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A Note on the Diophantine Equation
x>+ y° =12 e> 4

Konstantine Zelator

Abstract. 'We consider the diophantine equation x> + y® = z°, ¢ > 4. We show that, when e is
a multiple of 4 or 6, this equation has no solutions in positive integers with x and y relatively prime.
As a corollary, we show that there exists no primitive Pythagorean triangle one of whose leglengths is
a perfect cube, while the hypotenuse length is an integer square.

1 Introduction

At an instructional conference on diophantine equations held at Leiden University
in 2007 [If], some open questions were posed. One of them was the diophantine
equation,

(1.1) x2+)/6:ze7 e > 4.

This equation is the subject matter of this paper. We offer a purely elementary
approach and an elementary proof of the the two main results of this work (Theorems
[ETand[42).

In Theorem [4.1] we prove that if e is a multiple of 4, then the above diophantine
equation has no solutions in positive integers x, y, z with (x, y) = 1.

Theorem[@2lstates that if e is a multiple of 6, then equation (I.I)) has no such solu-
tions either. To establish the two theorems, we make use of three well-known results
in the literature of diophantine analysis. We also use Lemma[3.T]and Proposition[3.2}
proved in Section 3.

At the end of the paper, we state two corollaries involving Pythagorean triangles

(Corollaries[5.3land [5.4).

2 Some Results from Number Theory

First we state the well-known parametric formulas that describe the entire family of
Pythagorean triples.

Lemma 2.1 All positive integer solutions (up to symmetry with respect to x and y) of
the diophantine equation x* + y* = z* are given by,

(2.1) x = d(m? — n?), y = d(2mn), z =d(m* + n?),

withm,n,d € ¥, m > n,(m,n) = 1, and m + n = 1(mod2). When d = 1, all the
primitive triples are obtained.
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The following result was first proved by Pocklington in 1914 [3]]. For a quick
reference and proof see [2]].

Theorem 2.2  All the positive integer solutions of the diophantine equation x* — x*y* +
yt =22, aregivenby x = y = t, z = t2, t a positive integer.
In particular, x = y = z = 1 is the only solution with (x, y) = 1.

Theorem[2.3] was established by Adrain [4] p. 636] in 1906.

Theorem 2.3 The diophantine equation x* + x*y* + y* = z* has no solutions in
positive integers x, y, z.

Theorem [2.4] can be found in [2]].

Theorem 2.4  All the integer solutions of the diophantine equation 2z° = x> + y> with
z# 0, aregivenbyx =y =z =1t,t# 0, t € 7, and the solutions with z = 0, are
givenbyz=0,x=ty=—t,t €.

3 A Lemma and a Proposition

Using the identities
A+ =(atb)(a® Fab+b?) = (a:l:b)[(a:l:b)2 :|:3ab] ,

one establishes the following lemma.

Lemma 3.1 Suppose that a and b are relatively prime integers, (a,b) = 1. Then
(a £ b, a®> Fab+b*) = 1or3, with 1 occurring when a = b # 0(mod 3), while the
above greatest common divisor is equal to 3 in the case when a + b = 0(mod 3).

Proposition 3.2 All the positive integer solutions of the diophantine equation
(3.1) 1+ y® =27

aregivenbyx = y = t, z = t>, t € Z*. In particular, the only such solution with
(x,y)=lisx=y=z=1

Proof One direction is trivial, namely that if (x, y,z) = (t,t,¢>), with ¢ a positive
integer. Then such a triple is a solution of (3.I). Below we establish the converse:
every such solution must be of the above form. First, observe that if x, y, z are positive
integers satisfying (3.1I)), then the highest power of 2 dividing x must be the same as
the highest power of 2 dividing y. This is easy to see by virtue of the fact that the
highest power of 2 dividing the right-hand side of (B.) must be of the form 2", v
being an odd integer. If x and y were exactly divisible by different powers of 2, then
the left-hand side of (3.I)) would be exactly divisible by 2", w being an even integer.
So we would have a contradiction. Therefore, based on this observation we can put

(3.2) {x=06-2"-%,y=0-2"-y},
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where ¢ is an odd positive integer and x;, y; are relatively prime odd positive integers,
(x1,y1) = 1, and r a nonnegative integer. Accordingly, since x¢ + y® = 2(mod 4),
) implies z = §° - 2°" - z;, z; an odd positive integer.

