Notation

Position vectors in three-dimensional space are denoted by $\mathbf{r}=(x, y, z)$, or $\mathbf{x}=$ $\left(x^{1}, x^{2}, x^{3}\right)$ where $x^{1}=x, x^{2}=y, x^{3}=z$.

A general vector a has components $\left(a^{1}, a^{2}, a^{3}\right)$, and $\hat{\mathbf{a}}$ denotes a unit vector in the direction of \mathbf{a}.

Volume elements in three-dimensional space are denoted by $\mathrm{d}^{3} \mathbf{x}=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=$ $\mathrm{d} x^{1} \mathrm{~d} x^{2} \mathrm{~d} x^{3}$.

The coordinates of an event in four-dimensional time and space are denoted by $x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=\left(x^{0}, \mathbf{x}\right)$ where $x^{0}=c t$.

Volume elements in four-dimensional time and space are denoted by $\mathrm{d}^{4} x=$ $\mathrm{d} x^{0} \mathrm{~d} x^{1} \mathrm{~d} x^{2} \mathrm{~d} x^{3}=c \mathrm{~d} t \mathrm{~d}^{3} \mathbf{x}$.

Greek indices μ, v, λ, ρ take on the values $0,1,2,3$.
Latin indices i, j, k, l take on the space values $1,2,3$.

Pauli matrices

We denote by σ^{μ} the set $\left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right)$ and by $\tilde{\sigma}^{\mu}$ the set $\left(\sigma^{0},-\sigma^{1},-\sigma^{2},-\sigma^{3}\right)$, where

$$
\begin{aligned}
& \sigma^{0}=\mathbf{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma^{2}=\left(\begin{array}{rr}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \sigma^{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \\
& \left(\sigma^{1}\right)^{2}=\left(\sigma^{2}\right)^{2}=\left(\sigma^{3}\right)^{2}=\mathbf{I} ; \quad \sigma^{1} \sigma^{2}=\mathrm{i} \sigma^{3}=-\sigma^{2} \sigma^{1}, \text { etc. }
\end{aligned}
$$

Chiral representation for γ-matrices

$$
\begin{aligned}
& \gamma^{0}=\left(\begin{array}{ll}
\mathbf{0} & \mathbf{I} \\
\mathbf{I} & \mathbf{0}
\end{array}\right), \gamma^{\mathrm{i}}=\left(\begin{array}{ll}
\mathbf{0} & \sigma^{\mathrm{i}} \\
-\sigma^{\mathrm{i}} & \mathbf{0}
\end{array}\right), \\
& \gamma^{5}=\mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{ll}
-\mathbf{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}
\end{array}\right) .
\end{aligned}
$$

$$
\begin{gathered}
\text { Quantisation }(\hbar=c=1) \\
(E, \mathbf{p}) \rightarrow(\mathrm{i} \partial / \partial t,-\mathrm{i} \nabla), \text { or } p^{\mu} \rightarrow \mathrm{i} \partial^{\mu}
\end{gathered}
$$

For a particle carrying charge q in an external electromagnetic field,

$$
\begin{aligned}
& (E, \mathbf{p}) \rightarrow(E-q \phi, \mathbf{p}-q \mathbf{A}), \text { or } p^{\mu} \rightarrow p^{\mu}-q A^{\mu} \\
& \mathrm{i} \partial^{\mu} \rightarrow\left(\mathrm{i} \partial^{\mu}-q A^{\mu}\right)=\mathrm{i}\left(\partial^{\mu}+\mathrm{i} q A^{\mu}\right)
\end{aligned}
$$

Field definitions

$$
\begin{aligned}
& Z_{\mu}=W_{\mu}^{3} \cos \theta_{\mathrm{w}}-B_{\mu} \sin \theta_{\mathrm{w}} \\
& A_{\mu}=\mathrm{W}_{\mu}^{3} \sin \theta_{\mathrm{w}}+B_{\mu} \cos \theta_{\mathrm{w}}
\end{aligned}
$$

where $\sin ^{2} \theta_{\mathrm{w}}=0.2315(4)$

$$
g_{2} \sin \theta_{\mathrm{w}}=g_{1} \cos \theta_{\mathrm{w}}=e, \quad G_{\mathrm{F}}=g_{2}^{2} /\left(4 \sqrt{2} M_{\mathrm{w}}^{2}\right)
$$

Glossary of symbols

A electromagnetic vector potential Section 4.3
$A^{\mu} \quad$ electromagnetic four-vector potential
$A^{\mu \nu} \quad$ field strength tensor Section 11.3
$A_{\mathrm{FB}} \quad$ forward-backward asymmetry Section 15.2
$a \quad$ wave amplitude Section 3.5
$a, a^{\dagger} \quad$ boson annihilation, creation operator
B magnetic field
$B^{\mu} \quad$ gauge field Section 11.1
$B^{\mu \nu} \quad$ field strength tensor Section 11.2
$b, b^{\dagger} \quad$ fermion annihilation, creation operator
D isospin doublet Section 16.6
$d, d^{\dagger} \quad$ antifermion annihilation, creation operator
$d_{k} \quad(k=1,2,3)$ down-type quark field
E electric field
$E \quad$ energy
$e, e_{\mathrm{L}}, e_{\mathrm{R}} \quad$ electron Dirac, two-component left-handed, right-handed field
$F^{\mu \nu} \quad$ electromagnetic field strength tensor Section 4.1
$f \quad$ radiative corrections factor Sections 15.1, 17.4
$f_{a b c} \quad$ structure constants of $S U(3)$ Section B. 7
$\mathrm{G}^{\mu} \quad$ gluon matrix gauge field
$G^{\mu \nu} \quad$ gluon field strength tensor
$G_{\mathrm{F}} \quad$ Fermi constant Section 9.4

