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HOMOTOPY MINIMAL PERIODS FOR
HYPERBOLIC MAPS ON INFRA-NILMANIFOLDS

KAREL DEKIMPE and GERT-JAN DUGARDEIN

Abstract. In this paper, we show that for every nonnilpotent hyperbolic

map f on an infra-nilmanifold, the set HPer(f) is cofinite in N. This is a

generalization of a similar result for expanding maps in Lee and Zhao (J. Math.

Soc. Japan 59(1) (2007), 179–184). Moreover, we prove that for every nilpotent

map f on an infra-nilmanifold, HPer(f) = {1}.

§1. Infra-nilmanifolds

Let f :X →X be a map on a topological space X. We say that x ∈X is a

periodic point of f if fn(x) = x for some positive integer n. If this is the case,

we say that this positive integer n is the pure period of x if f l(x) 6= x for

all l < n. In this paper, we study these periodic points when X is an infra-

nilmanifold and we show that for a large class of maps f on such manifolds,

there exists a positive integer m such that any map g homotopic to f admits

points of pure period k for any k ∈ [m,+∞). In the first section, we recall

the necessary background on the class of infra-nilmanifolds and their maps.

In the next section, we give a more detailed description of the theory of

fixed and periodic points. The third and last section is devoted to the proof

of our main result.

Every infra-nilmanifold is modeled on a connected and simply connected

nilpotent Lie group. Given such a Lie group G, we consider its group of affine

transformations Aff(G) =Go Aut(G), which admits a natural left action on

the Lie group G:

∀(g, α) ∈Aff(G), ∀h ∈G : (g,α)h= gα(h).

Note that when G is abelian, G is isomorphic to Rn for some n and Aff(G)

is the usual affine group Aff(Rn) with its usual action on the affine space Rn.
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2 K. DEKIMPE AND G.-J. DUGARDEIN

Let p : Aff(G) =Go Aut(G)→Aut(G) denote the natural projection onto

the second factor.

Definition 1.1. A subgroup Γ⊆Aff(G) is called almost-

crystallographic if and only if p(Γ) is finite and Γ ∩G is a uniform

and discrete subgroup of G. The finite group F = p(Γ) is called the

holonomy group of Γ.

The action of Γ on G is properly discontinuous and cocompact and when

Γ is torsion-free, this action becomes a free action, from which we can

conclude that the resulting quotient space Γ\G is a compact manifold with

fundamental group Γ.

Definition 1.2. A torsion-free almost-crystallographic group Γ⊆
Aff(G) is called an almost-Bieberbach group, and the corresponding mani-

fold Γ\G is called an infra-nilmanifold (modeled on G).

When the holonomy group is trivial, Γ will be a lattice in G and the

corresponding manifold Γ\G is a nilmanifold. When G is abelian, Γ will be

called a Bieberbach group and Γ\G a compact flat manifold. When G is

abelian and the holonomy group of Γ is trivial, then Γ is just a lattice in

some Rn and Γ\G is a torus.

Now, define the semigroup aff(G) =Go Endo(G), where Endo(G) is the

set of continuous endomorphisms of G. Note that aff(G) acts on G in a

similar way as Aff(G), that is, any element (δ,D) of aff(G) can be seen as

a self-map of G:

(δ,D) : G→G : h 7→ δD(h)

and we refer to (δ,D) as an affine map of G. One of the nice features of

infra-nilmanifolds is that any map on a infra-nilmanifold is homotopic to a

map which is induced by an affine map of G. One can prove this by using

the following result by Lee.

Theorem 1.3. (Lee [18]) Let G be a connected and simply connected

nilpotent Lie group and suppose that Γ, Γ′ ⊆Aff(G) are two almost-

crystallographic groups modeled on G. Then for any homomorphism ϕ : Γ→
Γ′ there exists an element (δ,D) ∈ aff(G) such that

∀γ ∈ Γ : ϕ(γ)(δ,D) = (δ,D)γ.

