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Abstract

For a graph G, let f (G) denote the maximum number of edges in a bipartite subgraph of G. For an integer
m and for a fixed graph H, let f (m,H) denote the minimum possible cardinality of f (G) as G ranges
over all graphs on m edges that contain no copy of H. We give a general lower bound for f (m,H) which
extends a result of Erdős and Lovász and we study this function for any bipartite graph H with maximum
degree at most t ≥ 2 on one side.
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1. Introduction

All graphs considered here are finite, undirected and have no loops and no parallel
edges, unless otherwise indicated. All logarithms are to the natural base e. For a graph
G, let f (G) be the maximum number of edges in a bipartite subgraph of G. For an
integer m, let f (m) denote the minimum value of f (G) as G ranges over all graphs
with m edges.

It is easy to see that f (m) ≥ m/2, for instance by considering a random bipartition
or a suitable greedy algorithm of a graph with m edges. Edwards [9] improved the
lower bound and showed that for every m,

f (m) ≥
m
2

+
1
4

(√
2m +

1
2
−

1
4

)
. (1.1)

Note that this is tight when m =
(

n
2

)
for odd integers n. For more information on f (m),

including a determination of its precise value for some values of m, we refer the reader
to [1, 3, 7]. For survey articles, see [8, 17].

The situation is more complicated if we consider only H-free graphs G, that is,
graphs G that contain no copy of a fixed graph H. Let f (m,H) denote the minimum
possible cardinality of f (G) as G ranges over all H-free graphs on m edges. Alon
et al. [2] gave the following general conjecture.
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Conjecture 1.1 (Alon et al. [2]). For any fixed graph H, there exists a positive constant
ε = ε(H) such that

f (m,H) ≥
m
2

+ Ω(m3/4+ε).

Clearly, it suffices to prove this conjecture for complete graphs H. The problem of
estimating the error term more precisely is not easy, even for relatively simple graphs
H. The case H = K3, in which f (m,K3) is the minimum possible size of the maximum
cut in a triangle-free graph with m edges, has been studied extensively. Erdős and
Lovász (see [10]) proved by probabilistic methods that

f (m,K3) ≥
m
2

+ cm2/3
( log m
log log m

)1/3

for some positive constant c. After a series of papers by various researchers [16, 19],
Alon [1] proved that f (m,K3) = m/2 + Θ(m4/5) for all m.

In this paper, we use the method of Poljak and Tuza [16] to extend the result of
Erdős and Lovász for graphs containing no copy of the complete graph Kk+1, and
establish the following lower bound.

Theorem 1.2. For any fixed integer k ≥ 2 and all m > 1, there exists a positive constant
c(k) such that

f (m,Kk+1) ≥
m
2

+ c(k)mk/(2k−1)
( log2 m
log log m

)(k−1)/(2k−1)
.

Denote by Kt,s the complete bipartite graph with classes of vertices of sizes t and s.
Alon et al. [5] proposed a stronger conjecture for Kt,s-free graphs.

Conjecture 1.3 (Alon et al. [5]). For all s ≥ t ≥ 2 and all m, there exists a positive
constant c(s) such that

f (m,Kt,s) ≥
m
2

+ c(s)m(3t−1)/(4t−2).

If true, this is tight at least for all s ≥ (t − 1)! + 1, as shown by the projective norm
graphs [6]. For the cases t = 2, 3, the authors established the following theorem.

Theorem 1.4 (Alon et al. [5]). For t ∈ {2, 3} and s ≥ t, there exists a positive constant
c(s) such that

f (m,Kt,s) ≥
m
2

+ c(s)m(3t−1)/(4t−2)

for all m, and this result is tight up to the value of c(s).

In addition, Alon et al. [5] studied the function f (m, H) for some other special
bipartite graphs H.
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Theorem 1.5 (Alon et al. [5]). Let H denote the union of an arbitrary number of cycles
of length 4, all having a single common vertex. Then there exists a positive constant
c(H) such that

f (m,H) ≥
m
2

+ c(H)m5/6

for all m, and this result is tight up to the value of c(H).

In this paper, we consider the function f (m, H) for any bipartite graph H with
maximum degree t ≥ 2 on one side and prove the following results.

Theorem 1.6. Let H = H[X, Y] be a bipartite graph with vertex degree at most t ≥ 2
for each vertex in Y.

