ON KRULL'S CONJECTURE CONCERNING VALUATION RINGS

MASAYOSHI NAGATA

Introduction. Previously W. Krull conjectured 1) that every completely integrally closed primary 2) domain of integrity is a valuation ring. The main purpose of the present paper is to construct in §1 a counter example against this conjecture. In §2 we show a necessary and sufficient condition that a field is a quotient field of a suitable completely integrally closed primary domain of integrity which is not a valuation ring.

By a ring we mean a commutative ring with identity. We refer to the notations like $\mathfrak{o}_{\mathfrak{p}}$ as the ring of quotients of \mathfrak{p} with respect to \mathfrak{o} when \mathfrak{o} is a ring and \mathfrak{p} is a prime ideal of \mathfrak{o} .

1. A counter example.

Let K be an algebraically closed field with a non-trivial special valuation w whose value group G does not fill up all real numbers. Take a positive number α which is not in G. Consider a rational function field K(x) of one variable x with constant field K. Let us define the following two types of valuations of K(x) which are extensions of w: (1) For every element e of K such that $\alpha < w(e) < 2\alpha$, we define a valuation w_e (of K(x)) such that

$$w_e(\sum_{i=0}^n a_i(x+e)^i) = \min(w(a_i) + 2\alpha i) \quad (a_i \in K)^{4}$$

(2) For every real number λ such that $\alpha \le \lambda \le 2\alpha$, we define a valuation w_{λ} such that

$$w_{\lambda}(\sum_{i=0}^{n}a_{i}x^{i})=\min(w(a_{i})+\lambda i) \quad (a_{i}\in K).$$

Theorem 1. Let \mathfrak{o}_e and \mathfrak{o}_{λ} be the valuation rings determined by w_e and w_{λ} respectively $(\alpha < w(e) < 2\alpha, \alpha \le \lambda \le 2\alpha)$ and let \mathfrak{o} be the intersection of all such \mathfrak{o}_e and \mathfrak{o}_{λ} . Then \mathfrak{o} is completely integrally closed and primary, but \mathfrak{o} is not a

Received May 22, 1951.

¹⁾ W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche II, Math. Zeit. 41 (1936). p, 670.

²⁾ A ring is called primary if it has at most one proper prime ideal.

³⁾ Observe the fact that $2\alpha \in G$, because K is algebraically closed.

⁴⁾ Since $2x \notin G$, w_e is uniquely determined by the relation $w_e(x+e) = 2x$.

valuation ring.

Proof. Let $c(\neq 0)$ be an element of \mathfrak{o} . First we prove that (1) if $w_{\lambda_{\bullet}}(c) = 0$ for some λ_0 ($\alpha \leq \lambda_0 \leq 2\alpha$), then $w_{\lambda}(c) = 0$ and $w_{e}(c) = 0$ for every w_{λ} and w_{e} , and that (2) if $w_{\alpha}(c) > 0$, there exist the least and the largest values $\epsilon > 0$ and δ among values of c taken by w_{λ} and w_{e} ($\alpha \leq \lambda \leq 2\alpha$, $\alpha < w(e) < 2\alpha$).

Since K is algebraically closed, c is of the form

$$c_0 \prod_{i=1}^n (x+a_i) / \prod_{j=1}^m (x+b_j) \quad (c_0, a_i, b_j \in K).$$

Every factor x+d $(d=a_i \text{ or } b_j)$ such that $w(d)>2\alpha$ may be replaced by x, since we only consider the values of c taken by w_λ and w_e . Similarly we may replace by d every factor x+d $(d=a_i \text{ or } b_j)$ such that $w(d)<\alpha$. Therefore we may assume without loss of generality that (i) $\alpha< w(a_i)<2\alpha$ or $a_i=0$, $\alpha< w(b_j)<2\alpha$ or $b_j=0$ for each i and j $(1\leq i\leq n,\ 1\leq j\leq m)$, (ii) $a_i\neq b_j$ for every pair (i,j) and (iii) $w(a_i)\leq w(a_{i+1})$, $w(b_j)\leq w(b_{j+1})$ $(1\leq i< n,\ 1\leq j< m)$.