Note that we can consider the equality ϕ(γ)(δ,D) = (δ,D)γ in aff(G),

since Aff(G) is contained in aff(G). With this equality in mind, it is easy to
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see that the affine map (δ,D) induces a well-defined map

(δ,D) : Γ\G→ Γ′\G : Γh→ Γ′δD(h),

which exactly induces the morphism ϕ on the level of the fundamental

groups.

On the other hand, if we choose an arbitrary map f : Γ\G→ Γ′\G
between two infra-nilmanifolds and choose a lifting f̃ :G→G of f , then

there exists a morphism f̃∗ : Γ→ Γ′ such that f̃∗(γ) ◦ f̃ = f̃ ◦ γ, for all γ ∈ Γ.

By Theorem 1.3, an affine map (δ,D) ∈ aff(G) exists which also satisfies

f̃∗(γ) ◦ (δ,D) = (δ,D) ◦ γ for all γ ∈ Γ. Therefore, the induced map (δ, D)

and f are homotopic. We call (δ,D) an affine homotopy lift of f .

We end this introduction about infra-nilmanifolds with the definition of

a hyperbolic map on an infra-nilmanifold. We denote by D∗ the Lie algebra

endomorphism induced by D on the Lie algebra g associated to G.

Definition 1.4. Let M be an infra-nilmanifold and f :M →M be a

continuous map, with (δ,D) as an affine homotopy lift. We say that f is a

hyperbolic map if D∗ has no eigenvalues of modulus 1.

Remark 1.5. The map D, and hence also D∗ depends on the choice of

the lift f̃ . Once the lift f̃ is fixed, and hence the morphism f̃∗ is fixed, the

D – part of the map (δ,D) in Theorem 1.3 is also fixed (although the δ –

part is not unique in general). It follows that f determines D only up to an

inner automorphism of G. But as inner automorphisms have no effect on

the eigenvalues of D∗ (in the case of a nilpotent Lie group G) the notion of

a hyperbolic map is well defined.

Two important classes of maps on infra-nilmanifolds which are hyperbolic

are the expanding maps and the Anosov diffeomorphisms.

Remark 1.6. Due to [4, Lemma 4.5], it is known that every nowhere

expanding map on an infra-nilmanifold only has eigenvalues 0 or eigenvalues

of modulus 1. This means that every hyperbolic map for which D∗ is not

nilpotent has an eigenvalue of modulus strictly bigger than 1.

§2. Nielsen theory, dynamical zeta functions and HPer(f)

Let f :X →X be a self-map of a compact polyhedron X. There are

different ways to assign integers to this map f that give information about

the fixed points of f . One of these integers is the Lefschetz number L(f)
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4 K. DEKIMPE AND G.-J. DUGARDEIN

which is defined as

L(f) =
dimX∑
i=0

(−1)iTr(f∗,i :Hi(X, R)→Hi(X, R)).

In our situation, the space X = Γ\G will be a infra-nilmanifold, which

is an aspherical space, and hence the (co)homology of the space X = Γ\G
equals the (co)homology of the group Γ. It follows that in this case we have

(see also [13, p. 36])

L(f) =

dimX∑
i=0

(−1)iTr(f∗,i :Hi(Γ, R)→Hi(Γ, R))

=
dimX∑
i=0

(−1)iTr(f∗i :H i(Γ, R)→H i(Γ, R)).

The Lefschetz fixed point theorem states that if L(f) 6= 0, then f has

at least one fixed point. Because the Lefschetz number is only defined in

terms of (co)homology groups, it remains invariant under a homotopy and

hence, if L(f) 6= 0, the Lefschetz fixed point theorem guarantees that any

map homotopic to f also has at least one fixed point.

Another integer giving information on the fixed points of f is the Nielsen

number N(f). It is a homotopy-invariant lower bound for the number

of fixed points of f . To define N(f), fix a reference lifting f̃ of f with

respect to a universal cover (X̃, p) of X and denote the group of covering

transformations by D. For α ∈ D, the sets p(Fix(α ◦ f̃)) form a partition of

the fixed point set Fix(f). These sets are called fixed point classes. By using

the fixed point index, we can assign an integer to each fixed point class in

such a way that if a nonzero integer is assigned, the fixed point class cannot

completely vanish under a homotopy. Such a nonvanishing fixed point class

will be called essential and N(f) is defined as the number of essential fixed

point classes of f .