(i) For each t ≥ 2 and all m, there exists a positive constant c(H) such that

f (m,H) ≥
m
2

+ c(H)mt/(2t−1).

(ii) For t = 2 and all m, there exists a positive constant c′(H) such that

f (m,H) ≥
m
2

+ c′(H)m5/6.

(iii) Suppose that d(x) = |Y | for some vertex x ∈ X. For t = 3 and all m, there exists a
positive constant c′′(H) such that

f (m,H) ≥
m
2

+ c′′(H)m4/5.

Remark 1.7. Note that (i) gives a general weak lower bound in Conjecture 1.3 by
setting H = Kt,s for all s ≥ t ≥ 2. The ideas of Poljak and Tuza [16] can be used to
improve the bound in (i) by logarithmic factors by more careful calculations. Finally,
Theorems 1.4 and 1.5 are corollaries of (ii) and (iii).

2. Kk+1-free graphs

2.1. Independence numbers. In this subsection, we aim to bound the independence
number α(G) of a Kk+1-free graph G in terms of its number of vertices. We need the
following lemmas.

Lemma 2.1 (Turán; see [21]). Let G be a graph on n vertices with average degree at
most d. Then

α(G) ≥
n

1 + d
.

Lemma 2.2 (Shearer [18]). Let G be a triangle-free graph on n vertices with average
degree d > 1. Then

α(G) ≥
d log d − d + 1

(d − 1)2 n ≥
log d − 1

d
n.
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Lemma 2.3 (Li et al. [15]). Let G be a graph on n vertices with average degree at most
d. If the average degree of the subgraph induced by the neighbourhood of any vertex
is at most a, then

α(G) ≥ nFa+1(d),

where

Fa(x) =

∫ 1

0

(1 − t)1/a

a + (x − a)t
dt >

log(x/a) − 1
x

(x > 0).

Lemma 2.4. Let l(x) = log x/x for x > 0 and L(x) = (l(log x))−1 for x > e. The function
l(x) is monotonically increasing for 0 < x ≤ e and decreasing for x > e, and the
function g(x) = L(x)/x is decreasing for x > e.

Having finished the necessary preparations, we establish the following theorem.

Theorem 2.5. For any fixed integer k ≥ 2, let G be a Kk+1-free graph on n vertices with
average degree at most d. Then

α(G) ≥
1

4k2 n1/k(log n)(k−1)/k.

Proof. Let G be a graph with maximum degree ∆. Denote by G′ the graph induced by
the neighbourhood of any vertex of G with maximum degree ∆ and denote by G′′ the
graph induced by the neighbourhood of any vertex of G′ with maximum degree ∆′ in
G′. Note that G′ is Kk-free and G′′ is Kk−1-free for k ≥ 3.

We prove the theorem by induction on k. Let k = 2. Since vertex neighbourhoods
in a triangle-free graph are independent sets, we may assume that ∆ < (n log n)1/2. If
d ≤ e2, by Lemma 2.1,

α(G) ≥
n

1 + e2 ≥
1
16

(n log n)1/2,

as required. Suppose that e2 < d < (n log n)1/2. From Lemmas 2.2 and 2.4,

α(G) ≥
log d − 1

d
n ≥

log d
2d

n ≥
1
16

(n log n)1/2.

Thus, we get the desired result and establish the base case.
Assume that the result holds for any Kr-free graph with r ≤ k and k ≥ 3. We show

that the desired result holds for Kk+1-free graphs.

Claim 2.6.

3k2
( n
log n

)(k−1)/k
≤ d ≤ ∆ ≤ (nk−1 log n)1/k and ∆′ ≤ (nk−2 log2 n)1/k.

If d < 3k2(n/ log n)(k−1)/k, then, by Lemma 2.1,

α(G) ≥
n

3k2(n/ log n)(k−1)/k + 1
≥

1
4k2 n1/k(log n)(k−1)/k.
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If ∆ > (nk−1 log n)1/k, then we use the induction hypothesis on G′ to deduce that

α(G) ≥ α(G′) ≥
1

4(k − 1)2 ∆1/(k−1)(log ∆)(k−2)/(k−1) >
1

4k2 n1/k(log n)(k−1)/k.

In the same way, if ∆′ >
(
nk−2 log2 n

)1/k, then we can also get the required result by
using the induction hypothesis on G′′. This completes the proof of Claim 2.6.

Claim 2.7.
log d − log(∆′ + 1) − 1 ≥

log d
k

.

