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CERTAIN INEQUALITIES FOR SUBMANIFOLDS IN
(K,n)-CONTACT SPACE FORMS

KADRI ARSLAN, RIDVAN EZENTAS, ION MIHAI, CENGIZHAN MURATHAN

AND ClHAN OZGUR

Chen (1999) established a sharp relationship between the Ricci curvature and the
squared mean curvature for a submanifold in a Riemanian space form with arbi-
trary codimension. Matsumoto (to appear) dealt with similar problems for sub-
manifolds in complex space forms.
In this article we obtain sharp relationships between the Ricci curvature and the
squared mean curvature for submanifolds in (fc,/x)-contact space forms.

1. (k,fj,)-CONTACT SPACE FORMS

A differentiable manifold M 2 n + 1 i s said to be a contact manifold if it admits a
global differential 1-form 77 such that 77 A (dr))n ^ 0 everywhere on M2n+1.

Given a contact form 77, one has a unique vector field £, which is called the char-
acteristic vector field, satisfying

(11)

for any vector field X.

It is well-known that, there exists a Riemannian metric g and a (1, l)-tensor field
ip such that

(1.2) t)(X) = g(X, 0 , drj(X, Y) = g{X, VY), <p2X = -X

where X and Y are vector fields on M.

From (1.2) it follows that

(1.3) <pt = 0,Tio<p = 0, g(<pX, <pY) = g(X, Y) - v{X)rj{Y).
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A differentiable manifold M 2 n + 1 equipped with structure tensors {<p,£,r],g) satis-

fying (1.2) is said to be a contact metric manifold and is denoted by M

On a contact metric manifold M , we can define a (l,l)-tensor field h by h =
, where L denotes Lie differentiation. Then we may observe that h is symmetric

and satisfies

(1.4) h£ = 0, h(p= -tph, V*£ = -tpX - <phX,

where V is the Levi-Civita connection ([2]).

For a contact metric manifold M one may define naturally an almost complex
structure on M x R. If this almost complex structure is integrable, M is said to be a
Sasakian manifold. A Sasakian manifold is characterised by the condition

(1.5) (yxtp)Y = g(XtY)t-ri{Y)X,

for all vector fields X and Y on the manifold [1].

A contact metric manifold M is Sasakian if and only if

(1.6) ' R(X, Y)£ = V(Y)X - V{X)Y,

for all vector fields X and Y ([1]).

Let M be a contact metric manifold. The (k,n)-nullity distribution of M for the
pair (k, /x) is a distribution

(1.7) N(k, n):p^ Np{k, fj.) = \z e TPM \ R{X, Y)Z

= k[g(Y, Z)X - g(X, Z)Y] +n[g(Y, Z)hX - g(X, Z)hY}},

where i , / i £ l and k ^ 1 (see [7]).

If A; = 1, then h = 0 and M is a Sasakian manifold ([2]). Also one has trh = 0,
trfup = 0 and h2 = (k - l )y 2 - So if the characteristic vector field £ belongs to the
(k, ju)-nullity distribution then we have

(1.8) R(X, Y)£ = k[r,(Y)X - r,(X)Y] + (t[r,(Y)hX - V(X)hY].

Moreover, if M has constant y-sectional curvature c then it is called a (k,fj,)-

contact space form and is denoted by M{c).
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The curvature tensor of M{c) is given by [7]:

4R(X, Y)Z = (c + 3){g(Y, Z)X - g(X, Z)Y)

+ (c+ 3 - 4k){ri(X)r1(Z)Y - v(Y)v(Z)X

+ g(X,Z)T,(Y)Z-g(Y,Z)T,(X)t}

+ (c - l){2g(X, <pY)<pZ + g(X, VZ)<pY - g(Y, <pZ)<pX)

- 2{g(hX, Z)hY - g(hY, Z)hX + g{X, Z)hY

- 2g{Y, Z)hX - 2r]{X)r)(Z)hY + 2ri(Y)rl(Z)hX

+ 2g(hX, Z)Y - 2g{hY, Z)X + 2g(hY,

- 2g(hX, Z)T](Y)Z - g(<phX, Z)<phY + g(<phY, Z)<phX)

+ g(hY, Z)V(X)Z - g(hX,

If A; ̂  1, then fj. = k + 1 and c = -2k - 1.

2. RlEMANNIAN INVARIANTS

The Riemannian invariants of a Riemannian manifold are the intrinsic character-
istics of the Riemannian manifold. In this section we recall a string of Riemannian
invariants on a Riemannian manifold ([4]).

