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AN EXTENSION OF THE ESSENTIAL SUPREIWI CONCEPT
WITH APPLICATIONS TO

NORMAL INTEGRANDS AND MULTIFUNCTIONS

E.J. BALDER

Let (T, T, \i) be a 0-finite measure space and X a Suslin

space. Let A be a class of normal integrands on T * X . We

discuss the existence of an essential supremum of A , namely, a

normal integrand I with

1 = sup{a : a € A } ,

where AQ is a countable subclass of A , and, for each a € A ,

a(t, •) 5 l(t, •) for almost every t .

In this way we obtain an extension of the classical essential

supremum concept. The applications include a result on

measurable selectors of nonmeasurable multifunctions.

1. Countable reflection and generalized conjugation

Let X be a topological space and X' a given abstract space. Let

c : X x X' •* (-<*>, +°°) be a given functional; i t wil l be referred to as

the coupling functional [2], [7], [13].

Given a functional f : X -*• [-00, +°°] , we define i t s c-conjugate

f° -. X' -»• [-», +°°] and c-biconjugate fc -. X •*• [-<*>, +°°] as follows [2] ,

[7 ] , [13]:
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(1.1) fix') = sup [e(x, x')-f(x)] , x' i X' •
x

(1.2) f°°(x) = sup \o{x, x')-f(x')] , x € X .
x'

I t follows t r ivial ly from (1.1)-(1.2) that, for each functional

f 1 X+ [-"°, *»] ,

(1.3) /> f° .

A functional f : X -*• [-"", +00] is said to be a-reflexive if

f-f° •

We denote the class of a-reflexive functionals on X by T {X) ; i t

plays an important role in optimization theory.

Let us say that a functional / : X -*• (-00, +°°) is a (finite)

elementary a-functional i f there exist x' € X' , n € R , such that

/ = c(», x') + n .

Let us also denote the functional identically equal to -°° (+00) by a)

(Wpj . The following characterization of T (X) is elementary [7, Satz

3.6].

LEMMA 1.1. A functional f : X •*• [-«>, »] belongs to TC(X) if and

only if it is the supremum of a collection of elementary c-functionals.

Proof. Sufficiency follows from (1.2). (Note that i f f°{x') = +°»

for some x' , then x ' can be omitted from (1.2); note also that if

fix) = -**> for some x , then / = a). , which is the supremum over the

empty collection.)

As for necessity, suppose / = sup [c[- , x')+r| 1 for some index set
a€4

A . I t follows for each a t A that -n > f°[x'^\ , by applying ( l . l ) .

Hence f < sup \c{- , x')-f°[x')\ 5 f ° by applying (1.2). I t must now be

true that / 6 T°(X) , in view of (1.3).
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I t follows from the above lemma that a necessary condition for

f : X •*• [-", -K»] , / / w1 , to belong to TC{X) is that / be

c-tempered [2] , that i s , there exist x ' € X' , r\ € R , such that

/ > a(', x') + n •

Let F be a given class of functionals from X into [-00, +°°] . We

define T to be oountably reflected i f X' contains a countable (said

more precisely, at most countable) subset {x!} such that , for each

(l.U) / = sup

Note that t h i s implies automatically that T- i s contained in V {X)

(Lemma 1.1).

LEMMA 1.2. The class T c [-», +»] is aountably reflected if and

only if there exists a countable collection of elementary c-functionals on
X such that each f in TQ is the supremum of a subset of this

collection.

Proof. First we prove sufficiency. Let {x!} c X' be as in (l.U).

Let \r.} be an enumeration of the rational numbers. Take an arbitrary
3

f € r . Define M c N x N to be the set of (i, j) such that

c{-, x'.) + r. 5 / . Then (i, j) € M if and only if r. 2 -f{x') . For
3' 3 3 3

each i € N there exists a subsequence of |r.} that converges to

3

-f\xC\ from below. We conclude from t h i s and ( l . U ) t h a t

sup [c(., x^)+r] = / .

Necessity i s demonstrated as follows. Denote the countable collection

of elementary c-functionals figuring in the statement by {<?(*, xl)+r|.} .