First we assume that $w_{\lambda_0}(c)=0$ for some λ_0 ($\alpha \leq \lambda_0 \leq 2\alpha$). If there exists one j_1 such that $w(b_{j_1})=\lambda_0$, then we have $w_{b_{j_1}}(c)<0$, which is a contradiction. Therefore no $w(b_j)$ is equal to λ_0 . Assume that $w(a_i)<\lambda_0$ if $i\leq i_0$, $w(a_i)=\lambda_0$ if $i_0< i\leq i_0+s$, $w(a_i)>\lambda_0$ if $i>i_0+s$; $w(b_j)<\lambda_0$ if $j\leq j_0$, $w(b_j)>\lambda_0$ if $j>j_0$. Set $\lambda_1=\max{(\alpha,\ w(a_{i_0}),\ w(b_{j_0}))}$, $\lambda_2=\min{(2\alpha,\ w(a_{i_0+s+1}),\ w(b_{j_0+1})}$. Then

$$w_{\lambda_{1}}(c) = w(c_{0}) + \sum_{i \leq i_{0}} w(a_{i}) - \sum_{j \leq j_{0}} w(b_{j}) + (n - i_{0})\lambda_{1} - (m - j_{0})\lambda_{1} \geq 0,$$

$$w_{\lambda_{0}}(c) = w(c_{0}) + \sum_{i \leq i_{0}} w(a_{i}) - \sum_{j \leq j_{0}} w(b_{j}) + (n - i_{0})\lambda_{0} - (m - j_{0})\lambda_{0} = 0,$$

$$w_{\lambda_{2}}(c) = w(c_{0}) + \sum_{i \leq i_{0}} w(a_{i}) - \sum_{j \leq j_{0}} w(b_{j}) + s\lambda_{0} + (n - i_{0} - s)\lambda_{2} - (m - j_{0})\lambda_{2} \geq 0.$$

Hence we have

$$w_{\lambda_1}(c) = w_{\lambda_1}(c) - w_{\lambda_0}(c) = (n - i_0)(\lambda_1 - \lambda_0) - (m - j_0)(\lambda_1 - \lambda_0) \ge 0,$$

whence $n - i_0 \le m - j_0^{-5}$

Similarly we have

$$w_{\lambda_2}(c) = w_{\lambda_2}(c) - w_{\lambda_0}(c) = (n - i_0 - s)(\lambda_2 - \lambda_0) - (m - j_0)(\lambda_2 - \lambda_0) \ge 0,$$

whence $n - i_0 - s \ge m - j_0$.

Thus we have s=0 and $n-i_0=m-j_0$. s=0 shows that no $w(a_i)$ is equal to λ_0 . Further, $n-i_0=m-j_0$, s=0 show $w_{\lambda_1}(c)=w_{\lambda_2}(c)=0$. Therefore neither $w(a_i)$ nor $w(b_j)$ are equal to λ_1 or λ_2 , by the above observation. This means that $\lambda_1=\alpha$ and $\lambda_2=2\alpha$. From $\lambda_1=\alpha$ we have that $i_0=j_0=0$, whence m=n; From $\lambda_2=2\alpha$ we have that $a_i=0$, $b_j=0$ $(1 \le i \le n, 1 \le j \le m)$. By our assumption

⁵⁾ If $\alpha = \lambda_0$ or $2\alpha = \lambda_0$, we see easily that $n - i_0 = m - j_0$ because $\alpha \notin G$. In this case, s = 0 is also clear.

that $a_i
in b_j$, it follows that m = n = 0, i.e., $c = c_0
in K$. Since $w_{\lambda_0}(c) = 0$, we have w(c) = 0. This proves (1). Next assume that $w_a(c) > 0$. Let us consider $w_\lambda(c)$ as a function of variable λ ($\alpha \le \lambda \le 2\alpha$). Then it is evidently continuous, and it takes the least and the largest values ε_1 and δ_1 in $\alpha \le \lambda \le 2\alpha$. By virtue of (1), we see that ε_1 is positive. Then (2) follows easily from the fact that $w_e(c) \ne w_{w(e)}(c)$ holds only if e is one of a_i or b_j and in this case $w_e(c) \notin G$, whence $w_e(c) \ne 0$.

These being proved, we see that $\mathfrak o$ is primary. Let $a(\neq 0)$ and $b(\neq 0)$ be two non-units in $\mathfrak o$. Then there exist positive numbers $\mathfrak o$ and $\mathfrak o$ such that $w_\lambda(a) \ge \mathfrak o$, $w_e(a) \ge \mathfrak o$, $w_\lambda(b) \le \mathfrak o$, $w_e(b) \le \mathfrak o$ ($\alpha \le \lambda \le 2\alpha$, $\alpha < w(e) < 2\alpha$). Let k be an integer such that $k \ge \delta$. Then we have $w_\lambda(a^k/b) \ge 0$, $w_e(a^k/b) \ge 0$ ($\alpha \le \lambda \le 2\alpha$, $\alpha < w(e) < 2\alpha$), whence $a^k/b \in \mathfrak o$, i.e., $a^k \in b\mathfrak o$.