By definition, it is clear that N(f) will indeed be a homotopy-invariant

lower bound for the number of fixed points of f . Hence, in general, N(f) will

give more information about the fixed points of f than L(f). The downside,

however, is that Nielsen numbers are often much harder to compute than

Lefschetz numbers, because the fixed point index can be a tedious thing to

work with. Luckily, on infra-nilmanifolds there exists an algebraic formula

to compute N(f), which makes them a convenient class of manifolds to

https://doi.org/10.1017/nmj.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.15


HOMOTOPY MINIMAL PERIODS FOR HYPERBOLIC MAPS ON INFRA-NILMANIFOLDS 5

study Nielsen theory on. More information on both L(f) and N(f) can be

found in for example, [3, 14, 15].

By using the Lefschetz and Nielsen numbers of iterates of f as coefficients,

it is possible to define the so-called dynamical zeta functions. The Lefschetz

zeta function was introduced by Smale in [21]:

Lf (z) = exp

(
+∞∑
k=1

L(fk)

k
zk

)
.

In his paper, Smale also proved that the Lefschetz zeta function is always

rational for self-maps on compact polyhedra.

The proof is actually quite straightforward. Let the λij ’s denote the

eigenvalues of f i∗ :H i(X, R)→H i(X, R), with j ∈ {1, . . . , dim(H i(X, R))}.
Because the trace of a matrix is the sum of the eigenvalues, we find

Lf (z) = exp

+∞∑
k=1

dim X∑
i=0

(−1)i
dim Hi(X)∑

j=1

λkij

 zk

k

 .

By reordering the terms and by using the fact that

+∞∑
k=1

akzk

k
=−log(1− az) for |z|< |a|−1,

it is easy to derive that

(1) Lf (z) =

dim X∏
i=0

dim Hi(X)∏
j=1

(1− λijz)(−1)i+1
.

Remark 2.1. Suppose that Λ is a lattice of a connected and simply

connected nilpotent Lie group G and f : Λ\G→ Λ\G is a self-map of the

nilmanifold Λ\G with affine homotopy lift (δ,D). Let D∗ be the induced

linear map on the Lie algebra g of G as before. The main result of [19]

states that there are natural isomorphisms

H i(Λ, R)∼=H i(Λ\G, R)∼=H i(g, R).
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6 K. DEKIMPE AND G.-J. DUGARDEIN

The naturality of these automorphisms implies that there is a commutative

diagram

H i(Λ, R)
∼= //

f∗i
��

H i(g, R)

Di
∗

��

H i(Λ, R) ∼=
// H i(g, R)

Here Di
∗ is the map induced by D∗ on the ith cohomology space of g. Recall,

that the cohomology of g is defined as the cohomology of a cochain complex,

where the ith term is Hom(
∧i g, R) = (

∧i g)∗, the dual space of
∧i g. So,

Di
∗ is induced by the dual map of

∧i D∗. Since this dual map and
∧i D∗

have the same eigenvalues, it follows that the set of eigenvalues of Di
∗, hence

also the set of eigenvalues λi,j of f∗i in expression (1), is a subset of the set of

eigenvalues of
∧i D∗ :

∧i g→
∧i g. (This fact is also reflected in the formula

obtained in [7, Theorem 23].)

The Nielsen zeta function was introduced by Fel’shtyn in [10, 20] and is

defined in a similar way as the Lefschetz zeta function:

Nf (z) = exp

(
+∞∑
k=1

N(fk)

k
zk

)
.

It is known that this zeta function does not always have to be a rational

function. A counterexample for this can be found in [7], for example, in

Remark 7.

For self-maps on infra-nilmanifolds, however, the Nielsen zeta function

will always be rational. To prove this, one can exploit the fact that N(f)

and L(f) are very closely related. In [5], we defined a subgroup Γ+ of Γ,

which equals Γ or is of index 2 in Γ. The precise definition is not of major

significance for the rest of this paper. However, it allowed us to write Nf (z)

as a function of Lf (z) if Γ = Γ+, and as a combination of Lf (z) and Lf+(z) if

[Γ : Γ+] = 2. Here, f+ : Γ+\G→ Γ+\G is a lift of f to the 2-folded covering

space Γ+\G of Γ\G. The following theorem, together with the fact that

Lefschetz zeta functions are always rational, therefore proves the rationality

of Nielsen zeta functions for infra-nilmanifolds.

