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ON THE INTERACTING FREE FOCK SPACE AND

THE DEFORMED WIGNER LAW

Y. G. LU

§1. Introduction

The Fock space is a basic structure for the quantum field theory and quan-

tum stochastic calculus. In all the cases, a Fock space can be described as a direct

sum of a sequence of some Hubert spaces, i.e. a Fock space has the form of

Θ~=o ^fw,where, #CQ =C is the complex field and #C1'
:= $! is a given Hubert

space. Moreover,

i) the Boson Fock space corresponds to the case of $ΐn '•= ffl°n, where X° is

the »-folds symmetric tensor product of ffl

ii) the Fermion Fock space corresponds to the case of ίίn '-= ffl n, where X

is the w-folds anti-symmetric tensor product of X

iii) the Free (or Full) Fock space corresponds to the case of !ftn '-— ίt : the

usual w-folds tensor product of $?.

In the consideration of the central limit of the time evolution operator of the

quantum electric-magnetic field (see [1,2]), a new type of Free Fock structure is

erquired in order to describe the limit of the time evolution operator. The limit is

a quantum stochastic process satisfying a certain quantum stochastic differential

equation.

In the new Free Fock structure, the »-th space $tn is not exactly equal to the

w-folds tensor product Hibert space $t n: one obtains the $n by introducing a

scalar product <•, -)n on the algebraic tensor product fflΘn and for fv gv. . ., fn,

gn e M, in general, the product Un

h=ι </A, gk) is not the same as the scalar pro-

duct </x Θ Θ fn, gλ Θ Θ gn}, where, we have omitted the sub-index n of

n-th scalar product and throughout the paper, the same omission will be adopted.

Thus, the Free Fock (one could also make the same consideration for the

Boson and the Fermion cases, see [3]) space has the form
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and the w-th Hubert space is (itΘn, <*, •».

The present article is devoted to discuss such new Free Fock structure.

Moreover, we shall restrict ourselves to the case in which

i) it '-= L (M, dμ), where, M is a measurable space and μ is a σ-finite mea-

sure on M

ii) there exists a sequence of functions {λn(xlf x2, . . . , xn)}ζ=1 (λn:M —»

R + ) and two sequences of positive numbers {bn, dn}n=v such that, for any n e N,

ΛKXJ ΛΛ
1
KX

1
J Λ

n
KX

2
,. . ., X

n
, X

n
+ιJ

iii) the scalar product of n-th Hubert space is defined as:

(1.2) <Λ 0 0 / n , g, Θ Θ £w> •= fμidxj '' ^ ( ώ r j ^ ^ , . . . , x n )

for any flfglf...,fn,gn e ^ .

Such type of Fock space will be called the interacting Free Fock space over

the Hubert space ίt = L (M, dμ) with the interacting functions iλn}ζ=1. It is ob-

vious that with the choice λn — l(w = 1,2, . . .), one gets the usual Free Fock

space over it.

In the section 2, we introduce some basic concepts like the creation, annihila-

tion operators; calculate the action of any annihilation operator on each w-th space

itn (it is not so trivial like in the usual Free Fock space case) and formulate the

joint distribution of any product of some creation and annihilation operators. The

section 3 is devoted to introduce the deformed Gaussianity on the interacting Free

Fock space. Finally, in the section 4, we study some examples; introduce what so

called the deformed Wigner distribution and obtain the explicit expression of the

density function of the deformed Wigner ditribution.

§2. Creation and annihilation operators, the joint distributions

Having defined the interacting Free Fock space, we shall, in this section, in-

troduce the creation and annihilation operators and obtain the joint distribution of

the operators. Such investigations is essential for setting quantum stochastic calcu-

lus theory on the interacting Free Fock space (see [4]).
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FOCK SPACE AND WIGNER LAW 3

DEFINITION (2.1). The vector

φ : = l Θ O Θ O Θ •••

is called the vacuum of the interacting Free Fock space ΓQ(Jt). The operator

A (g), where g ^ $!, defined by, for any n ^ N and gι,...,gn^-$t,

is called the creation operator (with respect to g ^ it).

LEMMA (2.2). For any g ^ it, the creation operator A+(g) maps ffln into #tn+1

and is bounded on each Un :

(2.2)

Proof By the definition

(2.3) \\A+(g) [g,Q ••

= llίΘftΘ Θ&

μ(dx)μ(dx1) μ(dxn) λn+ι(x, xl9..., xn) \ g{x) | 2 Π

= J μidxj - - - μ(dxn)λn(xv ...,xn) Π \gh \2{xh)

/ / J \ •) / \ \ ί \ \2 Λn+1 V& > ΛΊ> . . . > Xn)
I I tt\ΠΊΓ)λ ( ΊΓ) O\ Tι -,—^ I
I I [Λ VU- Λ// Λj \U/J I g \tX// I •) //γ\ ") (~, /y. Λ *
\-%) Aγ \X)Λn\X±f. . . , Xft) -I

By our assumption on the interacting functions, the quantity [. . .] in the right

hand side of (2.3) is less than or equal to dn \\g\\ . Thus we have obtained the

proof.

Of course, A (g) is not necessarily to be bounded on the interacting Free

Fock space Γ0(ffl) and the boundness depends on the sequence of the interacting

functions U J ~ = 1 . But we have

COROLLARY.

i) A+(g) is, for any g ^ ffl, an operator densely defined on ΓQ(X) and the set

Γo : = ( Σ cnGn : J V e N , G w G fln, cn^C,n = 0 , 1 , 2 , •}
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is included in$)(A+(g)) : the domain ofA+(g).

ii) J/supw \fdn < °°, then for any g ^ #C, the creation operator A (g) is bound-

ed on Γ0(ffl) and

\\A+(g)\\<supi/dn-\\g\\.
n

In the usual Free Fock space, bn = dn — 1, so any creation operator is bound-

ed.

Since A (g) is an operator densely defined, its essential adjoint exists and

will be denoted by A(g), named by the annihilation operator (with respect to g €=

X).