It is evident that $\mathfrak o$ is completely integrary closed, because $\mathfrak o$ is an intersection of special valuation rings. That $\mathfrak o$ is not a valuation ring follows from that $e/x \in \mathfrak o$, $x/e \notin \mathfrak o$ if $\alpha < w(e) < 2\alpha$.

2. An existence theorem.

LEMMA 1. Let r be an integrally closed integral domain which has only one maximal ideal \mathfrak{p}_0 . Let K be the quotient field of r. If Z is a field containing K, $\mathfrak{o}_{\mathfrak{p}} \cap K = \mathfrak{r}$, where \mathfrak{o} is the totality of r-integers in Z and \mathfrak{p} a maximal ideal of \mathfrak{o} .

Proof. We may assume without loss of generality that Z is algebraic over K because the quotient field of $\mathfrak o$ is algebraic over K.

First we assume that Z is finite normal over K. Let $\{\sigma_1, \ldots, \sigma_n\}$ be the totality of automorphisms of Z over K. We show that every maximal ideal of \mathfrak{p} is one of \mathfrak{p}^{σ_i} . Assume that a maximal ideal \mathfrak{q} of \mathfrak{p} is none of \mathfrak{p}^{σ_i} . Then there exists an element c of \mathfrak{q} such that $c \notin \mathfrak{p}^{\sigma_i}$ for every $i = 1, \ldots, h$. A power e of $\prod_{i=1}^h c^{\sigma_i}$ is in K, whence in \mathfrak{r} . Since $c \in \mathfrak{q}$, we have $e \in \mathfrak{p}_0$, whence $e \in \mathfrak{p}_0$. Therefore one of c^{σ_i} must be in \mathfrak{p} , i.e., c is in some \mathfrak{p}^{σ_i} , which is a contradiction. This being shown, we have $\mathfrak{p} = \bigcap_{i=1}^h (\mathfrak{p}_{\mathfrak{p}})^{\sigma_i}$. Therefore $\mathfrak{p}_{\mathfrak{p}} \cap K = (\mathfrak{p}_{\mathfrak{p}})^{\sigma_i} \cap K = (\bigcap_{i=1}^h (\mathfrak{p}_{\mathfrak{p}})^{\sigma_i})$.

Next we assume that Z is finite algebraic over K. Let Z^* be a field containing Z which is finite normal over K. Let \mathfrak{o}^* be the totality of r-integers in Z^* and let \mathfrak{p}^* be a maximal ideal of \mathfrak{o}^* which contains $\mathfrak{p}\mathfrak{o}^*$. Then evidently $\mathfrak{o}^*_{\mathfrak{p}^*} \supseteq \mathfrak{o}_{\mathfrak{p}^*}$. Since $\mathfrak{o}^*_{\mathfrak{p}^*} \cap K = \mathfrak{r}$, we have $\mathfrak{o}_{\mathfrak{p}} \cap K = \mathfrak{r}$.

Making use of this, we prove the general case. Let c be an element of $\mathfrak{o}_{\mathfrak{p}} \cap K$. c may be written in a form a/b $(a,b \in \mathfrak{o},b \notin \mathfrak{p})$. We consider $Z^* = K(a,b)$. We set $\mathfrak{o}^* = \mathfrak{o} \cap Z^*$, and $\mathfrak{p}^* = \mathfrak{p} \cap \mathfrak{o}^*$. Then \mathfrak{p}^* is a maximal ideal because \mathfrak{o}

⁶⁾ Because $\mathfrak o$ is integral over $\mathfrak r$, $\mathfrak p_0=\mathfrak r\cap\mathfrak p=\mathfrak r\cap\mathfrak q$.

is integral over \mathfrak{o}^* . It is clear that $a, b \in \mathfrak{o}^*$, $b \notin \mathfrak{p}^*$ whence $\mathfrak{o}^*_{\mathfrak{p}^*} \ni c$. Since Z^* is finite over K, we have $\mathfrak{o}^*_{\mathfrak{p}^*} \cap K = r \ni c$, which proves our assertion.

LEMMA 2. Let K be a field with a valuation ring $\mathfrak v$ and let Z be a field containing K which is algebraic over K. Let $\mathfrak v$ be the totality of $\mathfrak v$ -integers in Z and let $\{\mathfrak p_\lambda : \lambda \in \Lambda\}$ be the totality of maximal ideals of $\mathfrak v$. Then every valuation ring $\mathfrak w$ of Z, such that the valuation given by $\mathfrak w$ is an extension of that given by $\mathfrak v$, is one of $\mathfrak o_{\mathfrak p_\lambda}$ ($\lambda \in \Lambda$). Conversely, every $\mathfrak o_{\mathfrak p_\lambda}(\lambda \in \Lambda)$ is a valuation ring.