This is trivial if ∆′ ≤ 1. Suppose that ∆′ ≥ 2. It follows that ∆′ + 1 ≤ 3∆′/2. Since
log n ≥ 3k2 by Claim 2.6 and k ≥ 3,

(n/ log n)(k−1)/k

(nk−2 log2 n)(1/k)·(k/(k−1))
=

( n
(log n)k2+1

)1/(k2−k)
≥

( e3k2

(3k2)k2+1

)1/(k2−k)
≥

(3e/2)k/(k−1)

3k2 .

This together with Claim 2.6 yields

d ≥ 3k2
( n
log n

)(k−1)/k
≥

(3
2

e
(
nk−2 log2 n

)1/k
)k/(k−1)

≥

(3
2

e∆′
)k/(k−1)

≥ (e(∆′ + 1))k/(k−1),

implying the desired result. This completes the proof of Claim 2.7.
By Lemmas 2.3 and 2.4 and Claim 2.7,

α(G) ≥ nF∆′+1(d) >
log d − log(∆′ + 1) − 1

d
n ≥

n log d
kd

≥
1

4k2 n1/k(log n)(k−1)/k,

where the last inequality follows from the fact that e ≤ d ≤ (nk−1 log n)1/k by Claim 2.6.
This completes the proof of Theorem 2.5. �

2.2. Chromatic numbers. In this subsection, we give an upper bound for the
chromatic number χ(G) of a Kk+1-free graph G in terms of its number of edges.

A graph property is called monotone if it holds for all subgraphs of a graph with
the property, that is, it is preserved under deletion of edges and vertices. We require a
general lemma on monotone properties of Jensen and Toft [13] (see also [14]).

Lemma 2.8 (Jensen and Toft [13, Section 7.3]). For s ≥ 1, let ψ : [s,∞)→ (0,∞) be
a positive continuous nondecreasing function. Suppose that P is a monotone class of
graphs such that α(G) ≥ ψ(|V(G)|) for every G ∈ P with |V(G)| ≥ s. Then, for every
such G with |V(G)| ≥ s,

χ(G) ≤ s +

∫ |V(G)|

s

1
ψ(x)

dx.

The following lemma is an immediate corollary of Theorem 2.5 and Lemma 2.8.

Lemma 2.9. For any fixed integer k ≥ 2, let G be a Kk+1-free graph with n vertices.
Then

χ(G) ≤ 16k2
( n
log n

)(k−1)/k
.

https://doi.org/10.1017/S0004972716001295 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716001295


6 Q. Zeng and J. Hou [6]

Proof. Note that the desired result holds trivially for n < e2. Suppose that n ≥ e2. For
x ≥ e2, define

γ(x) = 1 − log−1 x and ψ(x) =
1

4k2 x1/k(log x)(k−1)/k.

Clearly, γ(x) ≥ 1/2 for x ≥ e2, and γ(x), ψ(x) are positive, continuous and
nondecreasing. By Theorem 2.5, α(G) ≥ ψ(n). It follows from Lemma 2.8 that

χ(G) ≤ e2 +

∫ n

e2

1
ψ(x)

dx ≤ e2 +
4k2

γ(e2)

∫ n

e2

γ(x)
x1/k(log x)(k−1)/k dx ≤ 16k2

( n
log n

)(k−1)/k
,

where the last inequality holds because an antiderivative for the integrand is exactly
(k/(k − 1))(x log−1 x)(k−1)/k. Thus, we complete the proof of Lemma 2.9. �

Lemma 2.10 (Shearer [20]). For any fixed integer k ≥ 2, let G be a Kk+1-free graph with
n vertices and average degree d > e. Then there exists a constant bk ∈ (0, 1/4) such
that

α(G) ≥
bkn log d

d log log d
.

The following result plays a key role in our proof of Theorem 1.2.

Theorem 2.11. For any fixed integer k ≥ 2, let G be a Kk+1-free graph with m > 1
edges. Then

χ(G) ≤ 32k(k + b−1
k )

(m log log m

log2 m

)(k−1)/(2k−1)
.

Proof. Let G be a Kk+1-free graph on n vertices with m > 1 edges. If χ(G) ≤ 50, then
we are done. Suppose that χ(G) > 50. We may also assume that G is vertex-critical. It
follows that the minimal degree of G is at least 50. Thus, we have m ≥ 25n.

For convenience, define

n∗ =

(mk logk log m
log m

)1/(2k−1)
.