Let M be a Riemannian manifold. Denote by K(n) the sectional curvature of M
associated with a plane section n C TpM, p 6 M and by V the Riemannian connection
on M.

For any orthonormal basis {ei,e2, • • • ,en} of the tangent space TpM, the scalar
curvature T at p is defined by

We denote by (inf K)(p) = inf{i<T(7r); n C TpM, dim7r = 2} , and we introduce the
first Chen invariant 6M(P) = T(p) — (inf K)(p).

Let L be a subspace of TpM of dimension r ^ 2 and {ei ,e2, . . . ,e r} an or-
thonormal basis of L. We define the scalar curvature T (L) of the r-plane section L

by

a<0

Given an orthonormal basis {ei, e 2 , . . . , e n } of the tangent space TpM, we simply

denote by Ti...r the scalar curvature of r-plane section spanned by e\,... , e r . The
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scalar curvature r(p) of M at p is nothing but the scalar curvature of the tangent
space of M at p. And if L is a 2-plane section, T(L) is nothing but the sectional
curvature K(L) of L.

For an integer I ^ 0, we denote by S(n, I) the finite set which consists of fc-tuples
(m, n2, • • - , ni) of integers > 2 satisfying ni < n and nx + • • • + n( ^ n. Denote by
S(n) the set of Z-tuples with I ^ 0 for a fixed n.

For each /-tuples (n\,... , n;) 6 5(n), we introduce a Riemannian invariant defined

by
5{nu... ,nt) = r{p) -

where
S(m,. . . , n,) = inf{r(Li) + • • • +

LI, ... ,Li run over all I mutually orthogonal subspaces of TPM such that dimij =
UjJ =1,... ,1.

We define:

, . . . ,ni) =

= - \n[n — 1) — > ni(n

We recall the following

LEMMA 2 . 1 . ([3]) Let ai,... :an,b € R such that

2

Then we have 2aiO2 ^ b. Moreover, 2a,\Q,2 — b if and only if a\ + a2 = 03 = • • • = an.

Let M be an n-dimensional submanifold of M(c). We denote by h the second
fundamental form and by R the Riemann curvature tensor of M. Then the equation
of Gauss is given by

(2.1) R(X, Y,Z, W) = R(X, Y, Z, W) +g{l{X: W),h{Y, Z)) - g(h(X, Z), h(Y, W)),

for any vectors X, Y, Z, W tangent to M.
We denote by H the mean curvature vector, that is,

ntri
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where { e j , . . . , en} is an orthonormal basis of the tangent space TpM, p g M.

Also, we set Ji\j = g(h(ei,ej),er) and

For any tangent vector field X to M, we put ipX = PX + FX, where PX and
FX are the tangential and normal components of ipX respectively.

Let {ei , . . . ,en} be an orthonormal basis of TpM. We denote

\\P\\2 = JZ 92(Pei,ej).

Suppose L is a k -plane section of TPM and X a unit vector in L. We choose an
orthonormal basis {e i , . . . , e/t} of L such that e\ = X.

Define the Ricci curvature Ric/, of L at X by Ricj, (X) = K\2 + ^13 + • • • + K\k,
where ifij denotes the sectional curvature of the 2-plane section spanned by e,, ej . We
simply called such a curvature a &-Ricci curvature.

Recall that for a submanifold M in a Riemannian manifold, the relative null space
of M at a point p 6 M is defined by

Mv = {x e TPM 1 fc(A-, y) = 0, y e

3. RICCI CURVATURE AND SQUARED MEAN CURVATURE

Chen established a sharp relationship between the Ricci curvature and the squared
mean curvature for submanifolds in real space forms (see [5]).

We prove similar inequalities for certain submanifolds of a (A;,^i)-contact space
form M(c).

We consider the case in which the submanifold M is normal to f in a (k, /x)-contact
space form M(c) with k < 1. The case k = 1 is the Sasakian case which has been
considered by the third author in [8].

THEOREM 3 . 1 . Let M be an n-dimensional submanifold normal to £ of a
(2m + I)-dimensional (k, n)-contact space form M{c). Then:

(i) For each unit vector X € TPM, we have

(3.1) Ric (X) ^ \{n2\\H\\2 - \\hX\\2 - 3(A + 1)||PX||2 + 2(1 - k)(n - 1)}.
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(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case
of (3.1) if and only if X 6 Mp.

(iii) The equality case of (3.1) holds identically for all unit tangent vectors at
p if and only if either p is a totally geodesic point or n — 2 and p is a
totally umbilical point.