Theorem 2.2. [5, Theorem 4.6] Let M = Γ\G be an infra-nilmanifold

and let f :M →M be a self-map with affine homotopy lift (δ,D). Let p
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denote the number of positive real eigenvalues of D∗ which are strictly

greater than 1 and let n denote the number of negative real eigenvalues

of D∗ which are strictly less than −1. Then we have the following table of

equations:

p even, n even p even, n odd p odd, n even p odd, n odd

Γ = Γ+ Nf (z) = Lf (z) Nf (z) =
1

Lf (−z)
Nf (z) =

1

Lf (z)
Nf (z) = Lf (−z)

Γ 6= Γ+ Nf (z) =
Lf+(z)

Lf (z)
Nf (z) =

Lf (−z)

Lf+(−z)
Nf (z) =

Lf (z)

Lf+(z)
Nf (z) =

Lf+(−z)

Lf (−z)

Moreover, this theorem also tells us that we can write Nf (z) in a similar

form as in equation (1), since every Lefschetz zeta function is of this form.

More information about dynamical zeta functions can be found in [7].

Closely related to fixed point theory, is periodic point theory. We call

x ∈X a periodic point of f if there exists a positive integer n, such that

fn(x) = x. Of course, when fn(x) = x, this does not automatically imply

that the actual period of x is n. For example, it is immediately clear that

every fixed point is also a periodic point of period n, for all n > 0. In

order to exclude these points, we define the set of periodic points of pure

period n:

Pn(f) = {x ∈X ‖ fn(x) = x and fk(x) 6= x, ∀k|n}.

The set of homotopy minimal periods of f is then defined as the following

subset of the positive integers:

HPer(f) =
⋂
f'g
{n|Pn(g) 6= ∅}.

This set has been studied extensively, for example, in [1] for maps on

the torus, in [12] for maps on nilmanifolds and in [9, 17] for maps on infra-

nilmanifolds.

Just as Nielsen fixed point theory divides Fix(f) into different fixed point

classes, Nielsen periodic point theory divides Fix(fn) into different fixed

point classes, for all n > 0 and looks for relations between fixed point classes

on different levels. This idea is covered by the following definition.

Definition 2.3. Let f :X →X be a self-map. If Fk is a fixed point

class of fk, then Fk will be contained in a fixed point class Fkn of (fk)n, for
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8 K. DEKIMPE AND G.-J. DUGARDEIN

all n. We say that Fk boosts to Fkn. On the other hand, we say that Fkn
reduces to Fk.

An important definition that gives some structure to the boosting and

reducing relations is the following.

Definition 2.4. A self-map f :X →X will be called essentially

reducible if, for all n, k, essential fixed point classes of fkn can only reduce

to essential fixed point classes of fk. A space X is called essentially reducible

if every self-map f :X →X is essentially reducible.

It can be shown that the fixed point classes for maps on infra-nilmanifolds

always have this nice structure for their boosting and reducing relations.

Theorem 2.5. [17] Infra-nilmanifolds are essentially reducible.

One of the consequences of having this property, is the following.

Theorem 2.6. [1] Suppose that f is essentially reducible and suppose

that

N(fk)>
∑

p prime, p|k

N(fk/p),

then k ∈HPer(f).

The idea of this theorem is actually quite easy to grasp. Because maps on

infra-nilmanifolds are essentially reducible, every reducible essential fixed

point class on level k will reduce to an essential fixed point class on level kp ,

with p a prime divisor of k. Therefore, the condition

N(fk)>
∑

p prime, p|k

N(fk/p)

actually tells us that there is definitely one irreducible essential fixed point

class on level k, which means that there is at least one periodic point of

pure period k.

For this paper, this is all we need to know about Nielsen periodic point

theory. More information about Nielsen periodic point theory in general can

be found in [11, 13] or [14].

