ON THE LOWER CENTRAL FACTORS OF FREE CENTRE-BY-METABELIAN GROUPS

N. D. GUPTA, T. C. HURLEY and F. LEVIN

(Received 25 November 1980; revised 25 November 1982 and 25 July 1983)

Communicated by D. E. Taylor

Abstract

We describe the structure of the lower central factors of free centre-by-metabelian groups.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 E 05, 20 E 10, 20 F 12, 20 F 14.

1. Introduction

The lower central factors of free polynilpotent groups are torsion-free (Šmelkin [7], Ward [8]), but the cth lower central factor $\Phi_c(G_n)$ of a free centre-by-metabelian group G_n of rank $n \ge 2$ may have 2-torsion for $c \ge 5$. This was first shown by Ridley [6] for n = 2, c even, and later for $n \ge 5$, c odd, by Hurley (unpublished). For $c \le 4$, $\Phi_c(G_n)$ is the same as the corresponding factor of a free group of rank n.

In this paper, we give an explicit basis for $\Phi_c(G_n)$. Gupta and Levin [2] observed that the structure of the torsion group $T_{n,c}$ of $\Phi_c(G_n)$ varies drastically according to whether c is even or odd, but in either case $T_{n,c}$ is an elementary abelian 2-group.

2. Notation

Our commutator notation is $[g_1, g_2] = g_1^{-1}g_2^{-1}g_1g_2, [g_1, \dots, g_{n+1}] = [[g_1, \dots, g_n], g_{n+1}]$ and $[g_1, g_2; g_3, g_4] = [[g_1, g_2], [g_3, g_4]]$ for group elements, with analogous

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

notation for the ring commutator $(r_1, r_2) = r_1 r_2 - r_2 r_1$. further, $[g_1, kg_2] = [g_1, g_2, \dots, g_2]$, k repeats of g_2 , $([g_1, 0g_2] = g_1)$. For $n \ge 1$, $\gamma_n(G)$ is the *n*th term of the lower central series of G, $G' = \gamma_2(G)$, $G'' = \gamma_2(G')$. All other notation follows Hanna Neumann [5].

3. Preliminaries

Much of the technical work required in this paper has been carried out in [2]. As in [2], the main tool in our investigation is the following power series representation (cf. [3]). Let $P_n = \mathbb{Z}[[y_1, \ldots, y_n]], n \ge 2$, be the free associative power series ring over the integers and let C be the ideal of P_n generated by all $y_i(y_j, y_k)y_m$ for all i, j, k, m. Set $R_n = P_n/C$ and denote the generators of R_n by x_1, \ldots, x_n , where $x_i = y_i + C$. As shown in [3], the group of units of R_n is a centre-by-metabelian group, that is, satisfies the law $[g_1, g_2; g_3, g_4; g_5] = 1$. Thus if G_n is the free centre-by-metabelian group of rank n with generators f_1, \ldots, f_n , then the map $\Theta: f_i \to 1 + x_i$, $1 \le i \le n$, can be extended to a representation of G_n in R_n . C. K. Gupta [1] has shown that the kernel of Θ is an elementary abelian 2-group of rank n (n) contained in the centre of n for $n \ge 1$, but for n = 1, $n \ge 1$, the representation is faithful.

For any $w \in G_n$, $w\Theta$ is a power series of the form $1 + \sum_{i=1}^{\infty} \langle w\Theta \rangle_i$, where $\langle w\Theta \rangle_i$ denotes the component of terms of total degree *i*. As in the corresponding representation of the free group of rank *n* (see [4], chapter 5) the elements $w \in \gamma_c(G_n)$ are characterized by $\langle w\Theta \rangle_i = 0$, $i \le c - 1$. Thus, an element $w \in \gamma_c(G_n)$ will be a relator for $\Phi_c(G_n)$, the *c*th lower central factor of G_n , only if $\langle w\Theta \rangle_c = 0$. In particular, if *w* is a relator for $\Phi_c(G_n)$ then $w \in \gamma_c(G_n) \cap G_n''$ and $\langle w\Theta \rangle_c = 0$.

