ON KRULL'S CONJECTURE CONCERNING: VALUATION RINGS

MASAYOSHI NAGATA

Introduction. Previously W. Krull conjectured ${ }^{1)}$ that every completely integrally closed primary ${ }^{2)}$ domain of integrity is a valuation ring. The main purpose of the present paper is to construct in § 1 a counter example against this conjecture. In $\S 2$ we show a necessary and sufficient condition that a field is a quotient field of a suitable completely integrally closed primary domain of integrity which is not a valuation ring.

By a ring we mean a commutative ring with identity. We refer to the notations like b_{p} as the ring of quotients of p with respect to 0 when 0 is a ring and p is a prime ideal of p.

1. A counter example.

Let K be an algebraically closed field with a non-trivial special valuation w whose value group G does not fill up all real numbers. Take a positive number α which is not in G. Consider a rational function field $K(x)$ of one variable x with constant field K. Let us define the following two types of valuations of $K(x)$ which are extensions of w : (1) For every element e of K such that $\alpha<w(e)<2 \alpha,{ }^{3}$) we define a valuation w_{e} (of $K(x)$) such that

$$
w_{c}\left(\sum_{i=0}^{n} a_{i}(x+e)^{i}\right)=\min \left(w\left(a_{i}\right)+2 \alpha i\right) \quad\left(a_{i} \in K\right) .
$$

(2) For every real number λ such that $\alpha \leqq \lambda \leqq 2 \alpha$, we define a valuation w_{λ} such that

$$
w_{\lambda}\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\min \left(w\left(a_{i}\right)+\lambda i\right) \quad\left(a_{i} \in K\right) .
$$

Theorem 1. Let \mathfrak{r}_{e} and \mathfrak{n}_{λ} be the valuation rings determined by w_{e} snd w_{λ} respectively $(\alpha<w(e)<2 \alpha, \alpha \leqq \lambda \leqq 2 \alpha)$ and let 0 be the intersection of all such $\mathfrak{r e}_{e}$ and \mathfrak{D}_{λ}. Then $\mathfrak{0}$ is completely integrally closed and primary, but 0 is not a

[^0]valuation ring.
Proof. Let $c(\neq 0)$ be an element of 0 . First we prove that (1) if $w_{\lambda_{0}}(c)$ $=0$ for some $\lambda_{0}\left(\alpha \leqq \lambda_{0} \leqq 2 \alpha\right)$, then $w_{\lambda}(c)=0$ and $w_{e}(c)=0$ for every w_{λ} and w_{e}, and that (2) if $w_{\alpha}(c)>0$, there exist the least and the largest values $\varepsilon>0$ and δ among values of c taken by w_{λ} and $w_{e}(\alpha \leqq \lambda \leqq 2 \alpha, \alpha<w(e)<2 \alpha)$.

Since K is algebraically closed, c is of the form

$$
c_{0} \prod_{i=1}^{n}\left(x+a_{i}\right) / \prod_{j=1}^{m}\left(x+b_{j}\right) \quad\left(c_{0}, a_{i}, b_{j} \in K\right)
$$

Every factor $x+d$ ($d=a_{i}$ or b_{j}) such that $w(d)>2 \alpha$ may be replaced by x, since we only consider the values of c taken by w_{λ} and w_{e}. Similarly we may replace by d every factor $x+d$ ($d=a_{i}$ or b_{j}) such that $w(d)<\alpha$. Therefore we may assume without loss of generality that (i) $\alpha<w\left(a_{i}\right)<2 \alpha$ or $a_{i}=0$, $\alpha<w\left(b_{j}\right)<2 \alpha$ or $b_{j}=0$ for each i and $j(1 \leqq i \leqq n, 1 \leqq j \leqq m)$, (ii) $a_{i} \neq b_{j}$ for every pair (i, j) and (iii) $w\left(a_{i}\right) \leqq w\left(a_{i+1}\right), w\left(b_{j}\right) \leqq w\left(b_{j+1}\right)(1 \leqq i<n, 1 \leqq j<m)$.

