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EVERY COUNTABLE REGULAR SPACE 
WITHOUT ISOLATED POINTS IS CONNECTIFIABLE 

V. TZANNES 

ABSTRACT. It is proved that every countable regular space without isolated points 
can be embedded densely in a connected Hausdorff space with a dispersion point. 

In [5] S. Watson poses the question of whether there exists a countable regular space 
without isolated points which is not connectifiable. (A Hausdorff space X is called con-
nectifiable if X can be embedded densely in a connected Hausdorff space). We answer 
this problem in the negative by proving that every countable regular space X without iso
lated points can be embedded densely in a connected Hausdorff space with a dispersion 
point. The embedding of the space X is obtained by considering a continuous one-to-one 
function of X onto a dense subspace of a specific Hausdorff connected space F* with a 
dispersion point. 

A space X is called Urysohn if for every two distinct points JC, y of X there exist open 
neighbourhoods V, U of the points x,y such that V D 0 = 0. A point JC of a connected 
space X is called a dispersion point if X \ {x} is totally disconnected. 

We will use the following construction due to P. Roy [3]: Let Cn, n = 1,2,..., be a 
countable collection of disjoint dense subsets of the rationals Q such that |JJS=i Cn = Q. 
On the set Y = {(r, n) : r E Cn,n = 1,2,...} U {oo} we define the following topology: 
Basic open neighbourhoods of every point of the form (r, 2n) are the sets Ve(r,2n) = 
{(t, 2n) : \t — r\ < e}. Basic open neighbourhoods of every point of the form (r, 2n — 1), 
n = 2 , 3 , . . . are the sets Ve(r,2n - 1) = {(t,m) : \t - r\ < e,m = 2n-2,2n- l,2w}. 
For n = 1, basic open neighbourhoods of the points (r, 1), are the sets Vc(r, 1) = {(Y, ni) : 
|* — r | < e , m = l , 2 } . A basis of open neighbourhoods of the point oo is the collection 
of sets Vn(oo) = {oo} U {(r,k) G Y : k > 2n}. The space Y is countable connected 
Urysohn with dispersion point oo. 

It is obvious that the subspace D = {(r,n) E Y : n = 2,4,. . .} is regular first 
countable without isolated points and a dense subspace of Y. 

LEMMA. The space Y\C\ can be embedded densely in an uncountable Hausdorff 
connected space Y^ having the point oo as a dispersion point. 

PROOF. We first observe that Y\C\ is a countable connected Urysohn space having 
the point oo as a dispersion point. 

Received by the editors June 1, 1993; revised January 17, 1994 and March 9, 1994. 
AMS subject classification: 54D05, 54C24, 54D10. 
Key words and phrases: countable regular, embedding, dispersion point. 
© Canadian Mathematical Society 1994. 

556 

https://doi.org/10.4153/CMB-1994-082-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-082-8


COUNTABLE REGULAR IS CONNECTIFIABLE 557 

Let / be the set of irrationals. On the set 

7# = { ( r , 2 « ) : r e / U C 2 n , n = l , 2 , . . . } U { ( r , 2 « - l ) : r G C 2 n - i , « = 2,3,...}U{oo} 

we define a topology in a similar manner as for the set Y above, that is, basic open neigh
bourhoods of every point of the form (r, 2n) are the sets 

Ve(r,2n) = {(t,2n) : | f - r | < e } . 

Basic open neighbourhoods of every point of the form (r, In — 1) are the sets 

Vc(r, In - 1) = {(f, m) : \t - r\ < e, m = In - 2, In - 1, In}. 

A basis of open neighbourhoods of the point oo is the collection of sets 

Vn(oo) = {oo} U {(r, jfc) e Y* : k > 2n}. 

It is obvious that Y* is an uncountable connected Hausdorff space containing Y\C\ 
as a dense subspace. But Y* is not a Urysohn space because for every pair of points of 
the form (r, 2n - 2), (r, 2n\ r € /, n = 2 ,3 , . . . it holds that 

Oe(r,2n-2)nOe(r,2n)^t for every e > 0. 