The simple basic commutators of the form $[f_i, f_j, f_k, \ldots, f_m]$ of weight c with $i > j \le k \le \cdots \le m$ form a basis for $\Phi_c(G_n/G_n'')$ (see [5], page 106) and is a part of the basis for $\Phi_c(G_n)$. Thus if we write $\Phi_c(G_n) = F_{n,c} \times T_{n,c}$, where $F_{n,c}$ is free abelian and $T_{n,c}$ is the torsion group of $\Phi_c(G_n)$, our problem reduces to extending the simple basic commutators to a basis for $F_{n,c}$ and to finding a basis for $T_{n,c}$.

4. The structure of $\Phi_c(G_n)$, c odd, $c \ge 5$

For $c \ge 5$, let ω_c^* and ω_c^{**} be defined as

$$\omega_c^* = [f_1, f_2; f_3, f_4, f_5, \dots, f_c]$$

$$[f_2, f_3; f_1, f_4, f_5, \dots, f_c]$$

$$[f_3, f_1; f_2, f_4, f_5, \dots, f_c],$$

and

$$\omega_c^{**} = [f_1, f_2; f_4, f_5, f_3, f_6, \dots, f_c]$$

$$[f_2, f_3; f_4, f_5, f_1, f_6, \dots, f_c]$$

$$[f_3, f_1; f_4, f_5, f_2, f_6, \dots, f_c].$$

Then we have the following lemma.

LEMMA 1. For c odd, $c \ge 5$,

- (i) $\omega_c^*(G_n) \leqslant \gamma_{c+1}(G_n)$ for $n \ge c$;
- (ii) $\omega_c^{*2}(G_n) \leq \gamma_{c+1}(G_n)$ for all n;
- (iii) $\omega_c^*(G_n) \leq \gamma_{c+1}(G_n)$ for n < c;
- (iv) ω_c^* is unaltered, modulo $\gamma_{c+1}(G_n)$, by an arbitrary permutation of $\{f_1,\ldots,f_c\}$;
- (v) $\omega_c^{**}(G_n) \leq \gamma_{c+1}(G_n)$ for all n and all c even or odd.

PROOF. The proofs of (i) to (iv) follow from Lemma 3.8 of [2]. For the proof of (v) we simply observe that, modulo $\gamma_{c+1}(G_n)$,

$$\omega_c^{**} \equiv [f_1, f_2, f_3; f_4, f_5, \dots, f_c]^{-1}$$

$$[f_2, f_3, f_1; f_4, f_5, \dots, f_c]^{-1}$$

$$[f_3, f_1, f_2; f_4, f_5, \dots, f_c]^{-1},$$

which is trivial by the Jacobi congruence.

We can now give the structure of $\Phi_c(G_n)$ for c odd, $c \ge 5$.

THEOREM 1. For c odd, $c \ge 5$, let $\Phi_c(G_n) = F_{n,c} \times T_{n,c}$ where $F_{n,c}$ is free abelian and $T_{n,c}$ is the torsion subgroup. Then

(a) a basis for $T_{n,c}$ consists of the $\binom{n}{c}$ elements $\omega_c^*(k(1),\ldots,k(c))$ given by

$$\omega_{c}^{*}(k(1),...,k(c)) = [f_{k(1)}, f_{k(2)}; f_{k(3)}, f_{k(4)}, f_{k(5)},...,f_{k(c)}]$$

$$[f_{k(2)}, f_{k(3)}; f_{k(1)}, f_{k(4)}, f_{k(5)},...,f_{k(c)}]$$

$$[f_{k(3)}, f_{k(1)}; f_{k(2)}, f_{k(4)}, f_{k(5)},...,f_{k(c)}],$$

with $1 \le k(1) \le \cdots \le k(c) \le n$;

(b) a basis for $F_{n,c}$ consists of all simple basic commutators of weight c with entries from the set $\{f_1, \ldots, f_n\}$ together with all commutators

$$[f_i, f_j; f_{k(1)}, f_{k(2)}, f_{k(3)}, \dots, f_{k(c-2)}]$$

with
$$i > j$$
; $i \ge k(1)$; $k(1) > k(2) \le j \le k(3) \le \cdots \le k(c-2)$.