LEMMA (2.3). For any g ̂  ίΐ, the annihilation operator A(g) possesses the fol-

lowing properties:

(2.4a)

(2.4b)

and moreover, for any n = 1,2,..., m e N, f2, / 3 , . . . , fm e ffl9 Gn e $ζ

(2.4c) </ 2 Θ QfM, A(g)Gn> = δM>m < * Θ / 2 Θ Θ Λ , Gw>

/ For any n = 1,2,. . ., m e N, /2, / 3,. . ., /m, Gw e ^ w , by the defini-

tion

</2Θ * Θ/,, A(g)Gn> = <Λ+(g)[f2Q Θ / J , Gw> = <^Θ/ 2 Θ OfM, Gn>

This shows that Γo c %)(A(g)) the left hand side of the (2.4c) is equal to zero if

m Φ n. Moreover, in the case of n = m, the above scalar product is equal to the

right hand side of the (2.4 c).

In particular, the formula (2.4 c) implies that, if n = 0,

<F,A(g)Φ>=0, VF£fo

and A(g)Xn c Mn_v Therefore, the proof the thesis is compeleted.

Now, an interesting problem is to calculate the expression

(2.5) A(g)[glQ- Qgn]

for n > 1. By the definitions of the creation and annihilation operators, one knows

that for any n = 1, 2 , . . . , N, fl9 gv..., fn9 gn e ̂ ,
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FOCK SPACE AND WIGNER LAW

(2.6) </2Θ ΘΛ, A(A) [& Θ Θgn]>

= <AG f2Q---Qfn,gιQ-- Qgn>
μ(dxx) - μ(dxn)λn(xί9...,xn) Π (fh gh)(xh)

h = l

/

n

μ(dx2) - - μidxjλ^ixz,..., xn) Π (fh gh) (xh)
h=2h=2

Thus, in fact we have proved that

LEMMA (2.4). For any w e N, Gn e # n and/, £ e # ,

(2.7) W(/) ( ί © G,)] (*!, . . . , xn) = Gn(xv..., xn)

where, here and in the following, the O-th interactiong function λ0 is defined as 1.

The boundness of the annihilation operator is the same as that of the creation

operators.

LEMMA (2.5). For any n €= N and f ^ X, the annihilation operator A(f) on the

n + 1 — space ffln+ί is bounded and with the bound yfdn+ι ' | | / | | .

Proof The proof is the same as that of Lemma (2.2).

In the following, we consider the creation and annihilation operators only on

/̂ 0 (i.e. we do not distinguish the operators themselves with their restriction on Γo)

and therefore, they are adjoint each other.

Now, we try to understand the vacuum expectation of a product of many crea-

tion and annihilation operators, i.e. to get more information on

(2.8) <Φ,Λβω(/i) - Aεin\fn)Φ>

where, w E N , ε E { 0 , l Γ , fv...,fn^X and for any e G {0,1},

[A, if 6 = 0;
(2.9) A: +

[A , if 6 = 1

Since A(f)fflQ = 0, we get immediately that
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LEMMA (2.6). The quantity (2.8) differs from zero only ifε(n) = 1, ε(l) = 0.

For any fixed ε e {0,1}n with the property of ε(n) = 1 and ε(l) = 0,

there is a unique 1 < m < -R and 1 < kx < k2 < < klm_γ < n, such that

(2.10a) 0 = ε(k2j + 1) = ε(/c2;- + 2) = = ε(/c2;+1)

(2.10b) 1 = ε(k2j+1 + 1) = ε(k2j+1 + 2) = = ε(/c2;+2)

for each / = 0 , 1 , . . ., m — 1. Where, we have introduced the conveniences k2m '• =

n and k0 = 0.

With the above notations, we are able to rewrite (2.8) as

ki k2 . k2m-\ k2m

(2.11) <Φ, ̂  n+iA(gh) h Π / (ί*> ••• h Π i4^ 4 ) ^ ^Π + i A
+ (^ Λ )Φ>

where and hereinafter, for any elements alf . . . , ar in a certain group G, by

Π^=1 αA, we denote the ordered product ax ar.

A generalization of Lemma (2.4) can be stated as following:

LEMMA (2.7). For any rn, n e N, f l t . . . , fm, g1,...,gn^ffl, the expression

(2.12) A(fm) - - A f / ^ f t G •• Qgn]

:=A(/J[ W(/2)W(Λ) ̂ i (

15 equal to zero ifrn>n;eq

ifm = n and equal to

(2.13) [ ( £ M + 1 Θ Θ gn) Λn_Jfm,..., Λ gι,..., ^ J ] ( χ M + 1 , . . . , xn)

in the case ofm < n (which belongs toXn_m), where

(2.14) Λn_m(fm f1;g1 gn) (xm+ι, ...,xn)

• • • μidxj i'^Q'"^) 5 (Λ *

Proof Because of (2.12) and the fact:

Λ,-.(Λ, 8v-.., fn, 8n) = < Λ Θ • Θ fn, g l Θ • Θ£„>

we know that the conclusions of Lemma (2.7)" in the cases of m > n and m = n
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FOCK SPACE AND WIGNER LAW 7

are particular cases of that in the case of m < n. In order to prove the last con-

clusion of Lemma (2.7), we should calculate the right hand side of (2.14) for

m < n.

By the definition of annihilation operator, we know that Aί/^Qft© ©

gn) e tfn_λ is given by

(2.15)

Now by acting the annihilator i4.(/2) on the two sides of (2.15), we find that

(2.16) [A(Q M(Λ) (&.Θ Θ ft)]] (X3. . . . .*»>

and which is equal to

(2.17) (g3 0 * * 0 gn) (x3, , xn)

/
tl\f\τ ) ff(/JΎ ) '/ r~ \ f * 0 ) ( T ) ( f 0" ) ( T )

= [(f t Θ Θ ft) Λn_2(f2, Λ ft, ft)] (x3, . . . , x n ) .

By repeating the above arguments and applying the induction, we finish the proof.