Proof. It is clear that any such valuation ring w contains one of $\mathfrak{o}_{p_{\lambda}}$. Hence we have only to prove the converse part. But this follows immediately from the following facts:

- $(1)^{7}$ An integrally closed domain m of integrity is a multiplication ring if and only if m_n is a valuation ring for every maximal ideal p of m.
- $(2)^{8)}$ Let \mathfrak{m} be a multiplication ring with quotient field K. If a field Z containing K is algebraic over K, then the totality \mathfrak{o} of \mathfrak{m} -integers in Z is also a multiplication ring and Z is the quotient field of \mathfrak{c} .

Lemma 3. Let r be a completely integrally closed integral domain with quotient field K. If Z is a field containing K, the totality $\mathfrak o$ of r-integers in Z is also empletely integrally closed.

Proof. Assume that Z is finite normal (algebraic) over K. Let $\{\sigma_1, \ldots, \sigma_n\}$ be the totality of automorphisms of Z over K. Set r = [Z:K]/h. Assume that $(a/b)^n c \in \mathfrak{o}$ for every natural number n, where a, b and c are non-zero elements of \mathfrak{o} . Let f be an arbitrary elementary symmetric formula of $[(a/b)^{\sigma_1}]^r$, ..., $[(a/b)^{\sigma_n}]^r$, and set $c' = (\prod_{i=1}^h c^{\sigma_i})^r$. Then $f^n c' \in \mathfrak{o}$, whence $f^n c' \in \mathfrak{o}$ for every natural number n. This shows that $f \in \mathfrak{o}$, which proves our assertion when Z is finite normal over K. This being proved, we can reduce our problem to the ganeral case by the same way as in the proof of Lemma 1.

THEOREM 2. Let K be a field. Then there exists a completely integrally closed primary domain of integrity which is not a valuation ring such that its quotient field is K if and only if K satisfies one of the following two conditions:

- (1) K is of characteristic 0 and K is not algebraic over its prime field.
- (2) K is of characteristic $p (\Rightarrow 0)$ and K contains at least two algebraically independent elements over its prime field.

⁷⁾ W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche, Math. Zeit. 41 (1936), Theorem 7 (p. 554).

⁸⁾ Prüfer, Untersuchungen über die Teilbarkeitseigenschaften in Körpern, Crelle 168, p. 31 or 1. c. note 6) Theorem 8 (p. 555).

Proof. (I) The case where K satisfies neither of these conditions. Let $\mathfrak o$ be any integrally closed $\mathfrak o$ primary domain of integrity with quotient field K. When K is algebraic over its prime field, let K_0 be its prime field. When K is not algebraic over its prime field, let K_0 be its subfield which is isomorphic to the rational function field of one variable with its prime field as the constant field. Then evidently $\mathfrak o \cap K_0$ is a valuation ring. Then by Lemma 2 it follows that $\mathfrak o$ is also a valuation ring.

(II) Assume that K satisfies one of the above two conditions. Then it is easy to see that there exists a subfield K_0 of K such that K_0 has a non-trivial discrete special valuation and such that K has transcendental degree 1 over K_0 , that is, there exists an element x of K such that x is not algebraic over K_0 and K is algebraic over $K_0(x)$. Let \overline{K}_0 and \overline{K} be the algebraic closures of K_0 and K respectively. Then by Theorem 1 we can construct a completely integrally closed primary domain x of integrity which is not a valuation ring and whose quotient field is $\overline{K}_0(x)$. Let \overline{v} be the totality of x-integers in \overline{K} and let \overline{v} be a maximal ideal of \overline{v} . Set $v = \overline{v} = \overline{v} \cap K$. Then since x is completely integrally closed, \overline{v} is so too by Lemma 3. Therefore v is also completely integrally closed. Since v is primary, so is $\overline{v} = v$ too, whence v is primary. On the other hand, since $\overline{v} = v$ is primary, so is $\overline{v} = v$ too, whence v is primary. On the other hand, since $\overline{v} = v$ to v the primary v that v is not a valuation ring and therefore v is not a valuation ring again by virtue of Lemma 2. Thus our proof is complete.

Mathematical Institute, Nagoya University

⁹⁾ We need not assume here that o is "completely" integrally closed.