above lemma that a necessary condition for $f: X \rightarrow [-\infty, +\infty]$, $f \neq \omega_{1}$, to belong to $\Gamma^{C}(X)$ is that f be *c-tempered* [2], that is, there exist $x' \in X'$, $\eta \in \mathbb{R}$, such that

$$f \geq c(\cdot, x') + \eta$$

Let Γ_0 be a given class of functionals from X into $[-\infty, +\infty]$. We define Γ_0 to be *countably reflected* if X' contains a countable (said more precisely, at most countable) subset $\{x_i'\}$ such that, for each $f \in \Gamma_0$,

(1.4)
$$f = \sup_{i} \left[c(\cdot, x_i') - f^c(x_i') \right]$$

Note that this implies automatically that Γ_0 is contained in $\Gamma^{c}(X)$ (Lemma 1.1).

LEMMA 1.2. The class $\Gamma_0 \subset [-\infty, +\infty]^X$ is countably reflected if and only if there exists a countable collection of elementary c-functionals on X such that each f in Γ_0 is the supremum of a subset of this collection.

Proof. First we prove sufficiency. Let $\{x_i^i\} \subset X'$ be as in (1.4). Let $\{r_j\}$ be an enumeration of the rational numbers. Take an arbitrary $f \in \Gamma_0$. Define $M \subset \mathbb{N} \times \mathbb{N}$ to be the set of (i, j) such that $c(\cdot, x_j') + r_j \leq f$. Then $(i, j) \in M$ if and only if $r_j \leq -f^c(x_j')$. For each $i \in \mathbb{N}$ there exists a subsequence of $\{r_j\}$ that converges to $-f^c(x_i^i)$ from below. We conclude from this and (1.4) that $\sup_{(i,j) \in M} [c(\cdot, x_i') + r_j] = f$.

Necessity is demonstrated as follows. Denote the countable collection of elementary c-functionals figuring in the statement by $\{c(\cdot, x_i') + \eta_i\}$. Take an arbitrary $f \in \Gamma_0$. By supposition there exists $I \subset \mathbb{N}$ such that

$$\begin{split} f &= \sup_{i \in I} \left[c\left(\cdot, x_{i}^{\prime}\right) + \eta_{i} \right] \text{ . Clearly } -\eta_{i} \geq f^{\mathcal{C}}\left(x_{i}^{\prime}\right) \text{ for each } i \in I \text{ . Hence } \prime \\ f &= \sup_{i \in I} \left[c\left(\cdot, x_{i}^{\prime}\right) + \eta_{i} \right] \leq \sup_{i \in I} \left[c\left(\cdot, x_{i}^{\prime}\right) - f^{\mathcal{C}}\left(x_{i}^{\prime}\right) \right] \\ &\leq \sup_{i} \left[c\left(\cdot, x_{i}^{\prime}\right) - f^{\mathcal{C}}\left(x_{i}^{\prime}\right) \right] \leq f^{\mathcal{C}} \end{split}$$

so by (1.3) we have $f = \sup_{i} \left[c(\cdot, x_{i}') - f^{c}(x_{i}') \right]$. The potential usefulness of the above concepts is illustrated by the following examples.

EXAMPLE A.1. X is a metric space, its metric being denoted by d, X' is the product set $\mathbb{R} \times X$ and c is defined by setting, for $x \in X$, $x' = (r, x'') \in X'$,

(1.5)
$$c(x, x') \equiv -rd(x, x'')$$
.