A trivial generalization of Lemma (2.7) is that

LEMMA (2.8). For any rn, n e N, fv . . . , fm ^ $€ and Gn ^ $ΐn,

(2.18) AifJ • • • AW Gn - Vn_m(fm,..., U Gn)

where, Vn_m(fm,..., fλ Gn) is defined as zero ifm > n

<ΛΘ Θ/B, GB>

ifm = n and in the case ofm < n, Vn_m(fm,..., /Ί Gn) ^ $tn_m is defined as

(2.19) Vn.M(fm, .;A : Gn)(xm+V.. ., Xn)

/
λ ίx X ) m _

μ{dx^ - μ(dxm) j—n(χ

V'\" " x ) Π /Λ(xΛ) G ^ ^ , . . . , xn)
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LEMMA (2.9). The quantity (2.11) differs from zero only if

i) for any j = 0 , 1 , . . . , m — 1,

(2.20) \^2j+l ~ ^2p ~*~ ^2;+3 ~~ ^2;+2' ' ' ' ' + ^2(m-l) + l

ii) (2.20) fafos equality forj = 0, i.£.

(2.21) 2{k1 + /c3 H~ ''' ~r k2(m-D+ι) = 2\k2 ~r /c4 ~r * H~ /c2(W_i)) ~r /c2w

T r ^ / By Lemma (2.7) and Lemma (2.8), for any = 0,1,2,. . . , m — 1, if

(2.20) is not true, then in a certain step we shall have an annihilation operator to

act on ffl0 and which gives zero.

Moreover, if the left hand side of (2.21) is strictly less than the right hand

side, then the vector

(2.22) fί A{gh) Π AHgk)- - I f A(gh) *ff A+(gh)Φ
h = ko+l h = kι + ί h = k2m-2+l h = k2m-ι + 1

belongs to tf£p for some p ^ 1. Therefore, in this case, (2.11) must be equal to zero.

Remark. It follows easily from Lemma (2.9) that (2.11) (or equivalently, (2.8))

differs from zero only if n is even. So, we are able to assume that n = 2N for

some J V ^ N .

Now, we are ready to calculate (2.11) for 1 < kι < k2 < < k2m_1 < 2N

satisfying (2.20) and (2.21), or equivalently, to calculate (2.8) for such ε ^

(0,1}2" that

(2.23a) \{r>h:ε(r) = 0} | <\{r>h:ε(r) = 1} |, Vh = 1,2,..., 2N,

and

(2.23b) I ir : ε(r) = 0} | = | {r : ε(r) = 1} |.

We shall denote, by {0,1} + , the totality of such ε e {0, 1} that satisfy

(2.23 a,b) and also by {0,l}f the subset {0,l}2JV\ {0,l}f.

By the definition of the creation operator, the vector (2.22) is equal to

(2.24) Π Aigh) Π A\gk) • • • *Π" A(gh) [g^ , Θ © gkj
h=ko+l h=k1+l h=k2m.2+\
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FOCK SPACE AND WIGNER LAW

This is, by Lemma (2.8), equal to

(2.25) Π A{gh) Π A+(gh) - ΊfΓ A+{gh)
h = ko+l h=kι+l h = k2m_3+l

^2m-2fc2m-i + ̂ 2m-2^2m-2+l> ' * ' ^2m-i ' £*2»-i+l © ' gk2n)

By repeating the above procedure, one is able to rewrite the expression (2.11)

to

(2.26) Vk oym-u +ym-u ( # , , . . . , gk ;gk + 1 Θ Q gk

ΘV^.as j j i4 2 W + Σ f .-it a ,(^ 2 + i , . . . ,g k 3 ;g k 3 + iΘ • Θ g k i

Θ Θ Θ ^2 M-2,2 M.1 +,M_2(ft2 M.2 + 1. > &„„_, ft2M_1+1 Θ Θ gkj •••))

The expression (2.26) has a quite complicate form. We shall try to give

another formula to express the quantity (2.11). In order to do this, we should first

recall some basic facts about pair partitions on 2N points.

For each ε e {0, I} 2 , there are an m < N and a set 1 < lλ < l2 < < lm

< 2N, such that

Uh)ti= ik:ε(k) =0).

It is clear that the m ^ N and the ordered set {/J^=i a r e determined uniquely by

the ε. In the following, the set Uh}™=1 will be called the left-index set of the ε. We

have an equivalent statement of Lemma (2.9):

LEMMA (2.10). ε e {0,1}^ if and only if its left-index set ί/JΓ=i satisfies that:

1) m = N, h = 1, lN < 2N

2) far any k = 1,2,..., 2N

\{k,k + 1, , 2 M Π Uh}
N

hJ\

< I U, /c + l, , 2Λ0 Π αi,2, , 2 M \ { / J l i ) H

Proof The proof follows immediately from the equivalence between ε ^

{0,1} + and its left-index set.

For each ε e {0,1} + , with respect to its left-index set ilh}h=v we can consid-

er all pair partitions {(/A, lf

h))N

h=ι. Where, {Γh}
N

h=ι'-= {1,2, , 2 M \ ί/^Li must

satisfy the following:

i) for any h= l ,2, ,iV, Γh > lh;

ii) for any h, k = 1,2, * * , N different, Γh differs from Γk.

Of course, for each fixed left-index set {/Λ}Λ=1 (or equivalently, for each fixed
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10 Y. G. LU

ε ^ {0,1} + ), there is at least one (possibly many) pair partition and the number

of possible pair partitions depends on the left-index set But we have:

LEMMA (2.11). For each fixed ε ^ {0,1} + (or equivalently, for each fixed left-

index set {lh}h=1), there is exactly one non-crossing pair partition {(lh, Γh)}h=ι which is

determined by the usual non-crossing principle: for each k < h, if lh < Uk, then Vh

Proof The result is a consequence of the following two observations:

0 {̂ /t> Ό^h=i forms a non-crossing pair partition, only if ΓN = lN + 1.

ii) {{lh1 Γh))h=ι forms a non-crossing pair partition of {1,2, * , 2N} \ {lNf VN)

if and only if {(/Λ, l'h)}h=1 forms a non-crossing pair partition of {1,2, , 2N).