PROOF. The simple basic commutators of weight c with entries from the set $\{f_1, \ldots, f_n\}$ form a basic of $\Phi_c(G_n/G_n'')$ and hence constitute a part of the basis for $F_{n,c}$. Let $\omega \in \gamma_c(G_n) \cap G_n''$ be a relator for $\Phi_c(G_n)$. Then $\langle \omega \Theta \rangle_c = 0$ and it follows by Lemma 4.1(iv) of [2] that if $\omega \notin \gamma_{c+1}(G_n)$ then ω lies in the fully invariant closure of ω_c^* . The proof of (a) now follows immediately by Lemma 1((i)-(iv)). For the remainder of the proof of (b) we first observe, using Lemma 3.1((i) and (iii)) of [2], that ω can be written, modulo $\gamma_{c+1}(G_n)$, as a product of commutators of weight c of the form

$$z = [f_i, f_j; f_{k(1)}, f_{(2)}, f_{k(3)}, \dots, f_{k(c-2)}]$$

with $i > j \ge k(2)$; $k(1) > k(2) \le k(3) \le \cdots \le k(c-2)$. It remains to show that modulo $\omega_c^*(G_n)$ we can further assume that $i \ge i(1)$ and $j \le k(3)$ in z. Let $m = \max\{i, j, k(1), k(3)\}$.

Type 1. (z with k(3) = m). Let $\{i, j, k(1)\} = \{a, b, c\}$ with $a \le b \le c$. The modulo $\omega_c^*(G_n)$, z can be expressed in terms of commutators $[f_c, f_a; f_b, f_{k(1)}, f_m, \ldots]$ and $[f_c, f_b; f_a, f_{k(1)}, f_m, \ldots]$ each of which is of the required form.

Type 2. (z with i = m). Let $\{j, k(1), k(3)\} = \{a, b, c\}$. Then z is of the form $[f_m, f_a; f_b, f_{k(1)}, f_c, \ldots]$. If a > c then modulo $\omega_c^{**}(G_n)$, z can be expressed as a product of Type 1 and the required commutator $[f_m, f_c; f_b, f_{k(1)}, f_a, \ldots]$.

Type 3. (z with k(1) = m). Here modulo $\omega_c^*(G_n)$, z can be expressed as a product of Type 1 and Type 2 commutators. This completes the proof of Theorem 1.

5. The structure of $\Phi_c(G_n)$, c even, $c \ge 6$

We begin by recalling some results from [2]. For the remainder of the paper, we assume c even, $c \ge 6$.

LEMMA 2. Let $z = [f_i, f_j; f_i, f_j, p_1 f_1, \dots, p_n f_n]$ be an element of $\gamma_c(G_n)$, where $c = 4 + p_1 + \dots + p_n, p_i \ge 0$.

(i) In R_n , $z\Theta$ is obtained by expanding

$$z\Theta = 1 + (x_i, x_j)x_1^{p_1} \cdots x_n^{p_n}(1 + x_i)^{-1}(1 + x_j)^{-1}$$
$$\cdot \{(1 + x_1)^{-p_1} \cdots (1 + x_n)^{-p_n} - 1\}(x_i, x_j).$$

(ii)
$$\langle z\Theta \rangle_{c+1} = -\sum_{m=1}^{n} p_m(x_i, x_j) x_1^{p_1} \cdots x_m^{p_{m+1}} \cdots x_n^{p_n}(x_i, x_j),$$

(iii) $\langle z^2 \Theta \rangle_{c+1} = 2 \langle z \Theta \rangle_{c+1}$.

(iv) If $w \in \gamma_c(G_n) \cap G_n''$ with $\langle w\theta \rangle_c = 0$, then w is a product of commutators of the form z.

- (v) Let w be a product of commutators of the form z with weight at least 1 in each f_i . If $\langle w\Theta \rangle_c = 0$ and $\langle w\Theta \rangle_{c+1} \equiv 0 \pmod{2}$, then $w \in \gamma_{c+1}(G_n)$.
- (vi) Let $\alpha_{ii} \langle w\Theta \rangle_c$ denote the component of $\langle w\Theta \rangle_c$ of those terms which begin and end with x_i . If $w \in \gamma_{c+1}(G_n) \cap G_n''$ then $\alpha_{ii} \langle w\Theta \rangle_{c+1} \equiv 0$ (2).