We prove that the point oo is a dispersion point of Y*. Let M be a connected subset 
of Y# \ {oo}, and let R be the space of real numbers. We consider the function / of 
Y** \ {oo} onto the totally disconnected space R\C\9 defined by/((r,/?)) = r. Since/ 
is continuous, it follows that if r € Q \ C\, then M is the singleton {(r, n)}, and if r E /, 
then M = U^=i{(r^ 2H)}, which is not connected. 

Observe that the countable subspaceD = {(r, n) € Y* : r 6 Cn, n = 2,4,. . .} remains 
a regular first countable dense subspace of Y* not having isolated points. 

PROPOSITION. Ev^ry countable regular space without isolated points can be embed
ded as an open dense subspace in a connected Hausdorff space with a dispersion point. 

PROOF. Let (X, r) be a countable regular space without isolated points. By [ 1, Propo
sition 5.1] there exists a weaker regular first countable topology a on X which has no iso
lated points. Hence by the Sierpinski's theorem [4], there exists a homeomorphism/ of 
(X, a) onto the dense subspace D of the space Y* of the Lemma. Obviously the function 
/ of (X, T) onto D is continuous one-to-one. 

We consider the set Z = X U (Y* \ D) on which we define the following topology: 
Every open set in (X,r) is open. For every point of the form (r,2«), a basis of open 
neighbourhoods is the collection of sets 

Oc(r, 2n) = {(r, 2n) : \t - r\ < e, t € /} U/"1 ({(f, 2w) : \t - r\ < e, t E C2n}). 

For every point of the form (r,2n— 1) a basis of open neighbourhoods is the collection 
of sets 

Oc(r, 2n - 1) = {(t, 2n - 1) : \t - r\ < e} 

U {(t, m)\\t-r\<e,t€lm = 2n-2,2n} 

Uf~l ({(r, m) : \t - r\ < e, t G Cm, m = 2n - 2,2/i}). 
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For the point oo a basis of open neighbourhoods is the collection of sets 

On(oo) = {00} U {(r, k)EY*\D:k>2n} U T 1 ({(r, k) G D : k > In}). 

We will prove that Z is the required space. That it is Hausdorff containing X as an 
open dense subspace is obvious by the definition of topology on Z. 

We prove that Z is connected. Suppose not, and let A, B be disjoint open-and-closed 
subsets such that AU B = Z. Let 00 E A. Then there exists an open neighbourhood 
On(oo) of the point 00 such that 

On(oo) = On(oo) U {(r, 2n-l):r€ C2n-\ }ÇA. 

No point of the set {(r, 2n — 2) : r E /} belongs to B. For if (r, In — 2) is such a point, 
then there exists an open neighbourhood Oe(r, 2n — 2) such that Oc(r, 2n — 2) Ç 2?. But 
this is impossible because 

<9e(r,2rc-2) H {(r, 2n - 1 ) : r E C2n-i} ^ 0. 

Therefore {(r, 2n - 2) : r E /} C A, which implies that/"1 ({(r, In - 2) : r E C2„-2}) Ç 
A, from which it follows that {(r, 2n — 3) : r E C2„-3} Ç A. Continuing in this manner 
we conclude that B Ç X. But then /(£) is a countable subset of D Ç y*, not having 
isolated points, and hence it has a limit point (/, 2k), t € I, which is impossible because, 
by the definition of topology on Z, the point (t, 2k) must then be a limit point of B. 

It remains to prove that 00 is a dispersion point of Z. Let M be a connected subset of 
Z \ {00}. We consider the function F of Z \ {00} onto Y^ \ {00} defined by F(x) = f(x), 
for every x E X, and F((r, «)) = (r, n)y for every (r, w) E Y** \ D U {00}. Since F 
is continuous and one-to-one, it follows that F(M) is a connected subset of the totally 
disconnected space Y^ \ {00}, and hence F(M) is a singleton, which implies that M is a 
singleton. 

REMARK. Since the space Y# is not countable, the question which arises from the 
Watson's problem is the following: Can every countable regular space without isolated 
points be embedded densely in a countable connected Urysohn almost regular space 
with a dispersion point, or in a countable connected, locally connected Urysohn, almost 
regular space? (A space is called almost regular if it contains a dense subset at every 
point of which the space is regular, see [2]). 
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