In the following, the unique non-crossing pair partition determined by a given

left-index set {ln}h=1 will be denoted by {(/Λ, rh)}h=1 and the set (rh}h=1 will be

called the right-index set.

For each given left-index set ilh}h=v its right-index set irh}h=1 is, in general,

unordered and determined in such a way that: for any p = 0,1, , N — 1,

(2.27) rN_p = min{k : ({k, k + 1, , 2N} \ {lN_p+v • • , lN)) c {rh}
N

hJ

With the help of the results and terminologies given before, our main result

in this section can be stated as:

THEOREM (2.12). The quantity (2.8) is equal to a possibly non zero value only if

n = 2N and ε ^ {0,1} + . In this case, there is a function of N-variables

h, rh}
N

h=1;yv..., yN)

[where, (lh> rh}h=ι is the left-right-index set of the ε ^ {0,1} + ) such that the quanti-

ty (2.8) is equal to

(2.28) fμidyj -μ(dyN) Π (glh(yh)grh(yh)) ' K(ilh, r j t i IVi,..., VN)

where, the function K is determined uniquely by the ε ^ {0,1} + and the interacting

functions λ19 λ2, . . . , λN. Moreover, if we define, on the space M = M X M, the

σ-finite measure μ2(dx, dy) '= μ(dx)μ(dy)δ(x — y). Then, the expression (2.28)

can be represented as
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FOCK SPACE AND WIGNER LAW 1 1

(2.29) ίu%β2idxh, dxr) • • • fM2μ2idxlN, dxj £ <*,,(*,,)*,>„)>

N^} M-h-h-2h^XίN-h + 1' ' ' " XzN * V Xr)p=N-h + \)

H=0 *2N-lN_k-2h-l({ZlN_i+l>..., X2N^ \ &l,f Xr)Np=N-h+l U ^XrN-h^

where and hereinafter, for any n ^ N, m < n, any set iph}™=ι

 c {1,2, * , n) with

cardinality m and any junction F ofn — m vatiables, we have adopted the notation:

F ( { x 1 9 x 2 , . . . , ΛΓΛ> \ {-r^ Λ >Γ=i) : = F ( x 1 9 . . . 9 ζ , . . . , ζ ^ , . . . , x n )

Proof. It is clear that we have only to prove the last conclusion.

For each given ε ^ {0,1} + , i.e. each given left-index set {lh}h=1, by Lemma

(2.7), one knows that the vector

A(glN)A+(glκ+1) • • • A+(g2N)Φ = A(glN) Lglκ+ι Θ-- Θg2Nl

belongs to in X2N-IN-I a n d

(2.30) [A(g,N) [glN+1 Θ • Θ g2N] ] (xh+2 x2N)

= {g,N+2Θ Θ g 2 N ] ( χ l κ + 2 , . . . , χ 2 N )

^dxι) ~λ (r ΓT~ ̂ h^rj te/P
N Λ2N-lN-iyXlN+2> - * X2N> N N N

= ίglN+2 Θ Θ g 2 N ] ( χ l N + 2 , . . . , χ 2 N ) '

JΓ / , J \ ^2N-lΛXlNy XlN+2> - - •> X2N' _ / x / x

I μ2(dxlN, dxr) χ

 N N, N —γ-glN(xlN)grN{xrN).
M2 N N Λ2N_1N_1\X1N + 2 , . . . , X2NJ N N N N

Since rN = lN + 1, we are able to rewrite the right hand side of (2.30) as

(2.31) Θ ga f zμ2(dx,N, dxr) -
lN+l<a<2N JM2

(

It follows from the same arguments that

(2.32) Aig^AHg^J • • • A+ig^Aig,} A+(g,N+1) • A+(g2N) Φ

X.
aέUN,rN}

i \ Λ2χ_t \X[ +ι, XlN+2f - i X2N'

\(xrj) *MM.W
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12 Y. G. LU

y^2N-lN_1-3^XlN_ι + lf •> ^JVJ" \ ^XrN-ι> XlN> XrN>

I μ2(dxι dx )gι (xt )g (x ) -χ *ττf r

M2 N N N N N N Λ2N-iN-i\\XιN+ι,...,X-iN-i\\XιN+ι,...,X2NΪ \^XrN>)

By repeating the above arguments, the proof is completed.

Remark.

i) From the above Theorem, we know that in order to calculate the quantity

(2.8), one must only consider non-crossing pair partitions. In other words, the

creation and annihilation operators on the interacting Free Fock space still satisfy

the non-crossing principle.

ii) The function K is, in general, not a constant.

§3. The deformed Gaussianity and the vacuum distribution of field operator

In the present section we discuss some more properties of the creation and

annihilation operators.

Creation and annihilation operators on the usual (uninteracting) Boson, Fer-

mion and Free Fock spaces (over a certain Hubert space ίt) possess an important

property: for any n ̂  N, glf. . ., gn ^ X and ε €= {0,1}n, the vacuum expectation

of the product

/rΛ ., . /iε(l) / \ Λε(n) / \

(3.1) A (gj -- A (gn)

vanishes certainly in the following two cases

i) n is odd;

ii) n = 2N for some N e= N but ε e {0,1}?".

In the case of ε €= {0,1} + with the left-index set {lh)h=h the vacuum expecta-

tion of (3.1) has of form

(3.2) Σ f({lh,l'h}
N

h.1)n<Φ,Aiglt)A+(gl't)Φ>
ilh,ΐh}%mle{p.p.2N} h = 1

Where and hereinafter, by {p.p.2M, we denote the totality of all pair partitions

of {1,2,..., 2N}. The /({/Λ, l't)h=χ) factor depends on the tensor structure:

0 /({^Λ> ly)h=\) ~ 1' if w e a r e considering the Boson case;

ii) /({/A, /̂ }Γ=i) = ("" 1) lh'lhh"ί , if W e are considering the Fermion case,
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where || {/Λ, l'h}h=1 || is the index of the permutation

{ 1 , 2 , 3 , 4 , . . . , 2 N - 2 , 2 M - ilv l[, l2, Γ2,..., lN, l'N)

iii) in the Free Fock case,

f(n ,,ΛN x = ί 1, if {lh, Γh}
N

h=1 e {«-c.p.p.2M

10, otherwise

where, here and in the following, by k - c . p . p . 2 M we denote the totality of all

non-crossing pair partitions of {1,2,. . . , 2N).