First we assume that $w_{\lambda_{0}}(c)=0$ for some $\lambda_{0}\left(\alpha \leqq \lambda_{0} \leqq 2 \alpha\right)$. If there exists one j_{1} such that $w\left(b_{j_{1}}\right)=\lambda_{0}$, then we have $w_{b_{j_{1}}}(c)<0$, which is a contradiction. Therefore no $w\left(b_{j}\right)$ is equal to λ_{0}. Assume that $w\left(a_{i}\right)<\lambda_{0}$ if $i \leqq i_{0}, w\left(a_{i}\right)=\lambda_{0}$ if $i_{0}<i \leqq i_{0}+s, w\left(a_{i}\right)>\lambda_{0}$ if $i>i_{0}+s ; w\left(b_{j}\right)<\lambda_{0}$ if $j \leqq j_{0}, w\left(b_{j}\right)>\lambda_{0}$ if $j>j_{0}$. Set $\lambda_{1}=\max \left(\alpha, w\left(a_{i_{0}}\right), w\left(b_{j_{0}}\right)\right), \lambda_{2}=\min \left(2 \alpha, w\left(a_{i_{0}+s+1}\right), w\left(b_{j_{0}+1}\right)\right.$.
Then

$$
\begin{aligned}
& w_{\lambda_{1}}(c)=w\left(c_{0}\right)+\sum_{i=i_{0}} w\left(a_{i}\right)-\sum_{j \equiv j_{0}} w\left(b_{j}\right)+\left(n-i_{0}\right) \lambda_{1}-\left(m-j_{0}\right) \lambda_{1} \geq 0, \\
& w_{\lambda_{0}}(c)=w\left(c_{0}\right)+\sum_{j \equiv i_{0}} w\left(a_{i}\right)-\sum_{j \equiv j_{0}} w\left(b_{j}\right)+\left(n-i_{0}\right) \lambda_{c}-\left(m-j_{0}\right) \lambda_{0}=0, \\
& w_{\lambda_{2}}(c)=w\left(c_{0}\right)+\sum_{i \equiv i_{0}} w\left(a_{i}\right)-\sum_{j \equiv j_{0}} w\left(b_{j}\right)+s \lambda_{0}+\left(n-i_{0}-s\right) \lambda_{2}-\left(m-j_{0}\right) \lambda_{2} \geq 0 .
\end{aligned}
$$

Hence we have

$$
w_{\lambda_{1}}(c)=w_{\lambda_{1}}(c)-w_{\lambda_{0}}(c)=\left(n-i_{0}\right)\left(\lambda_{1}-\lambda_{0}\right)-\left(m-j_{0}\right)\left(\lambda_{1}-\lambda_{0}\right) \geqslant 0,
$$

whence $n-i_{0} \leqq m-j_{0}{ }^{5}$)
Similarly we have

$$
w_{\lambda_{2}}(c)=w_{\lambda_{2}}(c)-w_{\lambda_{0}}(c)=\left(n-i_{0}-s\right)\left(\lambda_{2}-\lambda_{0}\right)-\left(m-j_{0}\right)\left(\lambda_{2}-\lambda_{0}\right) \geqslant 0,
$$

whence $n-i_{0}-s \geqslant m-j_{0}{ }^{\text {b }}$)
Thus we have $s=0$ and $n-i_{0}=m-j_{0} . s=0$ shows that no $w\left(a_{i}\right)$ is equal to λ_{c}. Further, $n-i_{0}=m-j_{0}, s=0$ show $w_{\lambda_{1}}(c)=w_{\lambda_{2}}(c)=0$. Therefore neither $w\left(a_{i}\right)$ nor $w\left(b_{j}\right)$ are equal to λ_{1} or λ_{2}, by the above observation. This means that $\lambda_{1}=\alpha$ and $\lambda_{2}=2 \alpha$. From $\lambda_{1}=\alpha$ we have that $i_{0}=j_{0}=0$, whence $m=n$; From $\lambda_{2}=2 \alpha$ we have that $a_{i}=0, b_{j}=0(1 \leqq i \leqq n, 1 \leqq j \leqq m)$. By our assumption