It is well known that in this case the class $\Gamma^{\mathcal{C}}(X)$ consists of the *c*-tempered lower semicontinuous functionals on X plus the functional ω_1 (*cf.* [8, IX.42]). Although an *ad hoc* proof can easily be given, using Lemma 1.1, we observe instead that the result follows immediately from [2, Theorem 1, Lemma 1] (*cf.* [6, Theorem 4.2] for a somewhat weaker version of this result. The results of [2] apply, since *c* is a coupling functional of needle type at every $x \in X$ [2], [12], that is, for each $\overline{x}' \in X$, $\overline{\eta} \in \mathbb{R}$, $\overline{\delta}, \varepsilon > 0$, there exist $x' \in X'$, $\delta \leq \overline{\delta}$, such that, for every $y \in X$,

EXAMPLE A.2. As Example A.1, but with X a separable metric space (metric d). In this case the class $\Gamma_1 \equiv \Gamma^c(X)$ is countably reflected. Using Lemma 1.2, an *ad hoc* proof could easily be given. Rather than to do so, we observe the following [3]. Let $\{x_i\}$ be a countable dense subset of X, define $X'_0 \equiv \{(n, x_i) : n, i \in \mathbb{N}\}$ and verify that the restriction c_0 of c to $X \times X'_0$ is still of needle type (c is as in (1.5)). Note also that by the fact that $\{x_i\}$ is dense in X and the triangle inequality, *c*-temperedness and c_0 -temperedness are equivalent for functionals in $[-\infty, +\infty]^X$. It now follows by [2, Theorem 1] that, for each $f \in \Gamma_1$,

$$f = \sup_{x' \in X'_0} \left[c_0(\cdot, x') - f^0(x') \right] = \sup_{x' \in X'_0} \left[c(\cdot, x') - f^0(x') \right]$$

EXAMPLE B.1. X is a Hausdorff locally convex space, X' is the set of all linear continuous functionals on X, c is the usual duality between X and X'. In this classical case $\Gamma^{\mathcal{C}}(X)$ is the collection of all proper convex lower semicontinuous functionals on X plus the functionals ω_1 , ω_2 [11, 6.3.4].

EXAMPLE B.2. As Example B.1, but with X a Suslin locally convex space. Consider the subclass Γ_2 of $\Gamma^c(X)$ consisting of the proper convex lower semicontinuous functionals on X whose epigraph is locally compact and contains no straight line, plus the functionals ω_1 , ω_2 . In this case the class Γ_2 is countably reflected, as is well known (*cf.* [10]). To see this, note that there exists a countable subset of X' which is dense in the Mackey topology $\tau(X', X)$ [5, III.32]. By [5, I.14] the assumptions on the epigraph of each $f \in \Gamma_2$ imply that f^c is finite and continuous at some point in X'. Hence (1.4) follows from (1.2) by applying [5, III.33].

2. Essential suprema of sets of integrands

Let (T, T, μ) be a σ -finite measure space and X a Suslin space. A functional $l: T \times X \rightarrow [-\infty, +\infty]$ is called *integrand* (on $T \times X$); it is said to be *measurable* in case it is $(T \otimes B(X))$ -measurable where B(X)denotes the Borel subsets of X. Suppose Γ denotes a class in $[-\infty, +\infty]^X$ (for instance, the set of lower semicontinuous functionals on X). An integrand l on $T \times X$ is said to be a Γ -*integrand* if the functional $l(t, \cdot)$ on X belongs to Γ for each $t \in T$. In case the class Γ can be verbalized, our terminology for Γ -integrands will be verbalized similarly. For instance, we speak of lower semicontinuous integrands, and so on.

Let X', c have the same meaning as before, but suppose in addition that for each $x' \in X'$, $c(\cdot, x')$ is B(X)-measurable. Let Γ_0 denote a fixed subclass of $\Gamma^c(X)$ and let A be a collection of measurable $\Gamma_0^$ integrands on $T \times X$. An integrand l on $T \times X$ is said to be the essential supremum of A if there exists a countable subcollection A_0 of A such that

$$(2.1) \qquad \qquad l = \sup\{a : a \in A_0\}$$

and, for each $a \in A$,

(2.2) $a(t, \cdot) \leq l(t, \cdot)$ for almost every t.

We shall investigate the existence of such essential suprema.

REMARK 2.1. Suppose l_1 , l_2 are essential suprema of A. It follows then from (2.1)-(2.2) that l_1 , l_2 are essentially equal, that is,

 $l_1(t, \cdot) = l_2(t, \cdot)$ for almost every t.