Roughly speaking, in all the above three cases, any 2N — 1 points function is

equal to zero and any 2N points function equal a sum of products of two points

functions. In other word, under the vacuum state, the creation and annihilation

operators possess the Gaussianity.

Now let us see the interacting Free Fock space. It is clear that under the

vacuum state, creation and annihilation operators do not, in general, possess the

above property. For example, in the case oί N = 2, according to the results in the

section 2, the expression

(3.3) <Φ, A(gι)A(g2)A+(gz)A+(gA)Φ>

is equal to

J μ(dx)μ(dy) (g2 g3) Or) (& gA) (y)λ2(x, y)

and which is in general impossible to be represented to a form like

Σ cσ f μ(dx)μ(dy)(gσ{2) gσ{3)) (x) (gσil) gσ{A))(y)

where, by s£n, we denote the ^-permutation group. Therefore, under the vacuum

state, the creation and annihilation operators do not, in general, possess the Gaus-

sianity.

But, on the interacting Free Fock space, under the vacuum state, the creation

and annihilation operators possess some properties similar to the Gaussianity. In

order to look it, let us introduce some notations.

DEFINITION (3.1) For each n, m G Z, k G N and a function / defined on the

set in + 1, n + 2,. . ., n + m), the ± /c-shift of the function / is a function de-

fined on the set {n + 1 ± k, n + 2 ± k,..., n + m ± k} :
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( u k

± f ) ( h ± k) : = f ( h ) , V h e {n + l , n + 2 , . . . , n + fn}

With this terminology, we can state a simple result:

LEMMA (3.2). Far each N <^ N, p < N and ε <^ {0,1}+* (with the left-ήght-

index set Uh, rh} h=1), if we define a map e, which takes value in {0,1}, by

then, 6 e {0,1}+' '*2 '* *

: = ε(rp + 2 ) , . . . , e(2N + lp - rp - 1) : = ε(2iV)

/ First of all, one has to show that 2N — lp — rp — 1 is even. In fact,

by the non-crossing principle, if ld G (lpy rp), then it is certainly true that rd e

(Z ,̂ r^). Therefore, rp — lp — \{< 2N) is always even, and 2N — lp — rp — 1 so

is.
Again by the non-crossing principle, the restriction of the given ε €=

{0,l}+ on the set {1,2, . . . , 2N)\{lp, lp + | , * , rp} permits a unique

non-crossing pair partition {(/Λ, rk)}h e {1,2,. . . , N}\{d: lp< ld< rp). So the

thesis is obtained.

Let us now examine the quantity (2.8) for n = 2N and ε ^ {0,1} + . It is ob-

vious that lλ

 = 1, rx is even and

By the non-crossing principle, rγ + 1 must be a left-index, say ld . Moreover, we

know that rd — ld — r + 1 is even, rd + 1 is a left index and

By repeating the argument, having obtained the pices

1 , . . . , rl9 (rx + 1 =)ldι,..., rdi, (rdi + 1 = ) / , 2 , . . . , ^ , . . . ( r r f w + 1 = ) / „ , , . . . , r d ί

since the rd + 1 must be a left-index, say /rf , we have the next pice

Thus, in fact we have proved that

LEMMA (3.3). Each ε e {0,1}+* determines uniquely an m < N', 1 < Nίt. . . ,

Nm< N and εt e {0,l}f' (i = 1,2,..., m) suc^ ί/iαί Σ ί = 1 N{ = N and
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\U_ 3ε) \{2Nj + l,2Nj+2,'",2Nj+ι} ~ Si'

Thank to this result, we find immediately that

LEMMA (3.4). The quantity (2.8) for n = 2N and ε e {0,1}+^ is equal to

(3.5) <Φ, nAε{h)(gh) it Aε{h)(gh) - ΪΓ Aε{h)(gh)Φ)

where,

i) l<m<N,dj<Ny (j = 1,2, . . . , m), dm — N and they are determined

uniquely by the given ε

Remark. In the language of diagram, each ε ^ ίθ , l } + permits a unique

non-crossing diagram with the vertices {1,2, . . . , 2N}. Any leg in the diagram

connects two vertices lh, rh(h — 1, . . . , JV). The decomposition stated in Lemma

(3.3) means that the diagram determined by ε ^ ίθ , l } + can be decomposited into

m pices with the following properties:

i) there is not any leg connecting two vertices from two different pices. In

other word, for any lh> lk in two different pices, if lh < lk, then rh < lh

ii) in any pice, the first vertex is paired to the last vertex;

iii) the restriction of the full diagram (determined by the given ε ^ {0,1}+)

on each pice gives a non-crossing diagram on the set of the corresponding

vertices.

In the following, we shall call an ε ^ {0,1} + total-connected if rx = 2N and

call the decomposition (stated in the above) the total-connected decomposition of

the given ε ^ {0,l}+ .

Now we are ready to state what we call the deformed Gaussianity.

LEMMA (3.5). For each ε £Ξ {0,1} + with the total-connected composition given

in Lemma (3.4), the expression (3.5) is equal to

(3.6) <Φ, UAe{h)(gh)Φ> <Φ, Π Aε{h\gh)Φ>--<Φ, 'ft Aε(h)(gh)Φ>.

Proof. By the definition of the creation and annihilation operators, for any

vector G in a certain Xn, any / , fv . . ., fn e # , and any ε <Ξ {0,1}", the action

of operator Hh=1A (fh)A(f) on the vector G is equal to that of the operator
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n"h=ιA
tih){fh) on the vector A(f)G, i.e.