We may assume that n > n∗. For, otherwise, n ≤ n∗. Since m > 1, we see that n ≥ 3 > e.
It follows from Lemmas 2.4 and 2.9 that

χ(G) ≤ 16k2
( n
log n

)(k−1)/k
≤ 16k2

( n∗

log n∗

)(k−1)/k
≤ 32k2

(m log log m

log2 m

)(k−1)/(2k−1)
,

where the last inequality follows from the fact that x ≥ 2 log x for each x > 0. Thus,
we get the desired result.

Now, we construct a graph sequence G = {Gi}i≥0 according to the following
procedure, which we call the G algorithm. Set i = 0, G0 = G and n0 = |V(G0)|. Repeat
the following steps until ni ≤ n∗:

(a) choose S i to be the maximum independent set of Gi;
(b) set Gi+1 = Gi\S i, ni = |V(Gi)| and increment i.
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Let ` + 1 be the length of the resulting sequence G. By the G algorithm, we
immediately see that n` ≤ n∗ and G can be coloured by at most χ(G`) + ` colours.
Since G` is Kk+1-free, by Lemmas 2.4 and 2.9, for n` ≥ 3,

χ(G`) ≤ 16k2
( n`
log n`

)(k−1)/k
≤ 16k2

( n∗

log n∗

)(k−1)/k
≤ 32k2

(m log log m

log2 m

)(k−1)/(2k−1)
.

Clearly, the last inequality holds for χ(G`) with n` ≤ 2 as well. In the following, it
suffices to bound the value of `.

Define t = dn/n∗e. Note that t ≥ 2 since n > n∗. Let I = {0, 1, . . . , ` − 1} and
J = {2, 3, . . . , t}. Note that ni > n∗ ≥ n/t for each i ∈ I by the G algorithm and the
definition of t. Thus, for each j ∈ J, we can define

V j =

{
x ∈ S i :

n
j
< ni ≤

n
j − 1

, i ∈ I
}

and I j =

{
i ∈ I :

n
j
< ni ≤

n
j − 1

}
.

Claim 2.12. For each i ∈ I j , ∅,

|S i| ≥
bkn2

2 j2m
· L

(2 jm
n

)
,

where L(x) is defined as in Lemma 2.4.

Let di denote the average degree of Gi for each i ∈ I. Clearly, for each i ∈ I j, we
have di ≤ 2m/ni ≤ 2 jm/n. Suppose that di > e. By Lemmas 2.4 and 2.10,

|S i| ≥ bkni ·
L(di)

di
≥

bkn2

2 j2m
· L

(2 jm
n

)
,

as required. Otherwise, di ≤ e. From Lemma 2.1, |S i| ≥ ni/4 ≥ n/(4 j), which, together
with the fact that x ≥ L(x) for x > e and 4bk < 1, implies the required result as well.
This completes the proof of Claim 2.12.

For each x ∈ S i and i ∈ I, define w(x) = |S i|
−1. Now, for each x ∈ S i ⊂ V j, it follows

from Claim 2.12 that

w(x) = |S i|
−1 ≤

2 j2m
bkn2L(2 jm/n)

≤
2 j2m log log m

bkn2 log(2 jm/n)
, (2.1)

where the last inequality holds because j ≤ t ≤ n/2 by the definitions of t and n∗. By
the definitions of w(x) and V j,

` =
∑
i∈I

∑
x∈S i

w(x) =
∑
j∈J

∑
x∈V j

w(x) and |V j| <
n

j − 1
−

n
j
. (2.2)

In view of (2.1) and (2.2),

` ≤

t∑
j=2

2 j2|V j|m log log m
bkn2 log(2 jm/n)

≤
4m
bkn

t∑
j=2

log log m
log j + log(m/n)

. (2.3)
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By the definition of n∗,

n
n∗
·

m
n

=
m
n∗

=

(mk−1 log m

logk log m

)1/(2k−1)
. (2.4)

It follows that

max
{

log
m
n
, log

n
n∗

}
>

log m
4

. (2.5)

Suppose that n/n∗ < m/n. Note that t − 1 < n/n∗ by the definition of t. Thus, we delete
the first term of the denominator of (2.3) and obtain

` ≤
4m
bkn

t∑
j=2

log log m
log(m/n)

≤
4m log log m

bkn∗ log(m/n)
≤

16k
bk

(m log log m

log2 m

)(k−1)/(2k−1)
,

where the last inequality follows from (2.4) and (2.5). Otherwise, n/n∗ ≥ m/n. Since
t − 1 < n/n∗ ≤ t,

t∑
j=2

1
log j

≤

∫ t

2

1
log x

dx ≤
2(t − 1)

log t
<

2n
n∗ log(n/n∗)

.