This allows us to speak about "the" essential supremum of A, although it is more accurate to call l_1 , l_2 versions of the essential supremum of A.

THEOREM 2.2. Suppose Γ_0 is a countably reflected subclass of $\Gamma^C(X)$ and suppose A is a collection of measurable Γ_0 -integrands on $T \times X$. Then the essential supremum of A exists.

Proof. Let \overline{T} denote the μ -completion of T. By our suppositions the functional (t, x) + c(x, x') - a(t, x) is $(T \otimes B(X))$ -measurable for each $a \in A$, $x' \in X'$. Hence it follows from [5, III.39] and the fact that X is Suslin, that for each $a \in A$, $x' \in X'$, the functional $a^{c}(\cdot, x')$ is \overline{T} -measurable (conjugation takes place with respect to the second variable only). Let $\{x_{i}^{t}\}$ be as in the definition of countable reflection. For each $i \in \mathbb{N}$ there exists a countable subset A_{i} of Asuch that $\inf\{a^{c}\{\cdot, x_{i}^{t}\}: a \in A_{i}\}$ is a version of the (classical)

412

essential infimum [14, II.4] of the set $\left\{a^{C}(\cdot, x_{i}') : a \in A\right\}$ of \overline{T} measurable functionals on T (note that μ is equivalent to a finite measure on (T, \overline{T})). We set $A_{0} \equiv \bigcup A_{i}$ and define l as in (2.1). By the fact that A is composed of Γ_{0} -integrands we have, for each $a \in A$, $t \in T$,

(2.3)
$$a(t, \cdot) = \sup_{i} \left[c(\cdot, x_i') - a^c(t, x_i') \right]$$

It follows from (2.1) that, for each $i \in \mathbb{N}$, $t \in T$,

$$(2.4) \quad l^{\mathcal{C}}(t, x_i') = \sup_{x} \inf_{a \in A_0} \left[c(x, x_i') - a(t, x) \right] \leq \inf_{a \in A_0} a^{\mathcal{C}}(t, x_i') \quad .$$

To show (2.2), let $\bar{a} \in A$ be arbitrary. From the definition of essential infimum and (2.4) it follows that, for each $i \in N$,

$$l^{c}(t, x_{i}') \leq \inf_{a \in A_{i}} a^{c}(t, x_{i}') \leq \bar{a}^{c}(t, x_{i}') \text{ for almost every } t.$$

In conjunction with (2.3) this gives

(2.5)
$$\bar{a}(t, \cdot) \leq \sup_{i} \left[c(\cdot, x_{i}') - l^{c}(t, x_{i}') \right]$$
 for almost every t .

Now by (2.1) and Lemma 1.1 we have that l is a $\Gamma^{\mathcal{C}}(X)$ -integrand. Hence, (2.5) implies

$$l(t, \cdot) \geq \overline{a}(t, \cdot)$$
 for almost every t ,

which is what we had to demonstrate.

REMARK 2.3. By taking X to be a singleton one readily inspects that Theorem 2.2 is a generalization of the classical result concerning the existence of the essential supremum for an arbitrary collection of measurable functionals from T into $[-\infty, +\infty]$ (note that the case where X is a singleton ranks under Examples A.2, B.2).

3. Applications

In this section we shall apply the result in Theorem 2.2 to collections of normal integrands and measurable multifunctions. Let us

remember that a measurable lower semicontinuous integrand is also called a normal integrand [4], [5].

PROPOSITION 3.1. Suppose X is a metrizable Suslin space and m is a nonmeasurable integrand on $T \times X$. Then there exists a normal integrand l on $T \times X$ such that

$$(3.1) \qquad l(t, \cdot) \leq m(t, \cdot) \text{ for almost every } t,$$

and, for every normal integrand a on
$$T \times X$$
,

(3.2)
$$a(t, \cdot) \leq m(t, \cdot)$$
 for almost every t implies
 $a(t, \cdot) \leq l(t, \cdot)$ for almost every t.