PROOF: Let X G TPM be a unit tangent vector at p. We choose an orthonormal

basis {e x , . . . ,en,<^ei, . . . ,<pen,e2 n + i , . . . , e 2 m + i} , e 2 m + i = £ in TpM(c), such that

e i , . . . , e n are tangent to M at p, with e\ = X.

Then, from the equation of Gauss, we have

(3.2) 2r = n

From (3.2), we get

n2\\H\\2 =2\\H\\2 = 2r+
r=n+l '

_ _, A — i-2 E E
r=n+l 2

(3.3) =2r+i I])
r=n+l

2m+l

-2 E E

2m+l

r=n+lt<j

It follows that

1 o o 1 3
(3-4) -n2||if ||2 ^ 2r - -(1 - k)n(n - 1) + -(k +

£, Zi £i

2m+l

+ l1
 2m+l r „,

r=n+12^t<i<n L J
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From the equation of Gauss, we find

2 m + l r 2-i ..

(3.5) 2 ]T Ktj= £ £ k ^ - ( ^ ) + 2 ( 1 ~ *)(" ~ 1 ) ( n ~ 2 )

1

x=2 t=2 tj=2

Substituting (3.5) in (3.4), one gets

\ > 2Ric (X) + ±\\hX\\2 + | ( * + 1)||PX||2 - (1 - k)(n - 1),

or equivalently (3.1).

(ii) Assume H(p) = 0. Equality holds in (3.1) if and only if

i = h r
2 2 + --- + h r

n n , r & { n + 1 , . . . , 2 m } .

Then h{j = 0, Vj € { 1 , . . . , n}, r € {n + 1 , . . . , 2m}, that is, X e Afp.

(iii) The equality case of (3.1) holds for all unit tangent vectors at p if and only if

hTij = 0 , i / j , r e { n + l , . . . ,2m},

h\i + • • • + Kn - 2A& = 0, i € {1, •. • , n}, r e {n + 1 , . . . , 2m}.

We distinguish two cases:

(a) n ^ 2, then p is a totally geodesic point;
(b) n = 2, it follows that p is a totally umbilical point.

The converse is trivial. D

A submanifold M normal to £ is said to be invariant (respectively anti-invariant)
if ifi(TpM)cTpM, for all p € M (respectively <fi(TpM)cTp

LM, for all p € M). It is
known that an invariant submanifold of a (k, /j)-contact space form is minimal.

COROLLARY 3 . 2 . Let M be an n-dimensional invariant submanifold of a
(k,n) -contact space form M(c), (k < 1). Then:

(i) For each unit vector X 6 TpM orthogonal to £, we have

(3.6) RicpO ^ -i(5fc + 2) + 2n(l-fc)}.

(ii) A unit tangent vector X 6 TpM orthogonal to £ satisfies the equality
case of (3.6) if and only if X g Afp.

(iii) The equality case of (3.6) holds identically for all unit tangent vectors
orthogonal to £ at p if and only if either p is a totally geodesic point or
n — 2 and p is a totally umbilical point.
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COROLLARY 3 . 3 . Let M be an n-dimensional anti-invariant subrnanifold of a
(k, n)-contact space form M(c), (k < 1). Then:

(i) For each unit vector X € TpM orthogonal to £, we have

(3.7) Ric (X) sj i { n 2 | | # | | 2 - 2(n - l)(fc + 1) + (fc - 1)}.

(ii) If H(p) = 0, then a unit tangent vector X e TpM orthogonal to £
satisfies the equality case of (3.7) if and only if l £ j V p .

(iii) The equality case of (3.7) holds identically for all unit tangent vectors
orthogonal to £ at p if and only if either p is a totally geodesic point or
n = 2 and p is a totally umbilical point.

5. B.Y. CHEN'S INEQUALITIES

Chen proved a sharp inequality for submanifolds M in real space forms M(c)
involving the scalar curvature and sectional curvature of M (intrinsic invariants) and
the squared mean curvature (extrinsic invariant).

THEOREM 4 . 1 . ([3]) Given an m-dimensional real space form M(c) and an
n-dimensional submanifold M. n ^ 3. we have:

(4.1)
n-2

^

The equality case of inequality (4.1) holds at a point p € M if and only if there exists an

orthonormal basis {ei, e 2 , . . . , en} of TpM and an orthonormal basis { e n + i , . . . ,em}
of T^M such that the shape operators of M in M(c) at p have the following forms:

(4.2)

/a 0 0
0 6 0

0 0M

\0 0 0

0

0 a + b =

(4.3)

h\2

0
0

0

\ 0 0 0 0 /
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where we denote by

Ar = Aer, r = n+l,...,m,

Hij = g(h(ei,ej),er), r = n+l,...,m.