Deleting the second term of the denominator in (2.3) yields

` ≤
4m
bkn

t∑
j=2

log log m
log j

≤
8m log log m

bkn∗ log(n/n∗)
≤

32k
bk

(m log log m

log2 m

)(k−1)/(2k−1)
.

Thus, we get the desired result by noting that χ(G) ≤ χ(G`) + `. This completes the
proof of Theorem 2.11. �

2.3. Bipartite subgraphs of Kk+1-free graphs. In this short subsection, we give a
proof of Theorem 1.2. We need the following lemma.

Lemma 2.13 [1]. Let G be a graph with m edges and chromatic number at most χ. Then

f (G) ≥
χ + 1

2χ
m.

Proof of Theorem 1.2. Set c(k) = (64k2 + 64kb−1
k )−1. The result now follows imme-

diately from Lemma 2.13 and Theorem 2.11. �

3. Graphs with forbidden bipartite subgraphs
In this section, we consider the function f (m,H) when H is a bipartite graph with

maximum degree t ≥ 2 on one side. We shall use the following upper bound, proved
by Alon et al. [4], on the maximum number of edges in an H-free graph.

Lemma 3.1 (Alon et al. [4]). Let H be a bipartite graph with maximum degree t ≥ 2 on
one side. Then there exists a positive constant c = c(H) such that

ex(n,H) ≤ cn2−1/t.

A graph is r-degenerate if every one of its subgraphs contains a vertex of degree at
most r. We need the following well-known fact (see [1, 2] or [5] for a proof).
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Lemma 3.2. Let H be an r-degenerate graph on h vertices. Then there is an ordering
v1, . . . , vh of the vertices of H such that for every 1 ≤ i ≤ h the vertex vi has at most r
neighbours v j with j < i.

We also require the following three lemmas establishing lower bounds for f (G) for
graphs G in terms of different parameters.

Lemma 3.3 (Erdős et al. [11]). Let G be a graph on n vertices with m edges and positive
minimum degree. Then

f (G) ≥
m
2

+
n
6
.

Lemma 3.4 (Alon et al. [5]). There exist two small constants ε, δ ∈ (0, 1) such that the
following holds. Let G be a graph on n vertices with m edges and degree sequence
d1, d2, . . . , dn. Suppose, further, that for each i the induced subgraph on all the di
neighbours of vertex number i contains at most εd3/2

i edges. Then

f (G) ≥
m
2

+ δ

n∑
i=1

√
di.

Lemma 3.5 (Alon [1]). Let G = (V, E) be a graph with m edges. Suppose that U ⊂ V
and let G′ be the induced subgraph of G on U. If G′ has m′ edges, then

f (G) ≥ f (G′) +
m − m′

2
.

Finally, we shall employ a martingale concentration result to prove the existence of
certain induced subgraphs in a graph with relatively large minimum degree and sparse
neighbourhood.

Lemma 3.6 (Janson et al. [12, Corollary 2.27]). Given positive real numbers λ,
C1, . . . , Cn, let f : {0, 1}n → R be a function satisfying the following Lipschitz
condition: whenever two vectors z, z′ ∈ {0,1}n differ only in the ith coordinate (for any i),
we always have | f (z) − f (z′)| ≤ Ci. Suppose that X1, . . . , Xn are independent random
variables, each taking values in {0, 1}. Then the random variable Y = f (X1, . . . , Xn)
satisfies

P(|Y − E[Y]| ≥ λ) ≤ 2 exp
{
−

λ2

2
∑n

i=1 Ci

}
.

Now, we use this to control the performance of a randomised induced subgraph of
a given graph with properties stated as before.