[Π A$(h)(fh)A(f)]G = Π AHh\fh)[A(f)G\.

h=\ h=l

Hence, the quantity (3.5) is equal to

rl £(h)

 rd, £(h)

 rd*n-l rd

(3.7) < Φ , UAε{h)(gh) IT Aε{h\gh) ••• Π Aε(h)(gh)[ i f Aε(h)(,

In (3.7), since (ldm, /dm + 1,. . ., rd?w} is a total-connected pice determined by

the ε, the vector Π ^ Aε (g J Φ must be a number, i.e. it belongs to Xo = C.

This argument guarantees that (3.5) is equal to

(3.8) <Φ, Π / \ Λ ) if A ε ( A ) f e ) ••• ft Aε(h)(gh)Φ> <Φ, i f A ε ( Λ ) (£ A )Φ>.

By repeating the above argument to the first scalar product in (3.8) and ap-

plying the induction, we finish the demonstration.

The result of Lemma (3.5) could be stated in a simple way: for any ε e

{0,1} + , the vacuum expectation of the operator

2N

(3.9) TlAεUt)(gk)

is equal to a product of some scalars. Moreover, in the product, each factor is

equal to the vacuum expectation of a sub-product of (3.9) and the indices of the

operators in a sub-product belong to a certain total-connected pices of the given

ε.

By this result, in order to calculate a quantity like (3.5), one has only to do

the calculation for ε €Ξ {0,1} + being total-connected, i.e. rλ = 2N. But unfortu-

nately, on such calculation, we have few thing to say more than the results

obtained in the section 2. Of course, in some special cases, one can get very clear

expression of the quantity like (3.5) even for ε ^ {0,l}+ being total-connected

and such results will be presented in the next section.

Now, we are going to compute the vacuum moments of an operator with the

form A{g) + A+(g). Obviously, this is equivalent to calculate the vacuum

moments of the field operator ~κ (A(g) + A+(g)).

It is easy to see that for any n odd, the n-th vacuum moment of the operator

A(g) + A+(g) is equal to zero. So, we shall assume that n = 2N for some N e N.

By expanding the power (A(g) + A+(g)) , one has that
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(3.10) <Φ, (A(g) +A(g))Φ> = Σ <Φ, Π A
εe{0, l } 2 ^ Λ = 1

Thank to the results obtained in the section 2, the scalar product in the right

hand side of (3.10) is possibly not equal to zero only if ε ̂  {0,l}+ . Therefore,

the 2iV-th vacuum moment is equal to

2N

(3.11) uN:= Σ <Φ, IlAεih\g)Φ>.
εe{Q,ί)+N h = 1

By Lemma (3.5), the scalar product in (3.11) is equal to a product of some num-

bers. In the product, each number is nothing else but the vacuum expectation of a

sub-product of (3.9) and the indices of the operators in the sub-product belong to

a certain total-connected pices of the given ε. Now, define

2m

(3.12) vm'.= Σ <Φ, ϊlAεih\g)Φ>, m = 0,l,....

ε is total-connected

One gets easily that

(3.13) u0 = v0 = ux — vλ — 1

and moreover,

LEMMA (3.6). With the above notations, for any n = 2 , 3 , . . . ,

n

(3.14) un = Σ vkun_k.

Proof In order to prove (3.14), we reconsider the sum in the (3.11) for all

ε €= {0,1} + according to the possible length of the first total-connected pice, i.e.

the possible value of rv It is clear that rγ takes value in {2,4,..., 2(N — 1), 2 M .

Hence, un is equal to

(3.15) Σ Σ <Φ,nAε(h\g)- Π Aεih\g)Φ>.
k = l ε e{o,i}2» A=l h=2k+l

By Lemma (3.5), the scalar product in (3.15) is equal to

2k 2n

(3.16) <Φ, Π AM\g)Φ> <Φ, Π AM\g)Φ).
A=l h=2k+l

For each fixed k = 1,2,..., n, since rx — 2k, it is clear that if one defines
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(3.17a) εx : = ε\{lt2_M)

(3.17b) ε2:=uίkε

then, ελ ^ {0,0+> ε2

 G {0,D+

w~ Moreover, as ε running over the set {ε e

{0,l}+ : rλ = 2k), εί runs over ί θ , l } + and ε2 over {0,l}+

n . So, (3.15) is equal

to

n 2k ... 2n ...

Σ Σ <Φ, UA$M(g) π ^ < W (^)Φ>
k=1 eeίθ.1}?1 A = 1 Λ=2fc+1

» 2A 2Λ

= Σ Σ <Φ, Π Γ ^ J Φ ) <Φ, Π A{h\g)Φ>
*=1 εe(θ,l)f A = 1 A=2&+1

and which is equal to

n 2k 2(n-k)

(3.18) Σ Σ ^ < Φ , Π ^ l ( A ) ( ^ ) Φ > Σ ^ <Φ, Π Aε2(h\g)Φ).

This is nothing else but the right hand side of (3.14).

Remark. A trivial conclusion of Lemma (3.6) is that on the usual Free Fock

space, the formula (3.14) is certainly valid. Moreover, in that case, any total-

connected pice is controlable: In fact, υk = uk_v Therefore, on the usual Free Fock

spae, (3.14) takes the form

n

(3.19) un = Σ uk_xun_k, uo = Mi = 1.
k = l

As the end of the section, we give a result which can be easily proved by

expanding the operator (A(g) + A+(g))n as a sum of products of the creation,

annihilation operators and applying Theorem (2.12).

THEOREM (3.7). For any n e N, g G $?, the vacuum expectation of the oper-

ator (A(g) + A (g)) is equal to zero if n odd; if n = 2N, the vacuum expectation

of (A(g) + A+(g))n is given by

(3.20) r r N -
Σ I β2(dXιlf dxr^) ''' I β2\dxΪNy dxrN) Π (glh(xlh)grh\xrj)

{{lh,rh))1l=1e{n-c.v.v2N} M<1 λ * M<λ " N h=l

5 (ί \ \ { \N }
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§4. Examples and applications

In this section, we present some examples of the interacting Free Fock space.

The first example is that the interacting functions λlf λ2,. . . possess the fol-

lowing forms: there exist functions {cxn,i)ι<k<n«χ>' s u c n that

A special interesting case is that

(4.1) M= [a, b], with 0 < a < b, an>k(xk) = — a

 {k_ι)p , w i tha^>0.