The proof of (i) follows from Lemma 3.4 of [2]; (ii), (iii) are easy consequence of (i); (iv) follows from Lemma 4.1(i) of [2]; (v) follows from Lemma 4.4 of [2] and (vi) follows from Corollary 3.5 of [3].

LEMMA 3. If G is a centre-by-metabelian group, then for all $d \in \gamma_m(G)$, $g_i \in G$, $k \ge 1$, $m \ge 2$,

$$[d; d, g_1, \dots, g_{2k}]^2 \equiv \prod_{i=1}^{2k} [d; d, g_1, \dots, g_i, g_i, \dots, g_{2k}]$$

modulo $\gamma_{2m+2k+2}(G)$.

PROOF. By Lemma 3.1 of [2], for any d_1 , $d_2 \in G'$, $g \in G$, $[d_1; d_2, g]$ $[d_1, g; d_2] = [d_1, g; d_2, g]^{-1}$. Further, for any $g_i \in G$, $[d_1; d_2, g_1, g_2] = [d_1; d_2, g_2, g_1]$. Thus,

$$[d; d, g_1, ..., g_{2k}]$$

$$= [d, g_1; d, g_2, ..., g_{2k}]^{-1} [d, g_1; d, g_1, g_2, ..., g_{2k}]^{-1}$$

$$\equiv [d, g_1; d, g_2, ..., g_{2k}]^{-1} [d; d, g_1, g_1, g_2, ..., g_{2k}]$$
(modulo $\gamma_{2m+2k+2}(G)$)

Similarly,

$$[d, g_1; d, g_2, \dots, g_{2k}]^{-1}$$

$$\equiv [d, g_1, g_2; d, g_3, \dots, g_{2k}][d, g_1, g_2; d, g_2, g_3, \dots, g_{2k}]$$

$$\equiv [d, g_1, g_2; d, g_3, \dots, g_{2k}][d; d, g_1, g_2, g_2, g_3, \dots, g_{2k}].$$

Repeated applications of this step yield

$$[d; d, g_1, ..., g_{2k}]$$

$$\equiv [d, g_1, ..., g_{2k}; d] \prod_{i=1}^{2k} [d; d, g_1, ..., g_i, g_i, ..., g_{2k}];$$

or equivalently,

$$[d; d, g_1, \ldots, g_{2k}]^2 \equiv \prod_{i=1}^{2k} [d; d, g_1, \ldots, g_i, g_i, \ldots, g_{2k}].$$

Lemmas 3 and 2(ii) yield the following as a corollary.

LEMMA 4. Let z be as in Lemma 2. Then $\langle z^2\Theta \rangle_c = 0$ and

$$\langle z^2 \Theta \rangle_{c+1} = \sum_{m=1}^n p_m (x_i, x_j; x_i, x_j, p_1 x_1, \dots, (p_m+1) x_m, \dots, p_n x_n).$$

More generally, if $w = z_1 \cdots z_r$, with each z_r as above, then

$$\langle w^2 \Theta \rangle_{c+1} = \langle z_1^2 \Theta \rangle_{c+1} + \cdots + \langle z_t^2 \Theta \rangle_{c+1}.$$

We now establish a useful criterion for identifying relations in $\Phi_c(G_n)$, c even;

LEMMA 5. Let $s(w) = \langle w^2 \Theta \rangle_{c+1}$. An element $w \in \gamma_c(G_n)$ is a relator of $\Phi_c(G_n)$ if and only if $s(w) = \langle v^2 \Theta \rangle_{c+1}$ for some $v \in \gamma_{c+1}(G_n)$.

PROOF. If w is a relator of $\Phi_c(G_n)$ then $w \in \gamma_{c+1}(G_n)$ and we may choose v = w. Conversely, let $s(w) = \langle v^2 \Theta \rangle_{c+1}$ for some $v \in \gamma_{c+1}(G_n)$. By Lemma 4, $\langle w^2 \Theta \rangle_{c+1} = \langle v^2 \Theta \rangle_{c+1}$ implies $2\langle \omega \Theta \rangle_{c+1} = 2\langle v \Theta \rangle_{c+1}$ and, in turn, $\langle w \Theta \rangle_{c+1} = \langle v \Theta \rangle_{c+1}$, $\langle w v^{-1} \Theta \rangle_{c+1} = 0$. By Lemma 2(i), $\langle w \Theta \rangle_c = 0$ and, by hypothesis, $\langle v \Theta \rangle_c = 0$. Thus $\langle w v^{-1} \Theta \rangle_c = 0$, and it follows by Lemma 2(v) that $w v^{-1} \in \gamma_{c+1}(G_n)$. Thus $w \in \gamma_{c+1}(G_n)$ as required.