Proof. Suppose first that m is nonnegative. Define then $\overline{m}(t, \cdot)$ to be the lower semicontinuous hull of $m(t, \cdot)$, $t \in G$ [11, 6.2]. Then \overline{m} is a nonnegative Γ_1 -integrand (in the sense of Example A.2). Apply Theorem 2.2 to the nonempty class A of normal integrands a on $T \times X$ such that

 $a(t, \cdot) \leq \overline{m}(t, \cdot)$ for almost every t.

The essential supremum of A exists by Theorem 2.2 and Example A.2. It satisfies (3.1)-(3.2) by (2.1)-(2.2) and the definition of \overline{m} . If m is general, we apply the above result to the nonnegative normal integrand $\exp(m)$ and finish by an obvious argument.

REMARK 3.2. The apparently new concept introduced in Proposition 3.1 will be called the normal hull of the integrand m.

PROPOSITION 3.3. Suppose X is a locally convex Suslin space and suppose m is a nonmeasurable inf-compact proper convex integrand. Then there exists a proper convex inf-compact normal integrand 1 on $T \times X$ such that, for every proper convex inf-compact normal integrand a on $T \times X$,

 $a(t, \cdot) \leq m(t, \cdot)$ for almost every t implies $a(t, \cdot) \leq l(t, \cdot)$ for almost every t.

Proof. Note that m is a Γ_2 -integrand by Example B.2. Consider the possibly empty class A of proper convex inf-compact normal integrands a on $T \times X$ with

 $a(t, \cdot) \leq m(t, \cdot)$ for almost every t.

414

If A is empty, the result holds by taking l to be an arbitrary proper convex inf-compact normal integrand. If A is nonempty, the result holds by an application of Theorem 2.2 and the observation that the supremum of a countable subcollection in A is a proper convex inf-compact normal integrand on $T \times X$.

Next, we consider the essential supremum when we are dealing with measurable selectors of nonmeasurable multifunctions. Let F be a non-measurable multifunction from T into X. Remember that a measurable function $u : T \rightarrow X$ is said to be a *measurable selector* of F if

 $u(t) \in F(t)$ for almost every t.

We denote the set of measurable selectors of F (possibly empty) by S_F . The following result generalizes [1, Theorem 2.7]. See [15, III.14] for a related result.

PROPOSITION 3.4. Suppose X is a metrizable Suslin space and F is a nonmeasurable multifunction from T into X. Then there exists a countable (possibly empty) collection $\{u_j\} \subset S_F$ such that, for every $u \in S_F$,

(3.3)
$$u(t) \in cl\{u_i(t)\}$$
 for almost every t

Proof. Denote by d a metric on X. For each $u \in S_F$ we define

$$a_{u}(t, \cdot) \equiv -d(u(t), \cdot), \quad t \in T$$
.

Note that this defines a (possibly empty) class A of measurable Γ_1 -integrands on $T \times X$ [5, III.14]. By Theorem 2.2 there exists a countable subcollection $\{u_i\}$ of S_F such that, for each $u \in S_F$,

$$(3.4) a_{u}(t, \cdot) \leq -\text{dist}(\{u_{i}(t)\}, \cdot) \text{ for almost every } t,$$

where dist $\{\{u_j(t)\}, x\} \equiv \inf_j d\{u_j(t), x\}, t \in T, x \in X$. It follows from (3.4) that, for each $u \in S_F$,

$$list({u_j(t)}, u(t)) = 0$$
 for almost every t ,

which proves (3.3).

REMARK 3.5. Proposition 3.4 is equivalent to saying that for the measurable multifunction $G: t \mapsto cl\{u_j(t)\}$ with closed values [9] we have

$$G(t) \subset \operatorname{cl} F(t)$$
 for almost every t

and

 $S_G = S_F$.

In [1, Theorem 2.7] an essential role is played by the assumption that T be a countably generated σ -algebra. In this respect Proposition 3.5 is the more general result. On the other hand, the argument in [1] seems to go through in the case where X is merely separable metric.