That is

( — }p

(4.2) λ, = 1, λ2(xv x2) - U 2 a>

2» f Xji'

( f t - a ) ' ' " " '

(x2 — a) (x3 — a) (xn — a)

(b-aΫ (b-a) 2P

Of course, with these interacting functions {λn}ζ=ι, we can construct an interacting

Free Fock space as before, which is the usual Free Fock space if and only if p — 0.

For such interacting functions {λn}ζ=v the vacuum expectation (3.5) can be

handled even for p > 0. The main idea to do this is to notice the following fact: If

the interacting functions {λn)ζ=ι are given as in (4.1), then for any n e N, / , fv

fv. .'fn^ % = L\[ay b], dμ), by Lemma (2.7)

(4.3) [A(f)A+(A) -Ά+(fn)Φ](x2,...,xn)

( r 2 - aΫ (xo - a)2P (xn - a) n ~ι P

= (/2Θ ©£)(*»...,*„) fμ(dx)(f fι)(x)

(b-a)p (b-a)2p (b-at-Ώp

(x3-a)P(xA-a)2P {xn-aγ-™

(b-a)p (b-ά)2p '" (b-af-2)p

(x2-a)p (x,-a)p (xn-a)p

(b - a)p (b - a)p (b ~ a)p

b

= (f2 I1))Θ- -G(fn Ip)(x2,...,xn) f μ(dx)(f f1)(x)
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(x - aΫ
where, Ip is the map on [a, b\ defined as: I(x) '-= - . Again by Lemma

(2.7), i b " a )

(4.4) [A{f)A+{Q • • • A+(Λ_,

= (Λ 0 0 fn-,) (x2,..., Xn-J f μidx) if Λ) (x) \l(X

('
X2' L V

= (Λ 0 ©/,_!> ( χ 2 , . . . , ^ - i ) Γ /ί (Λc) ( / Λ) ω
2/> / x (n-2)p

(x2 — ̂ ) Cr3 — ̂ ) (x n_! — a)

ib-a)p ib-aΫ" ib-aΫ"-2)P

ί \P / \2p , \ Ol-2)j

(x3 — a) (x4 — α) \xn-i ~~ a>

(b-a)p (b-a)2p

f1)ω \
° (b — a)

(x3 -a)" {xn_λ — aΫ

(b-aΫ (b-a)p

= (/2 /,) Θ Θ (/,_! /,)(χ2,...,χn^) f μidx)(/ Λ ) ω

This means that the influences to the part of A (/ x ), . . ., A (fn-J in the following

two actions:

A(f)A+(fi) "Ά+(fn)Φ

and

A(f)A+(Λ) •• A+(/w_1)Φ

are the same. And moreover, each procedure of pairing an annihilation operator to

a creation operator (according to the non-crossing principle) contributes a map Ip

to the last creation operator. Thus, in fact we have proved the following result:

LEMMA (4.1). For any n e N, glt . . . , g2n e X and ε e {0,l}+M total-

connected, the vacuum expectation

(4.5) <Φ, UAM)(
h = l

is equal to
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2(JI-1)

(4.6) (Φ, Π Aε (gh)Φy {Φ, ̂ 4(^)^4(^2 I? ) Φ)

where, for any k €= N.

Remark. It seems true that from the central limit of the quantum Bernoulli

processes, one could find an interacting Free Fock space with the interacting func-

tions given by (4.1).

It is interesting to calculate the above expectation for gh = 1. Moreover, up to

a trivial linear transformation, we shall assume in the following that a — 0, b —

1. In this case, we also assume that μ is the Lebesgue measure.

LEMMA (4.2). For any n ^ N and p > 0, let us define

Un>p:= <Φ, (A(l)+A+ωΫnΦ>

Then,

(4.7) UOιP = UhP = 1, Un>p = Σ 1 y ^ Uk,pUn_k_hP.
k=o λ * PK

Proof. Thank to Lemma (4.1), Lemma (3.6) and the above discussions, in

order to prove the present lemma, it is sufficient to show that

(4.8) <Φ, A(1)A(IP)Φ> = λ I k.

But this requires only a trivial computation.

An important problem is to know the density function (if it exists) of the ran-

dom variable corresponding to the operator A(ϊ) + A (1). The density function

(if it exists) will depend on the parameter p ^ 0 and be equal to the density func-

tion of the Wigner distribution on ( — 2,2). Just by this reason, we shall call the

distribution of the random variable corresponding to the operator A(l) +

A (1) as the deformed Wigner distribution.

In order to know more informations on the distribution, we do some analysis.

First of all,

LEMMA (4.3). For anyp > 0, n = 0,1,2,...,
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(4.9) Un>p < Un,Q.

Proof. For n = 0,1, the inequality (4.9) takes equality. If (4.9) is true for

n < m,

then

k=0

The induction guarantees the thesis.

LEMMA (4.4). For anyp > 0, the generating function of{Unp}ζ=z0

(4.10) Ep(z) : = Σ ί/w^w

t5 well defined on a neighborhood of the origin. Moreover, for each n ^ N

(4.1D £/„,, = ^ £ f ( 0 )

and Ep{z) satisfies the following integral equation:

(4.12) Ep(z) = 1 + z £,(*) / Ep(yPz)dy

Proof. (4.11) is an easy consequence of (4.10), so we shall prove only (4.10)

and (4.12).

Since Un0 is nothing else but the 2n-th moment of the Wigner distribution on

(— 2,2), we know, from the properties of the Wigner distribution, its generating

function

(4.13) £ 0 0r) : = Σ Un>oχ
n

n=0

is well defined on a neighborhood of the origin. So, Lemma (4.3) guarantees that

for any p > 0, the generating function Ep is well defined on a neighborhood of the

origin.