[^1]that $a_{i} \neq b_{j}$, it follows that $m=n=0$, i.e., $c=c_{0} \in K$. Since $w_{\lambda_{0}}(c)=0$, we have $w(c)=0$. This proves (1). Next assume that $w_{\alpha}(c)>0$. Let us consider $w_{\lambda}(c)$ as a function of variable $\lambda(\alpha \leqq \lambda \leqq 2 \alpha)$. Then it is evidently continuous, and it takes the least and the largest values ε_{1} and δ_{1} in $\alpha \leqq \lambda \leqq 2 \alpha$. By virtue of (1), we see that s_{1} is positive. Then (2) follows easily from the fact that $w_{e}(c)$ $\neq w_{w(e)}(c)$ holds only if e is one of a_{i} or b_{j} and in this case $w_{e}(c) \notin G$, whence $w_{e}(c) \neq 0$.

These being proved, we see that 0 is primary. Let $a(\neq 0)$ and $b(\neq 0)$ be two non-units in \mathfrak{n}. Then there exist positive numbers ε and δ such that $w_{\lambda}(a)$ $\geqslant \varepsilon, w_{e}(a) \geqq \varepsilon, w_{\lambda}(b) \leqq \delta, w_{e}(b) \leqq \delta(\alpha \leqq \lambda \leqq 2 \alpha, \alpha<w(e)<2 \alpha)$. Let k be an integer such that $k_{\varepsilon}>\delta$. Then we have $w_{\lambda}\left(a^{k} / b\right) \geqslant 0, w_{e}\left(a^{k} / b\right) \geqslant 0(\alpha \leqq \lambda \leqq 2 \alpha, \alpha<w(e)$ $<2 \alpha$), whence $a^{k} / b \in \mathfrak{0}$, i.e., $a^{k} \in b \mathfrak{v}$.

It is evident that $\mathfrak{0}$ is completely integrary closed, because $\mathfrak{0}$ is an intersection of special valuation rings. That $\mathfrak{0}$ is not a valuation ring follows from that $e / x \notin \mathfrak{0}, x / e \notin 0$ if $\alpha<w(e)<2 \alpha$.

2. An existence theorem.

Lemma 1. Let \mathfrak{r} be an integrally closed integral domain which has only one maximal ideal p_{0}. Let K be the quotient field of r. If Z is a field containing $K, \square_{\mathfrak{p}} \cap K=\mathfrak{r}$, where \mathfrak{o} is the totality of \mathfrak{r}-integers in Z and \mathfrak{p} a maximal ideal of 0 .

Proof. We may assume without loss of generality that Z is algebraic over K because the quotient field of \mathfrak{o} is algebraic over K.

First we assume that Z is finite normal over K. Let $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be the totality of automorphisms of Z over K. We show that every maximal ideal of \mathfrak{v} is one of $p^{\sigma_{i}}$: Assume that a maximal ideal \mathfrak{q} of \mathfrak{v} is none of $\mathfrak{p}^{\sigma_{i}}$. Then there exists an element c of \mathfrak{q} such that $c \neq p^{\sigma i}$ for every $i=1, \ldots, h$. A power e of $\prod_{i=1}^{n} c^{o i}$ is in K, whence in r . Since $c \in \mathfrak{q}$, we have $e \in p_{n}$, whence $e \in p_{0}{ }^{6)}$ Therefore one of $c^{\sigma_{i}}$ must be in \mathfrak{p}, i.e., c is in some $p^{\sigma_{i}}$, which is a contradiction. This being shown, we have $\mathfrak{o}=\bigcap_{i=1}^{h}\left(\mathfrak{o p p}^{)^{o i}}\right.$. Therefore $\mathfrak{o}_{\mathfrak{p}} \cap K=\left(\mathfrak{o}_{\mathfrak{p}}\right)^{\sigma_{i}} \cap K=\left(\bigcap_{i=1}^{h}\left(\mathfrak{o}_{\mathfrak{p}}\right)^{\sigma_{i}}\right)$ $\cap K=\mathfrak{\imath} \cap K=\mathrm{r}$.