As a corollary to Lemma 5 we obtain the following result:

LEMMA 6. Let $w \in T_{n,c}$ be a relator for $\Phi_c(G_n)$. Then $\alpha_{ii}(s(w)) \equiv 0 \pmod{4}$ for all i = 1, ..., n.

PROOF. By Lemma 5, $s(w) = \langle v^2 \Theta \rangle_{c+1}$ for some $v \in \gamma_{c+1}(G_n)$. By Lemma 2(vi), $\alpha_{ii} \langle v \Theta \rangle_{c+1} \equiv 0 \pmod{2}$. Thus $\alpha_{ii}(s(w)) \equiv 0 \pmod{4}$ as required.

For convenience, we will abbreviate $z = [f_i, f_j; f_i, f_j, p_1 f_1, \dots, p_n f_n]$ by $z = [i, j; p_1, \dots, p_n]$. Further, for any f_k we define

$$[z: q_k f_k] = [f_i, f_j; f_i, f_j, p_1 f_1, \dots, p_n f_n, q_k f_n].$$

Using this notation we obtain the following consequence of Lemma 3.

LEMMA 7. Let $z = [i, j; p_1, ..., p_n]$ with $c = 4 + p_1 + \cdots + p_n$. Then for arbitrary k,

(i)
$$[z:2f_k]^2 \equiv \prod_{i=1}^n [z:2f_k:f_i]^{p_i} [z:3f_k]^2 \mod \gamma_{c+4}(G_{n+1});$$

(ii)
$$\langle [z:2f_k]^2\Theta \rangle_{c+3} = (\langle z^2\Theta \rangle_{c+1}:2x_k) + 2\langle [z:3f_k]\Theta \rangle_{c+3}$$
, where $\langle z^2\Theta \rangle_{c+1}$ is as determined in Lemma 4.

[7(ii) is a direct consequence of 7(i).]

The next lemma gives a method for generating relations.

LEMMA 8. If w is a relator for $T_{n,c}$, then $[w:2f_k]$ is a relator for $T_{n+1,c+2}$ for any $k \le n+1$.

PROOF. By Lemma 5 it suffices to show that $s([w:2f_k]) = \langle u^2\Theta \rangle_{c+3}$ for some $u \in \gamma_{c+3}(G_{n+1})$. Since w is a relator for $T_{n,c}$, by Lemma 5 $s(w) = \langle v^2\Theta \rangle_{c+1}$ for some $v \in \gamma_{c+1}(G_n)$. Thus

$$s([w:2f_k]) = \langle [w:2f_k]^2 \Theta \rangle_{c+3}$$

$$= (\langle w^2 \Theta \rangle_{c+1} : 2x_k) + 2\langle [w:3f_k] \Theta \rangle_{c+3} \quad \text{(by Lemma 7)}$$

$$= (\langle v^2 \Theta \rangle_{c+1} : 2x_k) + \langle [w:3f_k]^2 \Theta \rangle_{c+3}$$

$$= \langle [v:2f_k]^2 \Theta \rangle_{c+3} + \langle [w:3f_k]^2 \Theta \rangle_{c+3}$$

$$= \langle u^2 \Theta \rangle_{c+3},$$

with $u = [v: 2f_k][w: 3f_k] \in \gamma_{c+3}(G_{n+1})$.

It follows from Lemma 2(iv) that for c even, $c \ge 6$, any relator w of $T_{n,c}$ is a product of commutators of the form $z = [i, j: p_1, \ldots, p_n]$, $4 + p_1 + \cdots + p_n = c$. Since $z^2 \equiv 1 \mod \gamma_{c+1}(G_n)$, $T_{n,c}$ is, in fact, generated by all such commutators. Thus to determine the relators of $T_{n,c}$ it suffices to assume that $n \le c - 2$ and that each $[i, j; p_1, \ldots, p_n]$ has weight at least one in each generator f_1, \ldots, f_n .