In an analogous way we prove an inequality for submanifolds M normal to £ in
(k, n)-contact space forms M(c). The Sasakian case was studied in [6].

THEOREM 4 . 2 . Given a (2m + 1)-dimensional (k,n)-contact space form M(c)

and a submanifold M normal to £, d imM = n, n ^ 3, we have:

(i) For any invariant plane section n C TPM

(4.4) K(n) > T - ^ " 5 " ' H^ll2

(ii) For any anti-invariant plane section n C TpM

(4.5) K(n) > T - ^ " ^ y ll^ll2 - | { « ( 1 - *)(" - 1) + 3(fc + 1)||P||2} + | ( 1 - fc).

The equality case of inequalities (4.4) and (4.5) holds at a point p e M if and only if
there exists an orthonormal basis {ei,e2,. . . ,en} of TpM and an orthonormal basis
{e n + i , . . . ,e2m+i}Je2m+i = £, of T^-M such that the shape operators of M in M(c)
at p have the forms (4.2) and (4.3).

PROOF: From equation (2.1) we have

(4.6) 2T = n 2 2 \ ^ \ 1 ^ ^ 2 ^ f f ^

Putting

(4.7) e = IT -

it follows that

(4.8) n

Let ncTpM,n = sp{e1,e2},{eu... ,en} C TpM,en+l = (l/\\H\\)H,
{ e n + i , . . . , e2 m, e2m+i = C} C T^M. The equation (4.8) becomes

i = l 7 V i = l

XO ' / J / J \ * j' / j
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By Chen's Lemma, one obtains

+ E

Gauss equation gives

2m+l

K(n) = R(e1,e2,e1,e2)+ ]T {h\Jir
22 - {h\2f)-

r=n+l

By using (1.9), we get

KM = l-(l -k)- ^(1 + k)g2(e1,Pe2) - \{g2(hei,e2) - g(he2,e2)g(he1,el)

- 2g(/iei,ei) - 2g(/ie2)e2) - g2(tphei,e2) + g(tphe2,e2)g(<phei,ei)}
2m+l

+ E
r=n+l

2m

E ( / l l l / l 2 2 - (^12)' ; T o | " U "22
r=n+l

The equality case follows from the above equations and Chen's Lemma.

THEOREM 4 . 3 . Given a (2m + 1)-dimensional (k,n)-contact space form M(c)
and a submanifold M normal to £, dimM = n, n ^ 3, we have:

(4.9)

PROOF: Let n i , . . . ,nj ^ 2 , ni < n, n i + • • • + nj ^ n. The equation (4.6) may
be written as

(4.10) 2r = n2 \\H\\2 - \\~h\\2 + | ( 1 - fc)n(n - 1) - ^ (* + 1) | |P| |2

-\\\H2~ Es'^.e , ) ,
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and denote

s = 2r - 2d(m, . . . ,n,) ||ff||2 - i ( l - fc)n(n - 1) - §(* + 1) | |P| | 2

and 7 = n + / - £ n , - . We have n2 ||fl"||2 = (e + \ ^ ) l • Let p € M, {eu... , e n } C

TPM, L i , . . . , Lfc C TPM such that

L\ = Sp{ei , . . . , e n i } ,

L2 = S p { e n i + i , . . . , e n i + n 2 } , . . . ,

Li = Sp{e n i + . . . + n ( _ i + 1 , . . . , e n i + . . . + n , } .

Then
r{Lj)= J2 K(eaAep),

a,/3EAj
a<0

where A^ = (ni 4- h n^-i + 1,... , nx + • • • + rij). By Gauss equation one has

K(ea A ep) = R(ea, e0, ea,ep)

= R{ea, e0, ea,e0) + g(h(ea, ea), h(ep, e0)J - g(ji(eQ, e0), h(ea: e0)^.

By (1.9), we get

~ l l r ~ ~ ~ i
R(ea,e0,ea,e0) = I - -(k + 1) - -\g(h(ea,ea),^)g(h(ep,ep),(,) - g2(h(ea,ep),£)j,

which implies

1 •? 2 m + 1

r=n+l

Then

4
j=\

(1 i) 5 ] „ , ( „ , ! )
ii

2 1 I — K" I I n
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Therefore

I f '
S(nly... ,n«) ^ d ( m , . . . ,nt) \\H\\2 + -{1 - k)ln{n - I) -J2ni(nJ ~

l)\\P\\2-\\\h\\2.
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