Next we assume that Z is finite algebraic over K. Let Z^{*} be a field containing Z which is finite normal over K. Let o^{*} be the totality of r -integers in Z^{*} and let \mathfrak{p}^{*} be a maximal ideal of \mathfrak{p}^{*} which contains $\mathfrak{p o}$. Then evidently $\mathfrak{o}_{p^{*}}^{*} \supseteq \mathfrak{o}_{\mathfrak{p}}$. Since $\mathfrak{o}_{p^{*}}^{*} \cap K=\mathfrak{r}$, we have $\mathfrak{o}_{\mathfrak{p}} \cap K=\mathrm{r}$.

Making use of this, we prove the general case. Let c be an element of $\mathfrak{p}_{\mathfrak{p}} \cap K$. c may be written in a form $a / b(a, b \in \mathfrak{n}, b \notin \mathfrak{p})$. We consider $Z^{*}=K(a$, $b)$. We set $\mathfrak{p}^{*}=\mathfrak{p} \cap Z^{*}$, and $\mathfrak{p}^{*}=\mathfrak{p} \cap \mathfrak{p}^{*}$. Then \mathfrak{p}^{*} is a maximal ideal because \mathfrak{D}

[^2]is integral over 0^{*}. It is clear that $a, b \in 0^{*}, b \notin p^{*}$ whence $0_{p^{*}}^{*} \exists c$. Since Z^{*} is finite over K, we have $\mathfrak{o}_{p^{*}}^{*} \cap K=r \ni c$, which proves our assertion.

Lemma 2. Let K be a field with a valuation ring \mathfrak{b} and let Z be a field containing K which is algebraic over K. Let \mathfrak{o} be the totality of \mathfrak{v}-integers in Z and let $\left\{p_{\lambda} ; \lambda \in A\right\}$ be the totality of maximal ideals of 0 . Then every valuation ring \mathfrak{w} of Z, such that the valuation given by \mathfrak{w} is an extension of that given by \mathfrak{v}, is one of $\mathfrak{o}_{p_{\lambda}}(\lambda \in A)$. Conversely, every $\mathfrak{o}_{p_{\lambda}}(\lambda \in A)$ is a valuation ring.

Proof. It is clear that any such valuation ring \mathfrak{w} contains one of $\mathbb{D}_{\mathfrak{p}}$. Hence we have only to prove the converse part. But this follows immediately from the following facts:
$(1)^{7}$ An integrally closed domain m of integrity is a multiplication ring if and only if $\mathfrak{m}_{\mathfrak{p}}$ is a valuation ring for every maximal ideal p of m.
$(2)^{8)}$ Let \mathfrak{m} be a multiplication ring with quotient field K. If a field Z containing K is algebraic over K, then the totality \mathfrak{n} of m-integers in Z is also a multiplication ring and Z is the quotient field of r.

Lemma 3. Let \mathfrak{r} be a completely integrally closed integral domain with quotient field K. If Z is a field containing K, the totality 0 of r-integers in Z is also cmpletely integrally closed.

Proof. Assume that Z is finite normal (algebraic) over K. Let $\left\{\sigma_{1}, \ldots\right.$, $\left.\sigma_{n}\right\}$ be the totality of automorphisms of Z over K. Set $r=[Z: K] / h$. Assume that $(a / b)^{n} c \in 0$ for every natural number n, where a, b and c are non-zero elements of s. Let f be an arbitrary elementary symmetric formula of $\left[(a / b)^{s_{1}}\right]^{r}$, $\ldots,\left[(a / b)^{\sigma_{n}}\right]^{r}$, and set $c^{\prime}=\left(\prod_{i=1}^{h} c^{\sigma i}\right)^{r}$. Then $f^{n} c^{\prime} \in \mathfrak{r}$, whence $f^{n} c^{\prime} \in \mathfrak{r}$ for every natural number n. This shows that $f \in \mathrm{r}$, whence a / b satisfies a monic equation with coefficient in \mathfrak{r}, i.e., $a / b \in 0$, which proves our assertion when Z is finite normal over K. This being proved, we can reduce our problem to the ganeral case by the same way as in the proof of Lemma 1.