If $c \ge 8$ and n = c - 2, it follows from the proof of Theorem B(i) of [2] that there is just one relator which involves all the c - 2 variables, namely,

(1)
$$u(c-2) = \prod_{\sigma} a(1\sigma, 2\sigma)$$

where $a(i, j) = [i, j; 1, 1, ..., \hat{i}, \hat{j}, ..., 1]$ (\hat{k} indicates k missing), and σ runs over the permutations of $\{1, ..., c-2\}$ with $1\sigma < 2\sigma < \cdots < (c-2)\sigma$. Hence, we may assume that $n \le c-3$. For each $i, j \in \{1, ..., c-3\}$, i < j, we define

(2)
$$v(c, i, j) = \prod_{m=1}^{c-5} [f_i, f_j; f_i, f_j, g_1, \dots, g_m, g_m, \dots, g_{c-5}],$$

where $\{g_1,\ldots,g_{c-5}\}=\{f_1,\ldots,\hat{f_i},\ldots,\hat{f_j},\ldots,f_{c-3}\}$. By Lemma 3.2(i) of [2], G_n satisfies the congruence $v(c,i,j)\equiv 1$. Using this fact and Lemma 8 we can reduce the generating set for $T_{n,c}$ as follows.

LEMMA 9. Let $W = \{[i, j; p_1, \ldots, p_n], i < j\}$ be the set of all commutators of weight $c = 4 + p_1 + \cdots + p_k$ such that $p_k \le 1$ for all k < i and the first nonzero integer reading left to right in the sequence $p_n, p_{n-1}, \ldots, p_1$ is odd. Then W is a generating set for $T_{n,c}$, $n \le c - 3$, $c \ge 8$.

PROOF. The condition i < j is clearly no restriction. The next condition, $p_k \le 1$ for k < i follows directly from Lemma 3.1(vii) of [2], by which for any g, g_i in a centre-by-metabelian group G,

(3)
$$\begin{bmatrix} g, g_1; g, g_1, g_2, g_3, \dots, g_m, g, g \end{bmatrix}$$

$$\equiv [g, g_1; g, g_1, g_2, g_2, g_3, \dots, g_m] [g, g_2; g, g_2, g_1, g_1, g_3, \dots, g_m]$$

modulo $\gamma_{m+5}(G)$. The third condition, namely, the first non-zero integer in p_n, \ldots, p_1 is odd, may be seen as follows. As observed above $T_{n,c}$ is spanned by all commutators $z = [i, j; p_1, \ldots, p_n]$ with $p_k \le 1$, k < i, i < j. Without loss of generality we may further assume that z involves f_{n-1} and f_n . Hence if both p_{n-1} and p_n are zero, this means that i = n - 1 and j = n so c - 2 = n. Thus we may assume that at least one of p_{n-1} , p_n is non-zero.

Case I. $p_n \neq 0$, p_n even. Since G_n satisfies the congruence $v(c, i, j) \equiv 1$ defined by (2), it follows that for $p_n \geq 2$,

$$[i, j; p_1, \ldots, p_n]^{p_n-1} \prod_{m=1}^{n-1} [i, j; p_1, \ldots, p_m+1, \ldots, p_n-1]^{p_m} \equiv 1.$$

However, for p_n even $[i, j; p_1, ..., p_n]^{p_n-1} \equiv [i, j; p_1, ..., p_n]$, and the proof follows since each factor $[i, j; p_1, ..., p_m + 1, ..., p_n - 1]$ can be expressed as a product of commutators of the required form without affecting the oddness of the occurrences of f_n .

Case II. $p_n = 0$, p_{n-1} even. In this case $z = [i, n; p_1, \dots, p_{n-1}, 0]$ and as before the law v(c, i, n) gives

$$[i, n; p_1, \ldots, p_{n-1}, 0] \prod_{m=1}^{n-2} [i, n; p_1, \ldots, p_{m+1}, \ldots, p_{n-2}, p_{n-1} - 1, 0]^{p_m} \equiv 1.$$

Since each factor $[i, n; p_1, \ldots, p_m + 1, \ldots, p_{n-2}, p_{n-1} - 1, 0]$ reduces, by (3), to a product of commutators of the required form and of commutators covered by the Case I, the proof follows.

