On a function which is self-reciprocal in the Hankel transform

By E. G. Peillips (University College of North Wales, Bangor).

(Received 14th February, 1936; in revised form 22nd February, 1936. Read 6th March, 1936.)

It is well-known that if $\nu \geqq-\frac{1}{2}$ and

$$
\begin{equation*}
\phi(x)=\int_{0}^{\infty}(x t)^{\frac{1}{2}} J_{v}(x t) \phi(t) d t \tag{1}
\end{equation*}
$$

then $\phi(x)$ is said to be self-reciprocal in the Hankel transform and may be described as R_{ν}. If $\nu= \pm \frac{1}{2}$, (1) reduces to the Fourier sine or cosine transform. Functions of these two classes may be described as R_{s} and R_{c}.

In a list of pairs of reciprocal functions, G. A. Campbell ${ }^{1}$ gives the example that

$$
\begin{equation*}
\left(a^{2}+x^{2}\right)^{-1} K_{\ddagger}\left\{a \sqrt{ }\left(a^{2}+x^{2}\right)\right\} \tag{2}
\end{equation*}
$$

is R_{c}, but there does not seem to be any explicit reference to this function in the literature. It suggests that there is a corresponding function which is R_{v}. By considering the result ${ }^{2}$ that, if $a>0, b>0$, $\mu>-1$,
$\int_{0}^{\infty} J_{\mu}(b t) \frac{K_{\nu}\left\{a \sqrt{ }\left(t^{2}+z^{2}\right)\right\}}{\left(t^{2}+z^{2}\right)^{\ddagger \nu}} t^{\mu+1} d t=\frac{b^{\mu}}{a^{\nu}}\left\{\frac{\sqrt{ }\left(a^{2}+b^{2}\right)}{z}\right\}^{\nu-\mu-1} K_{\nu-\mu-1}\left\{z \sqrt{ }\left(a^{2}+b^{2}\right)\right\}$, on putting $z=a, b=x, \quad \nu=\frac{1}{2}(\mu+1)$ it easily follows, since $K_{v}(t)=K_{-v}(t)$, that

$$
\begin{equation*}
x^{\frac{1}{2}+\mu}\left(x^{2}+a^{2}\right)^{\ddagger(-\mu-1)} K_{\frac{1}{2}(\mu+1)}\left\{a \sqrt{ }\left(x^{2}+a^{2}\right)\right\} \tag{3}
\end{equation*}
$$

is R_{μ}.
Since this appears to be a new example it is interesting to see where it fits into the general theors. Actually it is easy to show that the self-reciprocal character of the function (3) is a consequence of Hardy and Titchmarsh's ${ }^{3}$ Theorem 7, with

$$
\phi(s)=\int_{0}^{\infty} x^{8+\mu-1}\left(x^{2}+a^{2}\right)^{-\frac{1(\mu+1)}{}} K_{2(\mu+1)}\left\{a \sqrt{ }\left(x^{2}+a^{2}\right)\right\} d x .
$$

[^0]
The explicit formula

$$
\phi(s)=2^{\frac{1}{s} s+\frac{1}{2} \mu-\frac{1}{2}} \Gamma\left(\frac{1}{2} s+\frac{1}{2} \mu+\frac{1}{4}\right) K_{-\frac{1}{2}\left(s-\frac{1}{2}\right)}\left(a^{2}\right)
$$

is a consequence of the well-known integral due to Sonine. ${ }^{1}$
It is also of some interest that the only known parallel to the function (3) is the self-reciprocal function

$$
\begin{aligned}
F(x) & =x^{\frac{1}{4}-\mu}\left(x^{2}-b^{2}\right)^{1(\mu-1)} J_{\frac{2}{2}(\mu-1)}\left\{b \sqrt{ }\left(x^{2}-b^{2}\right)\right\} & & (x>b>0) \\
& =0 & & (0<x<b)
\end{aligned}
$$

considered by Hardy and Titchmarsh. ${ }^{2}$

[^1]
[^0]: ${ }^{1}$ Bell System Technical Journal, 7 (1928).
 ${ }^{2}$ Watson, Bessel Functions, § 13.47 (2), 416.
 ${ }^{3}$ Quarterly Journal of Math., (Oxford Series) 1 (1930), 208.

[^1]: ${ }^{1}$ See Watson, Bessel Functions §13•47(6), 417.
 ${ }^{2}$ Loc, cil., 211.