Take an a rb i t ra ry f € T . By supposition there exis ts J c N such that
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/ = sup [?[', x!)+n.] . Clearly -n. > f (x!) for each i € I . Hence

= sup [c(«, x!)+n ] 2 sup
* % ill

< sup

so by (1.3) we have / = sup \c{', x'.)-f° {x'.\\ . The potential usefulness

of the above concepts is i l lustrated by the following examples.

EXAMPLE A.I. X is a metric space, i t s metric being denoted by d ,

X' is the product set R x X and a is defined by setting, for x € X ,

x' = ( r , x") € X' t

(1.5) e(», x') = -«Z(x, x") .

I t is well known that in this case the class T {X) consists of the

e-tempered lower semi continuous functionals on X plus the functional u^

{of. [S, IX. k2i). Although an ad hoa proof can easily be given, using

Lemma 1.1, we observe instead that the result follows immediately from [2,

Theorem 1, Lemma l ] (of. [6, Theorem *4.2] for a somewhat weaker version of

thi.s result . The results of [2] apply, since o is a coupling functional

of needle type at every x € X [2], [72], that i s , for each x ' € X ,

rj € IR , 6, e > 0 , there exist x' € X' , 6 5 6 , such that, for every

V € X ,

o(y, x') < c(y, x') + rj if d(x, y) > 6 ,

o(y, x') < c if d(x, y) < 6 .

EXAMPLE A.2. As Example A.I, but with X a separable metric space

(metric d ). In this case the class T = T°(X) is countably reflected.

Using Lemma 1.2, an ad hoc proof could easily be given. Rather than to do

so, we observe the following [3]. Let {x.} be a countable dense subset

of X , define X' = {[n, x.) : n, i € N} and verify that the restriction

a0 of c to X x X' is still of needle type [a is as in (1.5))- Note

also that by the fact that {x.} is dense in X and the triangle
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inequality, e-temperedness and c -temperedness are equivalent for

functlonals in [-°°, +°°] . I t now follows by [2, Theorem 1] that, for

each / € rx ,

oA', x')-f°(x')\ = sup [e(., x')-f{x')] .
~ -"o x'ao

EXAMPLE B.I. X is a Hausdorff locally convex space, X' is the set

of a l l linear continuous functionals on X , c is the usual duality

between X and X' . In this classical case T^(X) is the collection of

a l l proper convex lower semicontinuous functionals on X plus the

functionals u) , u> [ H , 6.3.1*].

EXAMPLE B.2. As Example B.I, but with X a Suslin locally convex

space. Consider the subclass T of T (X) consisting of the proper

convex lower semicontinuous functionals on X whose epigraph is locally

compact and contains no straight l ine , plus the functionals w , 0) . In

this case the class V is countably reflected, as is well known (c/ .

[JO]). To see th i s , note that there exists a countable subset of X'

which is dense in the Mackey topology x{X', X) [5, I I I .32] . By [5, I.lit]

the assumptions on the epigraph of each / € T imply that j is finite

and continuous at some point in X' . Hence (l.U) follows from (1.2) by

applying [5, I I I .33] .

2. Essential suprema of sets of integrands

Let (T, T, u) be a a-finite measure space and X a Suslin space.

A functional I : T x X •*• [-°°, +°°] is called integrand (on T x X ); i t

is said to be measurable in case i t is [T ® B(X))-measurable where B(X)

denotes the Borel subsets of X . Suppose T denotes a class in

[-oOj +oo] (for instance, the set of lower semicontinuous functionals on

X ). An integrand I on T x X is said to be a Y-integrand i f the

functional Z(t, •) on X belongs to F for each t € T . In case the

class T can be verbalized, our terminology for T-integrands will be
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verbalized similarly. For instance, we speak of lower semicontinuous

integrands, and so on.

Let X', c have the same meaning as before, but suppose in addition

that for each x' € X' , e( • , x') is B( Jf)-measurable. Let F denote a

fixed subclass of F (X) and let A be a collection of measurable T -

integrands on T * X . An integrand I on T * X is said to be the

essential supremum of A if there exists a countable subcollection A of

A such that

(2.1) I = sup{a : a € AQ}

and, for each a 6 A ,

(2.2) a ( t , •) S l(t, •) for almost every t .