LEMMA 10. For $c \ge 8$, $n \le c - 3$ the set W defined in Lemma 9 is a basis for $T_{n,c}$.

PROOF. For $z = [i, j; p_1, ..., p_n]$, $z' = [i', j'; p'_1, ..., p'_1]$ we define z < z' if $(i, j, p_1, ..., p_n) < (i', j', p'_1, ..., p'_n)$ in the lexicographic ordering of the (n + 2)-tuples. The proof of Lemma 9 shows that if $z \notin W$, then z can be written as a product of elements of W which are less than z in the above ordering.

By Lemma 9, W generates $T_{n,c}$. Let $w = z_1 \cdots z_r$, $z_i \in W$, be a relator of $T_{n,c}$ with $z_1 < \cdots < z_r$. By Lemma 6, $\alpha_{kk}(s(w)) \equiv 0 \pmod{4}$ for all k. Suppose $z_r = [i, j; p_1, \dots, p_n]$, p_n odd, and let $\alpha_{jj}(s(z_r)) = x_j P_r x_j$. By Lemma 2(i), P_r has a term

(4)
$$x_1 \cdots x_{i-1} x_i^{p_i+2} x_{i+1}^{p_{i+1}} \cdots x_{n-1}^{p_{n-1}} x_n^{p_n+1}$$

with coefficient $2p_n \not\equiv 0 \pmod 4$. Since $\alpha_{jj}(s(w)) = \sum_{k=1}^r \alpha_{jj}(s(z_k)) \equiv 0 \pmod 4$, it follows that for some q < r, $\alpha_{jj}(s(z_q)) = x_j P_q x_j$, where P_q has a term (4). However, $z_q < z_r$ implies $z_q = [i', j'; p'_1, \ldots, p'_n]$ with $(i', j', p'_1, \ldots, p'_n) < (i, j, p_1, \ldots, p_n)$. If i' < i then each term in P_q has degree at least 2 in x'_i , so none is of the form (4). If $p'_n < p_n$ then $p'_n \le p_n - 2$ and ecah term of P_q has degree at most $p'_n + 1 \le p_n - 1$ in x_n , so P_q has no term (4). Finally, if $p'_n = p_n$ and $p'_k < p_k$ for some k < n, then every term of P_q with degree $p_n + 1$ in x_n has degree $p'_i < p_k$ in x_k , and, again P_q does not have a term (4). Thus, if $p_n \ne 0$, then $\alpha_{jj}(s(w)) \not\equiv 0 \pmod 4$, and w is not a realtor of $T_{n,c}$.

Thus, we may assume that $w = z_1 \cdots z_r$ is a relator of $T_{n,c}$ with $z_r = [i, n; p_1, \dots, p_{n-1}, 0], p_{n-1}$ odd. As above, if $\alpha_{nn}(s(z_r)) = x_n P_r x_n$, P_r will have a term

(5)
$$2p_{n-1}x_1\cdots x_{i-1}x_i^{p_i+2}x_{i+1}^{p_{i+1}}\cdots x_{n-1}^{p_{n-1}+1},$$

with $2p_{n-1} \not\equiv 0 \pmod{4}$, and it follows, as above, that this term must occur in the expansion of some P_q , q < r. The same argument shows that this, too, is not possible. This completes the proof of the lemma.

We may summarise the above results as follows.

THEOREM 2. For c even, $c \ge 8$, the torsion subgroup $T_{n,c}$ of $\Phi_c(G_n)$ is an elementary abelian 2-group with a basis consisting of the set W of all commutators $z = [i, j; p_1, \ldots, p_n], i < j$, with the following properties:

- (a) $c = 4 + p_1 + \cdots + p_n, p_k \ge 0$ for all $k \le n$;
- (b) $p_k \le 1$ for all k < i;
- (c) the first nonzero integer reading from left to right in p_n, \ldots, p_1 is odd;
- (d) for any $i(1) < \cdots < i(m)$, $m \le n$, W does not contain $[i(m-1), i(m); i(1), \ldots, i(m-2)]$.