Combining (3.I) and (3.2]) we obtain,

(3.3) X8+ y% =228, orequivalently, (x}+ y?)(x} — x}y} +y}) =22}

Since x; and y; are relatively prime, it follows by Lemma [3.T] that the two factors
on the left-hand side of (3.3)) are either co-prime or, their only factor in common is
3. The latter possibility is ruled out, since (x;, y;) = 1 easily implies that x? + y? #
0(mod 3) (More generally, as is well known, a sum of two relatively prime squares
cannot be divisible by a prime congruent to 3 modulo 4.) We conclude that the two
factors on the left-hand side of (B.3) must be co-prime, and since x; and y; are both
odd, equation (3.3)) implies

(3.4) xi+yi =2k, x-xiyi+yi=k

for some relatively prime integers k;, k, with k, being odd and with ki k, = z;.

The second equation in (3.4)) combined with Theorem 2. 2limplies that x; = y; =
p, ka = p?* for some odd positive integer p.

Combining this with the first equation in (3.4) and the formulas in (3.2) and
kiky = zileadstox = y = t, z = t3, wheret = § - 2" - p. The proof is com-
plete. ]

4 The Two Theorems
Theorem 4.1 Let e be a positive integer that is a multiple of 4. Then the diophantine
equation

(4.1) X+ =27

has no solutions in positive integers x, y, z such that (x, y) = 1.

Proof Suppose that x, y, z are positive integers satisfying equation (4.I)), with x and
y being relatively prime. Then x, y, z are pairwise relatively prime, and (x, y°, z%) is
a primitive Pythagorean triple, where k = { and e = 4k. We apply the formulas in
(2.1). Throughout the two cases in the proof, m and n will be assumed to be relatively
prime integers, with one even while the other is odd, and with m > n.

Case 1: x odd, y even
We have

(4.2) {x:mz—nz7 y® = 2mn, 22k2m2+n2}.
In the arguments to follow, only y and z are involved. Consequently, since the

second and third equations in ([4.2)) are symmetric with respect to m and #, there is
no loss of generality in assuming m to be even and 7 to be odd. With that in mind, the
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third equation in (&2)) shows that (m, 1, z¥) is a primitive Pythagorean triple. Hence,
since m is even and # is odd,

. m= , hn= —N°, "= + N7,
(4.3) 2MN M?* - N>, Z=M*+N?

with positive integers M, N such that M > N, (M,N) = 1,and M + N = 1(mod 2).
On the other hand, since m is even, n is odd, and (m, n) = 1, the second equation

in (4.2) implies
(4.4) m=4a’>, n=1>0,

for some relatively prime integers a and b, with b being odd.
Combining the first equations in (4.3) and (4.4)) yields

(4.5) 40> = 2MN, MN =24’

Since M and N are relatively prime and have different parities, equation (4.3])
implies either
(4.6) M=2" and N=d
or alternatively,
(4.7) M=d and N=2¢
for positive integers ¢, d such that (¢, d) = 1 and with d odd.
Combining (4.6) and (47) with the second equations in (£4)) and (4.3]), we see

that either b* = 4¢® — d° or alternatively b® = d°® — 4c°.
Equivalently, we must have either

(4.8) v =03 -2l + )
or
(4.9) b= (d® - 23)(d + 2.

Due to the fact that (¢, d) = 1 and d being odd, the two factors on the right-hand
sides of equations (4.8]) and must be relatively prime. Thus, if (48] holds, then
each of the two factors on the right-hand side of (£.8) must be an integer cube. In
particular, 2¢®> + d®> = g> for some integer g. Obviously ¢ must be positive, since ¢
and d are. Moreover, 2¢> = g*> + (—d)?, which shows that the triple (g, —d, c) is an
integer solution of the diophantine equation 22 = X3 + Y.

By Result2.4] and since ¢ # 0, we must havec = t,g =t, —d = t; d = —t for
some nonzero integer ¢t. But, this is impossible by virtue of the fact that ¢ and d are
both positive. The argument is identical if holds.