Theorem 3.7. Let G = (V, E) be a graph on n vertices with m edges and minimum
degree at least mθ for some fixed real θ ∈ (0,1). Suppose that m is sufficiently large and
the induced subgraph on the neighbourhood of any vertex v ∈ V of degree dv contains
fewer than sd3/2

v edges for some positive constant s. Then, for every constant η ∈ (0,1),
there exists an induced subgraph G′ = (V ′, E′) of G with the following properties:

(a) G′ contains at least η2m/2 edges;
(b) every vertex v of degree dv in G that lies in V ′ has degree at least ηdv/2 in G′;
(c) every neighbourhood of the vertex v in V ′ contains at most 2η2sd3/2

v edges in G′.
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Proof. For each vertex v ∈ V , denote by dv the degree of v in G and denote by ev the
number of edges of Hv induced by NG(v). Write S = {v ∈ V : ev > 2η2sd3/2

v }.
Let η ∈ (0, 1) be any fixed real number. Consider a random subset V ′ of V obtained

by picking each vertex of V randomly and independently, with probability η. Let G′

be the subgraph of G induced by V ′. Define the random variables X and Yv to be the
number of edges of G′ and the degree of v in G′, respectively. Thus,

E[X] = η2m and E[Yv] = ηdv.

Clearly, flipping the assignment of v ∈ V cannot affect X by more than dv, and
switching the choice of a single vertex u ∈ NG(v) can only change Yv by at most 1.
Define

L =
∑
v∈V

d2
v ≤ 2mn and Lv = dv.

By Lemma 3.6,

P
(
X ≤ E[X] −

1
2
η2m

)
≤ 2 exp

{
−
η4m2

8L

}
≤ 2 exp

{
−
η4m
16n

}
(3.1)

and

P
(
Yv ≤ E[Yv] −

1
2
ηdv

)
≤ 2 exp

{
−
η2d2

v

8Lv

}
≤ 2 exp

{
−
η2dv

8

}
. (3.2)

Now, we define the random variable Zv to be the number of edges induced by
NG′(v). Clearly, we have E[Zv] = η2ev. For each v ∈ S , switching the choice of
a single u ∈ NG(v) can only affect Zv by at most dHv (u). Similarly, if we define
L′v =

∑
u∈NG(v) d2

Hv
(u) ≤ 2evdv, then Lemma 3.6 gives

P(Zv ≥ E[Zv] + η2ev) ≤ 2 exp
{
−
η4e2

v

2L′v

}
≤ 2 exp

{
−
η6s
√

dv

2

}
. (3.3)

Note that dv ≥ mθ for each v ∈ V and some fixed real θ ∈ (0, 1). Since 2m =
∑

v∈V dv,
we have m = Ω(n). Thus, each of (3.1)–(3.3) holds with probability exponentially
small in n for sufficiently large m. Since there are at most 2n + 1 conditions to check
and each fails with probability exponentially small in n, some choice of V ′ has the
required properties. This completes the proof of Theorem 3.7. �

Proof of Theorem 1.6. (i) Let H be a bipartite graph with maximum degree t ≥ 2
on one side and let G = (V, E) be an H-free graph with n vertices and m edges. By
Lemma 3.1, there exists a constant c1 = c1(H) > 1 such that m ≤ c1n2−1/t.

Let d(v) denote the degree of v in G. Define S = {v ∈ V : d(v) ≥ 4c1n1−1/t}. Clearly,
|S | ≤ n/2. Let G′ be the subgraph of G induced by V\S . Note that G′ contains at least
n/2 vertices and has maximum degree at most 4c1n1−1/t. By Lemma 2.1,

α(G) ≥ α(G′) ≥
n/2

1 + 4c1n1−1/t ≥ ψ(n),
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where ψ(x) = (10c1)−1x1/t. Note that ψ(x) is positive, continuous and nondecreasing.
From Lemma 2.8,

χ(G) ≤ 1 +

∫ n

1

10c1

x1/t dx ≤ 20c1n1−1/t. (3.4)

If n ≥ c′1mt/(2t−1) for some constant c′1 > 1, then Lemma 3.3 gives

f (G) ≥
m
2

+
n
6
≥

m
2

+
c′1
6

mt/(2t−1).

Otherwise, n < c′1mt/(2t−1). In view of Lemma 2.13 and (3.4), we conclude that

f (G) ≥
m
2

+
m

40c1n1−1/t >
m
2

+
1

40c1c′1
mt/(2t−1).

Since G is chosen arbitrarily, we get the desired result by setting c(H) = (40c1c′1)−1.
This completes the proof of (i).

(ii) Let H be a bipartite graph with maximum degree 2 on one side and let G be an
H-free graph with n vertices and m edges. On account of the inequality (1.1), we may
assume that m is sufficiently large. In addition, the desired result follows immediately
from Lemma 3.3 for n ≥ (1/2)m5/6. Thus, we may assume that n < (1/2)m5/6.