PROOF. The conditions (a), (b), (c) follow directly from Lemma 10, and (d) follows from the fact that if a relator contains any part of u(c-2), as defined in (1), then it must contain all of u(c-2).

For c = 6, essentially the same argument applies. However, $[f_i, f_j; f_i, f_j, f_k, f_k] \in \gamma_7(G_4)$ and as C. K. Gupta [1] has shown, $u(4) \notin \gamma_7(G_4)$. The basis for $T_{n,6}$ is given by the following theorem.

THEOREM 3. For c = 6, $T_{n,6}$ has a basis consisting of all commutators $[f_{i(1)}, f_{i(2)}; f_{i(1)}, f_{i(2)}, f_{i(3)}, f_{i(4)}]$, with i(1) < i(2), i(3) < i(4).

As with the case for odd c, a basis for $F_{n,c}$ must be chosen to account for the Jacobi congruence and the above structure of $T_{n,c}$. The argument is analogous to that for odd c and we omit the details. The complete description of $\Phi_c(G_n)$, c even, is given by the following theorem.

THEOREM 4. For c even, c > 6, let $\Phi_c(G_n) = F_{n,c} \times T_{n,c}$, where $T_{n,c}$ is the torsion subgroup of $\Phi_c(G_n)$ and $F_{n,c}$ is free abelian.

- (i) A basis for $T_{n,c}$ is given by Theorems 2 and 3.
- (ii) $F_{n,c}$ is generated by the simple basic commutators of weight c and by the commutators of the form $[f_i, f_j; f_{k(1)}, f_{k(2)}, \ldots, f_{k(c-2)}]$ subject to $k(1) > k(2) \le k(3)$ $\le \cdots \le k(c-2)$; $i > j \le k(3)$; $k(2) \le j$ and such that k(1) < i or k(1) > i and $k(2) < j < i < k(1) < k(3) < \cdots < k(c-2)$ (no repeated entry) or k(1) = i, k(2) < j and if k(l) is another repeated entry $(3 \le l \le c-2)$, then $k(1) \le k(l)$.

CONCLUDING REMARKS. With the aid of Lemma 8 we can give a different description of $T_{n,c}$, c even, as follows.

THEOREM 5. For c even, $c \ge 6$, the torsion subgroup $T_{n,c}$ of $\Phi_c(G_n)$ is generated by all commutators $z = [i, j; p_1, \ldots, p_n]$ with $4 + p_1 + \cdots + p_n = c, p_i \ge 0$, subject only to the relations

 $[u(c'-2): 2k_1f_1: \cdots : 2k_nf_n] = 1$ and $[v(c', i, j): 2k_1f_1: \cdots : 2k_nf_n] = 1$, where $c = c' + 2k_1 + \cdots + 2k_n$, $k_l \ge 0$ and u(c'-2), v(c', i, j) are as defined by (1) and (2).

References

- 1. Chander Kanta Gupta, 'The free centre-by-metabelian groups', J. Austral. Math. Soc. 16 (1973), 294-299.
- Narain Gupta and Frank Levin, 'Separating laws for free centre-by-metabelian nilpotent groups', Comm. Algebra 4 (1976), 249-270.
- T. C. Hurley, 'Representations of some relatively free groups in power series rings', Proc. London Math. Soc. (3) 24 (1972), 257-294.
- 4. Wilhelm Magnus, Abraham Karrass and Donald Solitar, Combinatorial group theory (Interscience, New York, 1966).
- 5. Hanna Neumann, Varieties of groups (Springer-Verlag, New York, 1967).
- J. N. Ridley, 'The free centre-by-metabelian group of rank two', Proc. London Math. Soc. (3) 20 (1970), 321-347.

- A. L. Šmelkin, 'Free polynilpotent groups', Izv. Akad. Nauk SSSR. Ser. Mat. 28 (1964), 91-122;
 English translation: Amer. Math. Soc. Transl. (2) 55 (1966), 270-304.
- 8. M. A. Ward, 'Basic commutators', Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 343-412.

University of Manitoba Winnipeg Manitoba R3T 2N2 Canada University College Galway Ireland

Ruhr Universität 4630 Bochum West Germany