§3. HPer(f) for hyperbolic maps on infra-nilmanifolds

3.1 The nonnilpotent case

We begin with the following definition, which tells us something about

the asymptotic behavior of the sequence
{
N(fk)

}∞
k=1

.
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Definition 3.1. The asymptotic Nielsen number of f is defined as

N∞(f) = max

{
1, lim sup

k→∞
N(fk)1/k

}
.

By sp(A) we mean the spectral radius of the matrix or the operator A.

It equals the largest modulus of an eigenvalue of A.

Theorem 3.2. [8, Theorem 4.3] For a continuous map f on an infra-

nilmanifold, with affine homotopy lift (δ,D), such that D∗ has no eigenvalue

1, we have

N∞(f) = sp
(∧

D∗

)
.

If {νi}i∈I is the set of eigenvalues of D∗, we know that

sp
(∧

D∗

)
=

{∏
|νi|>1 |νi| if sp(D∗)> 1,

1 if sp(D∗) 6 1.

Therefore, we have the following corollary of Theorem 3.2.

Corollary 3.3. Let f be a hyperbolic, continuous map on an infra-

nilmanifold. Let (δ,D) be an affine homotopy lift of f and let {νi}i∈I be the

set of eigenvalues of D∗. If D∗ is not nilpotent, then

N∞(f) =
∏
|νi|>1

|νi|.

Proof. When D∗ is not nilpotent, we know by Remark 1.6 that sp(D∗)>

1. Because f is hyperbolic, 1 is certainly not an eigenvalue of D∗ and

therefore, we can use the result of Theorem 3.2.

Because of Theorem 2.2, we know that Nf (z) can be written as the

quotient of Lefschetz zeta functions. Since every Lefschetz zeta function

on a compact polyhedron is of the form

Lf (z) =
m∏
i=1

(1− µiz)γi ,

with µi ∈ C and γi ∈ {1,−1}, the same will hold for Nf (z). Also, it is easy

to check that

Nf (z) =

n∏
i=1

(1− λiz)−εi ⇒N(fk) =

n∑
i=1

εiλ
k
i ,

for all k ∈ N.
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In Remark 2.1 we already mentioned the fact that for nilmanifolds the

µi’s appearing in the expression for Lf (z) are eigenvalues of
∧

D∗. We now

claim that the same holds for maps on infra-nilmanifolds. Consider an infra-

nilmanifold Γ\G and a self-map f of Γ\G with affine homotopy lift (δ,D).

Without loss of generality, we may assume that f = (δ,D). We now fix a fully

characteristic subgroup Λ of finite index in Γ that is contained in G (e.g., see

[16]). Hence for the induced morphism f∗ : Γ→ Γ we have that f∗(Λ)⊆ Λ.

It follows that (δ,D) also induces a map f̂ on the nilmanifold Λ\G and

that f̂∗ = f∗|Λ. By [2, Theorem III 10.4] we know that the restriction map

induces an isomorphism res :H i(Γ,Q)→H i(Λ,Q)Γ/Λ. As the restriction

map is natural, we obtain the following commutative diagram:

H i(Γ,Q)
res

∼=
//

f i∗
��

H i(Λ,Q)Γ/Λ

f̂ i∗
��

H i(Γ,Q)
res

∼=
// H i(Λ,Q)Γ/Λ

It follows that each of the eigenvalues of f i∗ is also an eigenvalue of f̂ i∗. Since

the latter ones are all eigenvalues of
∧i D∗, by Remark 2.1, it follows that

all eigenvalues of f i∗ are also eigenvalues of
∧i D∗. This means that the µi’s

appearing in the expression for Lf (z) are eigenvalues of
∧

D∗ and of course,

because f+ has the same affine homotopy lift as f , the same applies to

Lf+(z).

By Theorem 2.2, we know that Nf (z) can be written as a combination

of Lf (z) and possibly Lf+(z), or as a combination of Lf (−z) and possibly

Lf+(−z). In the first case, by the previous discussion we see that all λi’s in

the expression for Nf (z) are eigenvalues of
∧

D∗. In the latter case, all λi’s

are the opposite of eigenvalues of
∧

D∗. This means that we can write

N(fk) =
n∑
i=1

εiλ
k
i ,

such that all λi’s or all −λi’s are eigenvalues of
∧

D∗.