Claim 3.8. There exists an induced subgraph G′ of G such that G′ contains at least
η2m/4 edges and every neighbourhood of a vertex of degree d in G′ spans at most
εd3/2 edges in G′, where η ∈ (0, 1) is a fixed constant and ε is a constant defined as in
Lemma 3.4.

As long as there is a vertex of degree smaller than m1/6 in G, omit it. This process
terminates after deleting fewer than m1/6n < m/2 edges, and thus we obtain an induced
subgraph G̃ of G with at least m/2 edges and minimum degree at least m1/6. Note that
the induced subgraph on the neighbourhood of any vertex of degree d̃ of G̃ contains
no copy of H, and hence contains at most c2d̃ 3/2 edges for some constant c2 > 1, by
Lemma 3.1. Now, we apply Theorem 3.7 to G̃ with η = ε2/(32c2

2). Thus, we find
an induced subgraph G′ of G̃ (and hence of G) with the required properties. This
completes the proof of Claim 3.8.

Claim 3.9. G′ is `-degenerate, where ` = dµm1/3e and µ = µ(H) > 1 is a fixed constant.

Otherwise, we may assume that G′ contains a subgraph G′′ with minimum degree
more than `. Note that the number of vertices of G′′ is N < 2m/` ≤ 2`2/µ3. Thus, the
number of edges of G′′ is

e(G′′) ≥ 1
2`N ≥ ( 1

2µN)3/2. (3.5)

Since G′′ is H-free and H has maximum degree 2 on one side, by Lemma 3.1, there
exists a constant c′2 = c′2(H) > 1 such that e(G′′) ≤ c′2N3/2, which contradicts (3.5) for
a chosen value µ > 2(c′2)2/3. This completes the proof Claim 3.9.
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By Lemma 3.2 and Claim 3.9, there is a labelling v1, v2, . . . , vn′ of the n′ vertices of
G′ such that d+

i ≤ ` for every i, where d+
i denotes the number of neighbours v j of vi

with j < i in G′. Note that
∑n′

i=1 d+
i = |E(G′)|. Let di be the degree of vi in G′ for each

1 ≤ i ≤ n′. By Lemma 3.4 and Claim 3.8,

f (G′) ≥
|E(G′)|

2
+ δ

n′∑
i=1

√
di ≥

|E(G′)|
2

+ δ

n′∑
i=1

√
d+

i

≥
|E(G′)|

2
+
δ
∑n′

i=1 d+
i

√
`

≥
|E(G′)|

2
+

δη2

8
√
µ

m5/6,

where δ = δ(G′) is a constant. This together with Lemma 3.5 gives

f (G) ≥ f (G′) +
m − |E(G′)|

2
≥

m
2

+
δη2

8
√
µ

m5/6.

Since G is chosen arbitrarily, we get the desired result and complete the proof of (ii).

(iii) Let H = H[X, Y] be a bipartite graph with vertex degree at most 3 for each
vertex in Y and let G be an H-free graph with n vertices and m edges. Suppose that
d(x) = |Y | for some vertex x ∈ X and denote by H′ the subgraph of H induced by
(X\{x}) ∪ Y .

With an argument similar to the one stated in the proof of (ii), we may assume that
m is sufficiently large and n < (1/2)m4/5. Note that H′ is a bipartite graph with vertex
degree at most 2 for each vertex in Y and the induced subgraph on the neighbourhood
of any vertex in G contains no copy of H′. A similar argument to that of Claims 3.8
and 3.9, the details of which we omit, suggests the following claim.

Claim 3.10. Let η ∈ (0, 1) be a fixed constant and let ε be a constant defined as in
Lemma 3.4. Set ` = dµm2/5e, where µ = µ(H) > 1 is a fixed constant. Then there is an
induced subgraph G′ of G with the following properties:

(a) G′ is an `-degenerate graph with at least η2m/4 edges;
(b) every neighbourhood of a vertex of degree d in G′ spans at most εd3/2 edges

in G′.

The remainder of the argument is analogous to that in (ii). By Lemmas 3.2 and 3.4
and Claim 3.10, f (G′) exceeds half the number of edges of G′ by at least Ω(m4/5) and
the desired result follows from Lemma 3.5. This completes the proof of (iii). �
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