PROPOSITION 3.6. Suppose that X is a metrizable Suslin space and that F is a nonmeasurable multifunction from T into X. Then there exists a countable collection $\{G_j\}$ of measurable multifunctions from T into X with closed values such that

 $cl F(t) \subset \bigcap_{j} G_{j}(t)$ for almost every t,

and for each measurable multifunction G from T into X with closed values

$$G(t) \supset F(t)$$
 for almost every t implies
 $G(t) \supset \bigcap_{j} G_{j}(t)$ for almost every t.

Proof. Consider the nonempty class A consisting of the indicator integrands δ_G of the measurable closed valued multifunctions G such that $G(t) \supset F(t)$ for almost every t ($\delta_G(t, x) \equiv 0$ if $x \in G(t)$, $\delta_G(t, x) \equiv +\infty$ if $x \notin G(t)$, $t \in T$, $x \in X$).

It is easy to see that A is a class of measurable Γ_1 -integrands on $T \times X$. The result follows now directly from an application of Theorem 2.2.

PROPOSITION 3.7. Suppose that X is a Suslin locally convex space and that F is a nonmeasurable multifunction from T into X. Then there exists a countable collection $\{G_i\}$ of measurable multifunctions from T into X with convex closed locally compact values not containing a straight line such that for each measurable multifunction G from T into X with convex closed locally compact values not containing a straight line

$$G(t) \supset F(t)$$
 for almost every t implies
 $G(t) \supset \bigcup G_j(t)$ for almost every t.

Proof. But for the fact that the collection A which we have to consider here may be empty, the proof is quite analogous to that of Proposition 3.6 and will not be written out.

References

- [1] Zvi Artstein, "Weak convergence of set-valued functions and control", SIAM J. Control 13 (1975), 865-878.
- [2] E.J. Balder, "An extension of duality-stability relations to nonconvex optimization problems", SIAM J. Control Optim. 15 (1977), 329-343.
- [3] E.J. Balder, "Lower semicontinuity of integral functionals with nonconvex integrands by relaxation-compactification", SIAM J. Control Optim. 19 (1981), 533-542.
- [4] H. Berliocchi and J.-M. Lasry, "Intégrandes normales et mesures paramétrées en calcul des variations", Bull. Soc. Math. France 101 (1973), 129-184.
- [5] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions (Lecture Notes in Mathematics, 580. Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [6] Szymon Dolecki and Stanisław Kurcyusz, "On \$\Phi-convexity in extremal problems", SIAM J. Control Optim. 16 (1978), 277-300.
- [7] Karl-Heinz Elster und Reinhard Nehse, "Zur Theorie der Polarfunktionale", Math. Operationsforsch. Statist. 5 (1974), 3-21.
- [8] Felix Hausdorff, Mengenlehre (Dover, New York, 1944).

- [9] C.J. Himmelberg, "Measurable relations", Fund. Math. 87 (1975), 53-72.
- [10] Victor Kiee and Czes/aw Olech, "Characterizations of a class of convex sets", Math. Scand. 20 (1967), 290-296.
- [11] Pierre-Jean Laurent, Approximation et optimisation (Collection Enseignement des Sciences, 13. Hermann, Paris, 1972).
- [12] P.O. Lindberg, "A generalization of Fenchel conjugation giving generalized Lagrangians and symmetric nonconvex duality", Survey of mathematical programming, Vol. 1, 249-267 (Proc. Ninth Internat. Math. Programming Sympos., Budapest, 1976. North-Holland, Amsterdam, 1979).
- [13] Jean Jacques Moreau, "Inf-convolution, sous-additivité, convexité des fonctions numériques", J. Math. Pures Appl. (9) 49 (1970), 109-154.
- [14] Jacques Neveu, Bases mathématiques du calcul des probabilités (Masson, Paris, 1964).
- [15] Michel Valadier, "Multi-applications mesurables à valeurs convexes compactes", J. Math. Pures Appl. (9) 50 (1971), 265-297.

Mathematical Institute, University of Utrecht, Budapestlaan 6, PO Box 80.010, 3508 TA Utrecht, The Netherlands.