Lemma 3.4. If f is a nonnilpotent hyperbolic map on an infra-

nilmanifold, with (δ,D) as affine homotopy lift, it is possible to write

N(fk) =
m∑
i=1

aiλ
k
i ,
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with ai ∈ Z, a1 > 1 and such that

|λ1|= λ1 = sp
(∧

D∗

)
> |λ2|> · · ·> |λm|.

Proof. By previous arguments, we know that it is possible to write

N(fk) =

n∑
i=1

εiλ
k
i ,

where all λi’s or all −λi’s are eigenvalues of
∧

D∗. By grouping the λ’s that

appear more than once and by changing the order, we obtain the desired

form

N(fk) =

m∑
i=1

aiλ
k
i ,

with ai ∈ Z and |λ1|> |λ2|> · · ·> |λm|. There is a unique eigenvalue of∧
D∗ of maximal modulus, namely the product∏

|λi|>1

λi = µ1.

Note that the product is real, because for every λ 6∈ R, we know that if

|λ|> 1, then |λ|> 1 and both are eigenvalues of
∧

D∗, because D∗ is a real

matrix. It is unique because f is hyperbolic and D∗ has no eigenvalues of

modulus 1.

Because of Theorem 3.2, we know that N∞(f) = sp(
∧

D∗) = |µ1|.
Suppose now that µ1 or −µ1 does not appear as one of the λ’s in the

expression of N(fk). Then, it should still hold that

1 = lim sup
k→∞

(∑m
i=1 aiλ

k
i

µk1

)1/k

.

Let amax = max{|ai|}, then it is easy to derive that for all k:∑m
i=1 aiλ

k
i

µk1
6

m∑
i=1

|ai|
∣∣∣∣ λiµ1

∣∣∣∣k 6mamax

∣∣∣∣λ1

µ1

∣∣∣∣k .
So, we would have that

1 6 lim sup
k→∞

(
mamax

∣∣∣∣λ1

µ1

∣∣∣∣k
)1/k

=

∣∣∣∣λ1

µ1

∣∣∣∣< 1,

https://doi.org/10.1017/nmj.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.15


12 K. DEKIMPE AND G.-J. DUGARDEIN

where the last inequality follows from the fact that µ1 is the unique

eigenvalue of maximal modulus. Moreover, an easy argument shows that

a1 < 0 or λ1 < 0 cannot occur in the expression of N(fk), because otherwise

N(fk) would be negative for sufficiently large k. As we have already proved

that a1 = 0 is impossible, we know that a1 > 1 and that sp(
∧

D∗) will appear

as one of the λ’s in the expression for N(fk).

Remark 3.5. The fact that sp(
∧

D∗) has to appear in the expression

for N(fk) was proved in a more general setting in [9].

Lemma 3.6. If f is a hyperbolic map on an infra-nilmanifold, then

N(fk) 6= 0 for all k > 0.

Proof. Let (δ,D) be an affine homotopy lift of f and let F be the

holonomy group of the infra–nilmanifold. By [16], we know that

N(fk) =
1

#F

∑
A∈F
|det(I − A∗D

k
∗)|.

Because all the terms make a nonnegative contribution to this sum, we know

that

N(fk) >
1

#F
|det(I −Dk

∗)|=
1

#F

n∏
i=1

|1− µki |> 0,

where the µi are all the eigenvalues of D∗. The last inequality follows

from the fact that f is hyperbolic and so there are no eigenvalues of

modulus 1.

From now on, we consider f to be a hyperbolic map on an infra-

nilmanifold and N(fk) to be of the form

N(fk) =
m∑
i=1

aiλ
k
i ,

with ai ∈ Z, a1 > 1 and such that

|λ1|= λ1 = sp
(∧

D∗

)
> |λ2|> · · ·> |λm|.

For the sake of clarity, we keep using this notation in the rest of this

paragraph.
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Lemma 3.7. For all µ such that λ1 > µ > 1, there exists k0 ∈ N, such

that for all k > k0 and for all n ∈ N, we have the following inequality:

N(fk+n)> µnN(fk).