$g^{\mu \nu}$	metric tensor
g	strong coupling constant Section 16.1
g_{1}, g_{2}	electroweak coupling constants
H	Hamiltonian Section 3.1
$h(x)$	Higgs field
\mathfrak{H}	Hamiltonian density Section 3.3
I	isospin operator Sections 1.5, 16.6
J	electric current density Section 4.1
J	total angular momentum operator
J	Jarlskog constant Section 14.3
J^{μ}	lepton number current Section 12.4
j	probability current Section 7.1
j^{μ}	lepton current Section 12.2
K	string tension Section 17.1
k	wave vector
L	lepton doublet Section 12.1
L	Lagrangian Section 3.1
L	Lagrangian density Section 3.3
l^{3}	normalisation volume Section 3.5
M	left-handed spinor transformation matrix Section B. 6
M	proton mass Section D. 1
m	mass
N	right-handed spinor transformation matrix Section B. 6
N	number operator Section C. 1
Ô	quantum operator
P	total field momentum
p	momentum
Q^{2}	$=-q_{\mu} q^{\mu}$
q	quark colour triplet
q^{μ}	energy-momentum transfer
R	rotation matrix Section B. 2
S	spin operator
S	action Section 3.1
s	square of centre of mass energy
T_{v}^{μ}	energy-momentum tensor Section 3.6
U	unitary matrix
u_{k}	($k=1,2,3$) up-type quark field
$u_{\mathrm{L}}, u_{\mathrm{R}}$	two-component left-handed, right-handed spinors Section 6.1
u_{+}, u_{-}	Dirac spinors Section 6.3
V	Kobayashi-Maskawa matrix Section 14.2

V	normalisation volume
v	velocity
v	$=\|\mathbf{v}\|$
$v_{\text {L }}, v_{\text {R }}$	two-component left-handed, right-handed spinors
v_{+}, v_{-}	Dirac spinors Section 6.4
\mathbf{W}^{μ}	matrix of vector gauge field Section 11.1
$\mathrm{W}^{\mu \nu}$	field strength tensor Section 11.2
$W_{\mu}^{1}, W_{\mu}^{2}, W_{\mu}^{+}, W_{\mu}^{-}$	fields of W boson
Z_{μ}	field of Z boson
$\alpha\left(Q^{2}\right)$	effective fine structure constant Section 16.3
$\alpha_{s}\left(Q^{2}\right)$	effective strong coupling constant Section 16.3
$\alpha_{\text {latt }}$	lattice coupling constant Section 17.1
α^{i}	Dirac matrix Section 5.1
β	Dirac matrix Section 5.1
β	$=v / c$
Γ	width of excited state, decay rate
γ^{μ}	Dirac matrix Section 5.5
γ	$=\left(1-\beta^{2}\right)^{-1 / 2}$
δ	Kobayashi-Maskawa phase Section 14.3
$\boldsymbol{\varepsilon}$	polarisation unit vector Section 4.7
ε	helicity index
θ	boost parameter: $\tanh \theta=\beta, \cosh \theta=\gamma$ Section 2.1, phase angle, scattering angle, scalar potential Section 4.3, gauge parameter field Section 10.2
$\theta_{\text {w }}$	Weinberg angle
Λ^{-1}	confinement length Section 16.3
$\Lambda_{\text {latt }}$	lattice parameter Section 17.1
λ_{a}	matrices associated with $S U(3)$ Section B. 7
$\mu, \mu_{L}, \mu_{\mathrm{R}}$	muon Dirac, two-component left-handed, right-handed field
$\nu_{e \mathrm{~L}}, \nu_{\mu \mathrm{L}}, \nu_{\tau \mathrm{L}}$	electron neutrino, muon neutrino, tau neutrino field
Π	momentum density Section 3.3
ρ	electric charge density
$\rho(E)$	density of final states at energy E
Σ	spin operator acting on Dirac field Section 6.2
τ	mean life
$\tau, \tau_{\mathrm{L}}, \tau_{\mathrm{R}}$	tau Dirac, two-component left-handed, right-handed field
Φ	complex scalar field Section 3.7

$\phi \quad$ real scalar field Section 2.3, scalar potential Section 4.1, gauge parameter field Section 10.2
$\phi_{0} \quad$ vacuum expectation value of the Higgs field
$\chi \quad$ gauge parameter field Section 4.3, scalar field Section 10.3
$\psi \quad$ four-component Dirac field
$\psi_{L}, \psi_{R} \quad$ two-component left-handed, right-handed spinor field
$\bar{\psi} \quad \psi^{\dagger} \boldsymbol{\gamma}^{0}$ Section 5.5
$\omega \quad$ frequency