Case 2: x even and y odd
In this case, we have (from equation (.1)))

(4.10) {x:Zmn, y=m* —n?, sz:m2+n2}.
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Because (m,n) = 1 and m + n = 1(mod 2), we have (m — n, m + n) = 1, which,
when combined with y* = (m — n)(m + n), implies

(4.11) {mfn:/\?, m+n:)\g}
for some odd relatively prime integers A; and A,.
From (4.11]) we obtain
3. 2\3 3_\3
(4.12) {m:’\lz)‘z,n:/\zz/\l}.

From (4.12)) and the third equation in (4.10]) we obtain
(4.13) 22%% = X0+ XS,

According to (@I3)), the triple (A, Az, Z¥) is a positive integer solution to the dio-
phantine equation 2Z% = X? + Y®, with (A1, ;) = 1. Hence, by Proposition 3.2 it
follows that A\; = \, = z¥ = 1, which is a contradiction since, for example, 7 is a
positive integer (and so nonzero). ]

Theorem 4.2 Let e be a positive integer that is a multiple of 6. Then the diophantine
equation

(4.14) Kty =7
has no solutions in positive integers x, y, z such that (x, y) = 1.

Proof We set e = 6k, k a positive integer and x, y, z € 7, satisfying (14)) and with
(x,y) = 1. Therefore, (x,y) = 1 = (x,z) = (z, y). Moreover, since e is even, then
according to (4.14), z must be odd, while x and y must have different parities. (This
is clear when (£.14)) is considered modulo 4.) Equation (4.14) is equivalent to

(4.15) 2= (25— ) (2 2y ).

Since z and y are relatively prime, by Lemma [3.1] the two factors on the right-hand
side of (4£15) must be either co-prime or their greatest common divisor must equal
3. If they are relatively prime, then implies that each of them must be a perfect
square. In particular,

(Zk)4 + (Zk)ZyZ + y4 — M2
for some positive integer u, which is contrary to Theorem 23] Next, suppose that
the greatest common divisor of the two factors on the right-hand side of (4.19) is 3.

Equation ([@I3)) gives
(4.16) {ZZk —yr=3x, Mt = 3x§}

for some relatively prime positive integers x; and x,, with 3x;x, = x. By combining
the two equations in ({.16), a straightforward calculation establishes that

(4.17) y*+3xy? + 3x) =«
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If x is odd and y is even, then both x;,x, are odd. But in this case, ([£I7) is
rendered impossible modulo 4, since the left-hand side would be congruent to 3,
while the right-hand side would be congruent to 1 modulo 4.

If x is even and y is odd, we go back to (14) with e = 6k. Then (x, y*,2") is a
primitive Pythagorean triple. We must have

(4.18) {x:2mn, y® = (m — n)(m+n), z3k:m2+n2}.

Accordingly, m — n = v}, m+ n = v3, for positive, relatively prime, odd integers
v; and v,. In combination with the third equation in (I8), this then yields 2z3* =
v§ +15. Thus, by Theorem 4] it follows that v = v3 = t = ZzF for some t € 7.
Since v; and v, are positive and co-prime, the only choice for ¢ is + = 1, which a
contradiction, since this implies n = 0. [ ]

5 Corollaries

Corollary 5.1 The diophantine equation x* + y® = z° has no solutions in positive
integers x, y, z.

Proof Suppose to the contrary that x, y, z are positive integers satisfying the above
equation. If D = (y, z), then D° is a divisor of x?, and so D* | x. We have x = D’x,,
y = Dy, z = Dz, where x;, y1, 2z are positive integers such that x? + y¢ = 20
and with (y;,2;) = 1; and thus also with (x;, y;) = 1. Clearly, x? + y¢ = 2§ and

(x1, 1) = 1 contradict Theorem[£.2] (with e = 6). [ ]
Two other corollaries follow at once.

Corollary 5.2 Let e be a multiple of 6. Then the diophantine equation x* + y® = z°
has no solutions in positive integers x, y, z.

Corollary 5.3 There exists no Pythagorean triangle one of whose leg lengths is a perfect
cube, while the hypotenuse length is also an integer cube.

Finally, as a result of Theorem [T} we have the following corollary.

Corollary 5.4 There exists no primitive Pythagorean triangle one of whose leg lengths
is a perfect cube, while the hypotenuse length is an integer square.
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