Proof. Let 1> ε > 0, such that

λ1 − µ
λ1 + µ

> ε > 0.

Note that this implies that

λ1
1− ε
1 + ε

> µ.

Now, choose k0 ∈ N such that, for all i ∈ {2, . . . , m},∣∣∣∣ aia1

∣∣∣∣ ∣∣∣∣λiλ1

∣∣∣∣k0 < ε

m
.

Because of Lemma 3.4, we know that |λ1|> |λi|, for all these i’s, so the

inequality will hold for k0 sufficiently large.

Now, consider the fraction

N(fk+n)

N(fk)
=
a1λ

k+n
1 +

∑m
i=2 aiλ

k+n
i

a1λk1 +
∑m

i=2 aiλ
k
i

=
λn1 +

∑m
i=2

ai
a1

λi
λ1

k
λni

1 +
m∑
i=2

ai
a1

λi
λ1

k
.

Note that N(fk) 6= 0, according to Lemma 3.6, so the fraction is well defined.

It is now easy to see that this equality implies the following inequalities:

N(fk+n)

N(fk)
>
λn1 −

∣∣∣∑m
i=2

ai
a1

λi
λ1

k
∣∣∣ λn1

1 +
∣∣∣∑m

i=2
ai
a1

λi
λ1

k
∣∣∣ > λn1

1− ε
1 + ε

> λn1

(
1− ε
1 + ε

)n
> µn.

Corollary 3.8. There exists ν, such that λ1 > ν > 1 and an l0 ∈ N,

such that for all l > l0 and for all k < l:

N(f l)> νl−kN(fk).
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Proof. Fix µ as in Lemma 3.7 and let k0 be the resulting integer from this

lemma. Note that Lemma 3.7 actually tells us that the sequence {N(fk)}∞k=1

will be strictly increasing from a certain point onwards. Because all Nielsen

numbers are integers, this means that there will exist l0 > k0, such that

N(f l0)>N(f l), for all l < l0, so also for all l < k0.

Now, let us define the following number

τ = min

{(
N(f l0)

N(f l)

)1/(l0−l)

‖l < l0

}
.

It is clear that τ > 1. Let ν = min {µ, (1 + τ)/2}. Clearly, λ1 > ν > 1 and,

for all k < l0, we have the following inequalities:

N(f l0)

N(fk)
> τ l0−k > νl0−k.

Because of Lemma 3.7 and the fact that µ> ν, we know this inequality also

applies to all l > l0.

Theorem 3.9. If f is a hyperbolic map on an infra-nilmanifold, with

affine homotopy lift (δ,D), such that D∗ is not nilpotent, then there exists

an integer m0, such that

[m0,+∞)⊂HPer(f).

Proof. Choose ν and l0 as in Corollary 3.8. Since

lim
k→∞

ν2k−1

k
= +∞,

we know there exists a k0, such that ν2k−1
> k for all k > k0. Define m0 =

max{2k0 , 2l0 + 1}.
Now, suppose that m>m0 and m is even. Let K denote the number of

different prime divisors of m. As m> 2l0 + 1, we know that m/2> l0 and

hence the result of Corollary 3.8 applies. Therefore, we have the following

inequalities ∑
p prime,p|m

N(fm/p) 6K ·N(fm/2)<
K

νm/2
·N(fm).

By Theorem 2.6, it now suffices to show that

K

νm/2
6 1.
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Because K denotes the number of different prime divisors of m, we certainly

know that m> 2K . By the definition of m0, we also know that m> 2k0 . If

K > k0, then

νm/2 > ν2K−1
>K,

which is sufficient. If k0 >K, we have that

νm/2 > ν2k0−1
> k0 >K.

So, when m>m0 is even, m ∈HPer(f).

When m>m0 is odd, a similar argument holds. Let K again be the

number of different prime divisors of m and note that m> 2l0 + 1 implies

that (m− 1)/2 > l0. Again, by using Corollary 3.8, we obtain the following

inequalities:

∑
pprime,p|m

N(fm/p) 6K ·N(f (m−1)/2)<
K

ν(m+1)/2
·N(fm).