Theorem 2. Let K be a field. Then there exists a completely integrally closed primary domain of integrity which is not a valuation ring such that its quotient field is K if and only if K satisfies one of the following two conditions:
(1) K is of characteristic 0 and K is not algebraic over its prime field.
(2) K is of characteristic $p(\neq 0)$ and K contains at least two algebraically independent elements over its prime field.

[^3]Proof. (I) The case where K satisfies neither of these conditions. Let o be any integrally closed ${ }^{9)}$ primary domain of integrity with quotient field K. When K is algebraic over its prime field, let K_{0} be its prime field. When K is not algebraic over its prime field, let K_{0} be its subfield which is isomorphic to the rational function field of one variable with its prime field as the constant field. Then evidently $\circ \cap K_{0}$ is a valuation ring. Then by Lemma 2 it follows that D is also a valuation ring.
(II) Assume that K satisfies one of the above two conditions. Then it is easy to see that there exists a subfield K_{0} of K such that K_{0} has a non-trivial discrete special valuation and such that K has transcendental degree 1 over K_{0}, that is, there exists an element x of K such that x is not algebraic over K_{0} and K is algebraic over $K_{0}(x)$. Let \bar{K}_{0} and \bar{K} be the algebraic closures of K_{0} and K respectively. Then by Theorem 1 we can construct a completely integrally closed primary domain x of integrity which is not a valuation ring and whose quotient field is $\bar{K}_{0}(x)$. Let $\overline{0}$ be the totality of r-integers in \bar{K} and let \bar{p} be a maximal ideal of $\overline{\mathrm{B}}$. Set $\mathrm{D}=\overline{\mathrm{a}} \cap K$. Then since \boldsymbol{r} is completely integrally closed, $\overline{0}$ is so too by Lemma 3. Therefore \mathfrak{o} is also completely integrally closed. Since r is primary, so is $\bar{\sigma}_{\bar{T}}$ too, whence \mathfrak{D} is primary, On the other hand, since $\overline{D_{0}}$ $\cap K_{0}(x)=\mathrm{r}$ by Lemma 1 , $\overline{\mathrm{D}}$ is not a valuation ring and therefore o is not a valuation ring again by virtue of Lemma 2. Thus our proof is complete.

Mathematical Institute, Nagoya University

[^4]
[^0]: Received May 22, 1951.

 1) W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche II, Math. Zeit. 41 (1936). p, 670.
 -) A ring is called primary if it has at most one proper prime ideal.
 2) Observe the fact that $2 \alpha \notin G$, because K is algebraically closed.
 ${ }^{4}$) Since $2 x \notin G, w_{e}$ is uniquely determined by the relation $w_{e}(x+e)=2 x$.
[^1]: ${ }^{5)}$ If $\alpha=\lambda_{0}$ or $2 \alpha=\lambda_{0}$, we see easily that $n-i_{0}=m-j_{0}$ because $\alpha \approx G$. In this case, $s=0$ is also clear.

[^2]: 6) Because \mathfrak{o} is integral over $\mathfrak{r}, \mathfrak{f}=\mathfrak{r} \cap \mathfrak{p}=\mathfrak{r} \cap \mathrm{q}$.
[^3]: 7) W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche, Math. Zeit. 41 (1936), Theorem 7 (p. 554).
 ${ }^{\text {8) }}$ Prüfer, Untersuchungen über die Teilbarkeitseigenschaften in Körpern, Crelle 168, p. 31 or 1. c. note 6) Theorem 8 (p. 555).
[^4]: ${ }^{9}$) We need not assume here that 0 is "completely" integrally closed.