We shall investigate the existence of such essential suprema.

REMARK 2. ! . Suppose Z- , I are essential suprema of A . I t

follows then from (2.1)-(2.2) that I , I are essentially equal, that i s ,

I A t , •) = I A t , •) for almost every t .

This allows us to speak about "the" essential supremum of A , although i t

is more accurate to call I , I versions of the essential supremum of A .

THEOREM 2.2. Suppose T is a countably reflected subclass of

TC{X) and suppose A is a collection of measurable V' -integrands on

T x X . Then the essential supremum of A exists.

Proof. Let T denote the u-completion of T . By our suppositions

the functional (t, x) -*• c(x, x') - a{t, x) is (T ® B(;0)-measurable for

each a i A , x' 6 X' . Hence i t follows from [5, III.39] and the fact

that X is Suslin, that for each a € A , x' € X' , the functional

a (•, x ') is T-measurable (conjugation takes place with respect to the

second variable only). Let \x'.} be as in the definition of countable

reflection. For each i € N there exists a countable subset A. of A

such that inf'ja (• , x!) : a € k.\ is a version of the (classical)
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essen t i a l infimum [14, I I . 4 ] of the se t \a°(', xi] : a € A \ of T-

measurable functionals on T (note tha t \1 i s equivalent to a f i n i t e

measure on (T, 7) ) . We set A = U A. and define I as in (2 .1 ) . By
i

the fact that A is composed of F -integrands we have, for each a € A ,

t € T ,

(2.3) a(t, •) = sup £(•, x!)-aa[t, x[]j .

I t follows from (2.1) t h a t , for each i € N , * € 2" ,

(2.U) ZC( t , x!") = sup inf [e{x, x'.)-a{t, a:)] < inf ac(t, x'.) .
x a€A • a€A

To show (2.2), let a € A be arbitrary. From the definition of essential

infimum and (2.U) it follows that, for each i C N ,

(t, a;!) 5 inf ac(t, a;!] S 5C(t, xi) for almost every t .
A

In conjunction with (2.3) this gives

(2.5) 5(t, •) 5 sup \c(*, x'.)-l°[t, x'.}\ for almost every * .

Now by (2.1) and Lemma 1.1 we have that I is a F (^)-integrand. Hence,

(2.5) implies

, •) > a(t, •) for almost every t ,

which is what we had to demonstrate.

REMARK 2.3. By taking X to be a singleton one readily inspects

that Theorem 2.2 is a generalization of the classical result concerning the

existence of the essential supremum for an arbitrary collection of

measurable functionals from T into [-°°, +°°] (note that the case where

X is a singleton ranks under Examples A.2, B.2).

3. Applications

In this section we shall apply the result in Theorem 2.2 to

collections of normal integrands and measurable multifunctions. Let us
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remember that a measurable lower semicontinuous integrand is also called a

normal integrand [4 ] , [5] .

PROPOSITION 3.1. Suppose X is a metrizable Suslin space and m is

a nonmeasurable integrand on T x x . Then there exists a normal integrand

I on T x X such that

(3.1) l{t, •) 5 m{t, •) for almost every t ,

and, for every normal integrand a on T x X ,

(3-2) a(t, •) 5 m{t, •) for almost every t implies

a(t, •) 5 l{t, •) for almost every t .

Proof. Suppose f i r s t that m i s nonnegative. Define then m(t, •)

to be the lower semicontinuous hull of m(t, •) , t € G Lit, 6.2] . Then

m i s a nonnegative F -integrand (in the sense of Example A.2). Apply

Theorem 2.2 to the nonempty class A of normal integrands a on T x X

such that

a(t, ') 2 m(t, •) for almost every t .

The essential supremum of A exists by Theorem 2.2 and Example A.2. I t

sa t i s f ies (3-l)-(3.2) by (2.l)-(2.2) and the definition of m . If m is

general, we apply the above result to the nonnegative normal integrand

exp(m) and finish by an obvious argument.

REMARK 3.2. The apparently new concept introduced in Proposition 3-1

wil l be called the normal hull of the integrand m .