Again, m> 2K and by definition m> 2k0 . When K > k0,

ν(m+1)/2 > ν(2K+1)/2 > ν2K−1
>K.

When k0 >K, the same reasoning gives us

ν(m+1)/2 > ν(2k0+1)/2 > ν2k0−1
> k0 >K.

This concludes the proof of this theorem.

Remark 3.10. Having obtained Lemma 3.4, it is also possible to prove

our main theorem in an alternative way, by following the approach of [8,

Section 6].

Remark 3.11. Note that our proof also applies to every essentially

irreducible map f (on any manifold) for which there exists µ > 1 and k0 ∈ N,

such that for all k > k0 and for all n ∈ N, we have that

N(fk+n)> µnN(fk).

This condition is therefore sufficient for HPer(f) to be cofinite in N.
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3.2 The nilpotent case

For the sake of completeness, in this section we also treat the case where

D∗ is nilpotent.

The following two theorems can be found in [6].

Theorem 3.12. Let Γ⊆Aff(G) be an almost-Bieberbach group with

holonomy group F ⊆Aut(G). Let M = Γ\G be the associated infra-

nilmanifold. If f :M →M is a map with affine homotopy lift (δ,D), then

R(f) =∞ if and only if ∃A ∈ F such that det(I − A∗D∗) = 0.

Theorem 3.13. Let f be a map on an infra-nilmanifold such that

R(f)<∞, then

N(f) =R(f).

Proposition 3.14. When f is a hyperbolic map on an infra-nilmanifold

with affine homotopy lift (δ,D) such that D∗ is nilpotent then, for all k,

N(fk) =R(fk) = 1.

Proof. By combining Theorems 3.12 and 3.13 we know that every fixed

point class of fk is essential if and only if for all A ∈ F (where F is the

holonomy group of our infra-nilmanifold), it is true that

det(I − A∗D
k
∗) 6= 0.

By [4, Lemma 3.1], we know that there exists B ∈ F , and an integer l, such

that

(B∗D
k
∗)
l = Dlk

∗ and det(I − A∗D
k
∗) = det(I −B∗D

k
∗).

Note that det(I −B∗D
k
∗) = 0 implies that B∗D

k
∗ has an eigenvalue 1, but

this would mean that Dlk
∗ has an eigenvalue 1, which is in contradiction

with the hyperbolicity of our map. Therefore, R(fk) =N(fk).

Note that D∗ only has eigenvalue 0. The fact that there exists B ∈ F and

an integer l such that

(B∗D
k
∗)
l = Dlk

∗ and det(I − A∗D
k
∗) = det(I −B∗D

k
∗),

implies that B∗D
k
∗ only has eigenvalue 0. As a consequence

det(I − A∗D
k
∗) = det(I −B∗D

k
∗) = 1,

for all A ∈ F . By applying the main formula from [16], an easy computation

shows that N(fk) = 1.

In [8], we find the following proposition.
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Proposition 3.15. If (δ,D) :M →M is a continuous map on an infra-

nilmanifold, induced by an affine map, then every nonempty fixed point class

is path-connected and

(1) Every essential fixed point class of (δ,D) consists of exactly one point.

(2) Every nonessential fixed point class of (δ,D) is empty or consists of

infinitely many points.

Theorem 3.16. If f is a hyperbolic map on an infra-nilmanifold with

affine homotopy lift (δ,D) such that D∗ is nilpotent, then

HPer(f) = {1}.

Proof. Let (δ,D) be the induced map of (δ,D) on the infra-nilmanifold.

It suffices to show that Per((δ,D)) = {1}, because N(f) = 1 immediately

implies that 1 ∈HPer(f).

By Propositions 3.15 and 3.14, we know that Fix((δ,D)
k
) consists of

precisely one point, for all k > 0. Because, for all k > 0, it holds that

Fix((δ,D))⊂ Fix((δ,D)
k
),

we know that Fix((δ,D)
k
) = Fix((δ,D)), for all k > 0. From this, it follows

that (δ,D) only has periodic points of pure period 1.
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