PROPOSITION 3.3. Suppose X is a locally convex Suslin space and

suppose m is a nonmeasurable inf-compact proper convex integrand. Then

there exists a proper convex inf-compact normal integrand I on T x x

such that, for every proper convex inf-compact normal integrand a on

T x X ,

ait, •) 5 m{t, •) for almost every t implies

a{t, •) < l(t, •) for almost every t .

Proof. Note that m is a F -integrand by Example B.2. Consider the

possibly empty class A of proper convex inf-compact normal integrands a

on T x X with

a{t, •) 5 m(t, •) for almost every t .
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If A is empty, the result holds by taking I to be an arbitrary proper

convex inf-compact normal integrand. If A is nonempty, the result holds

by an application of Theorem 2.2 and the observation that the supremum of a

countable subcollection in A is a proper convex inf-compact normal

integrand on T * X .

Next, we consider the essential supremum when we are dealing with

measurable selectors of nonmeasurable multifunctions. Let F be a non-

measurable multifunction from T into X . Remember that a measurable

function u ': T -*• X is said to be a measurable selector of F if

u(t) € F(t) for almost every t .

We denote the set of measurable selectors of F (possibly empty) by 5_ .
r

The following result generalizes [ I , Theorem 2.73- See [15, III . l i t ] for a

related result.

PROPOSITION 3.4. Suppose X is a metrizable Suslin space and F is

a nonmeasurable multifunction from T into X . Then there exists a

countable (possibly empty) collection \u .} <=• s such that, for every
3 *•

(3.3) u(t) € cl{u.(t)} for almost every t .
3

Proof. Denote by d a metric on X . For each u € S- we define
t

au(t, •) = -d{u{t), •) , t i T .

Note tha t t h i s defines a (possibly empty) c lass A of measurable T.-

integrands on T x X [ 5 , I I I . l i t ] . By Theorem 2.2 there ex is t s a countable

subcollection {u.} of S_ such t h a t , for each u € Sp ,

(3.U) a (t, •) < -d i s t ({wAt)} , •) for almost every t ,

where d is t ({u . ( * ) } , x) = inf d[u -{t), x) , t 6 T , x € X . I t follows
3 3 3

from (3.!t) that, for each u € S„

dist({w .(£)}, u(t)) = 0 for almost every t ,
3

which proves (3-3).
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REMARK 3.5. Proposition 3.1* is equivalent to saying that for the

measurable multifunction G : t *-*• cl{u.(t)} with closed values [9] we

3

have

G(t) <= cl Fit) for almost every t

and
SG = SF •

In [? , Theorem 2.7] an essential role is played by the assumption that T
be a countably generated O-algebra. In this respect Proposition 3-5 is
the more general result . On the other hand, the argument in [1] seems to
go through in the case where X is merely separable metric.

PROPOSITION 3.6. Suppose that X is a metrizable Suslin space and
that F is a nonmeasurable multifunction from T into X . Then there
exists a countable collection \G.} of measurable multi functions from T

3
into X with closed values such that

cl F{t) c: D G .it) for almost every t ,
3 °

and for each measurable multifunction G from T into X with closed
values

Git) 3 F(t) for almost every t implies
G(t) 3D G.(t) for almost every t .

3 °

Proof. Consider the nonempty class A consisting of the indicator

integrands &„ of the measurable closed valued multi functions G such

that Git) 3 F{t) for almost every t [&Git, x) = 0 if x € Git) ,

&Git, x) E •»« i f x fc Git) , t € T , x € X) .

I t i s easy to see that A is a class of measurable T -integrands on

T x X . The result follows now directly from an application of Theorem
2.2.

PROPOSITION 3.7. Suppose that X is a Suslin locally convex space
and that F is a nonmeasurable multifunction from T into X . Then
there exists a countable collection {G.} of measurable multi functions

3
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from T into X with convex closed looally compact values not containing

a straight line such that for each measurable multifunction G from T

into X with convex closed locally compact values not containing a

straight line

G(t) 3 F(t) for almost every t implies

G(t) 3 U G.(t) for almost every t .
3 3

Proof. But for the fact that the collection A which we have to

consider here may be empty, the proof is quite analogous to that of

Proposition 3.6 and will not be written out.
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