In order to prove (4.12), we should calculate the generating function. By the

definition and Lemma (4.2),

(4.14) Ep(z) = Σ υnΛz
n = 1 + Σ " Σ Y^U Uk,pUn_k_liPz

n

w=0 «=1 k=0 λ ' P*
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k 1 4̂ ι τ τ n-k-11
= 1 + z Σ Uk>pz y-ΓΓTTΓ Σ Un_k_hPzΛ=0

By changing of variable m '-— n — k — 1 and rewriting the factor -. , . , as

Γ1

I ykPdy, (4.14) is continuously equal to

l+z ΣUk,pz
k ΓykPdyΣ

u0 m=0
,p

k=Q u0 m=0

z Ep(z) Σ Ukpz
k \ ykPdy

k=0 ' J0

z Ep(z) C Σ Ukpz
kykpdy

J0 fc = 0

f Ep(ypz)dy.

By the same arguments, we can study the characteristic function of the ran-

dom variable 04(1) + A (1)), say Fp(t). In fact, Lemma (4.2) makes sure that the

characteristic function Fp has of form:

~ U (it)n

(4.15) Fp(t) = 1 + Σ - ^

By Lemma (4.1), Fp is equal to

T+Jic ^0

- i + y y

= 1 + t Σ ^ i * f / dy f dtx f
l Λ2 / ' " rfίB+1 F/ί,,^).

It is important to give an explicit expression to the sequence {Unp}n=0. For

this, we have the following more general result:

LEMMA (4.5). For gαc/i ^ ^ N, ε

(4.17) <Φ, Π A (gh)Φ> = Π
1 1 + | - (rh - lh - 1)
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Proof. We prove the result by applying the induction. In the case of n = 1,

the thesis is obvious. Suppose that (4.17) is true for any n < m and ε e {0,l}+

w,

we shall prove that (4.17) is still valid for n = m + 1.

Let be given an non-crossing pair partition ε ^ {0,1} +

m+ and denote by

{lh, rh} Λ = 1 its left-right-index set. If the non-crossing pair partition ε is not total

connected, we consider its total-connected decomposition ε ^ {0,l}+

W/, i= 1,. . .,

M < m. Any εt is total connected with the left-right-index set {/Λ* , rh

ι }™iλ and

any mι is less than or equal to m.

By Lemma (3.5) and the assumption of the induction, we know that the left

hand side of (4.17) is equal to

(4.18) Π Π ~ <gιf, gήf>.

'•^l + fC-C-Ό
By the definition of the total connected decomposition, any εt is a shift of ε

restricting on a subset of {1,2,..., 2m + 2}. More precisely,

(419) e1 = ε | { w >.. f 2 m i ),

> = 2 , 3 , . . . , M.

For any h = 1,2, . . . , m + 1, the left-right indices Uh, rh} is surely a

rh

ιleft-right indices Uh

ι , rh

ι } of (exactly) one of ε{ for a certain i = 1,2, . . . , M.

Moreover, by the construction of the total connected decomposition, any pair {lh

ι ,

rk* } is a shift of (exactly) one of pair {/Λ, rh}. So, the quantity (4.18) is nothing

else but the right hand side of (4.17).

If ε G {0,1} + is total connected, the (4.17) is just a consequence of Lem-

ma (4.1), the expression (4.8) and the assumption of the induction. Therefore, the

proof is completed.

An easy consequence of Lemma (4.5) is that

CONCLUSION. For each n e N,

(4.20) <Φ, 04(1) +A+(l)ΫnΦ> = Σ Π T .

Now we can state a result on the construction of the density function of the

sum of the creation and annihilation function with the text function 1.
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THEOREM (4.6). The density function of the random variable A(l) +

A (1) (under the vacuum state) is equal to

(4.21) Dpω

Where, ξ is a random variable on a certain probability space (Ω, $F, P) with odd mo-

ments zero and 2n-th moment

An

in - c.p.p.2n} I Σ ε e { ( U }f

1 + f (rh ~ h ~ 1)

Proof. The proof follows immediately by verifying the moments.

Remark. The existence of the random variable ξ will be given elsewhere.

We call the distribution given by the density function Dp the deformed Wig-

ner distribution since Dp is a generalization the density function of the Wigner

distribution on the interval (~ 2,2), which is nothing else but the density function

Do.

The next example is: there exists a measurable space (5, ώy v) and a

measurable function λ(sf x) on the product space S x M, such that

i) 0<λ(s,x) < b< oo

ii) the n-ih interacting function λn has of form:

X n

v(ds) Π λ(s9 xh)
A = l

For each fixed s ^ S, we define a Hubert space ffls by introducing on $t —

L (M, dμ) the scalar product

(4.22) </, £>5 : = f μ(dx) λ(s9 x) fix) g(x).

By Γ0(tf(s), we denote the Free Fock space over the Hubert space Xs. Notice that

for each fixed 5 €= S, the Free Fock space is practically the same as the usual

Free Fock space. So the usual creation and annihilation operators (depend on s ^

S) can be introduced by the usual way and in the following, they will be denoted

by As(f), A*(g) respectively. It is easy to verify that {ffls}SfΞs forms a measurable
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field (of Hubert spaces) and the family {As, A*}seS is a measurable field of oper-

ators. So we have right to consider the direct integral of the Hubert spaces and

the family of the creation and annihilation operators with respect to the given me-

asure v.

On the set

(4.23) # : = {£(•) : S-+M: {ξ(s)}seS is measurable and f<ξ(s), ξ(s)>sv(ds) < °°}

we define the scalar product

(4.24) <ξ(')\η(')> = f<ξ(s),η(s)>8v(ds).

Thus, # = I #CS v{ds) is nothing else but the direct integral of the Hubert

spaces {^s}seS- Similarly, for any n G N,

+ + Γ + +

A (gj -"A (gn) Φ = I v(ds) As (gj '" As (gn) Φs

where, Φs is the vacuum vector of the Free Fock space ΓO(#CS). Moreover, for any

ε €= {0,l}w,

(&) ••• A (gn)Φ = Js v(ds) As (gj • As (gtt) Φs.

So, for any/e U{M, dμ),

(4.25) <Φ, (A(f) +A+(f))"Φ> = fv(ds) <ΦS, (As(f)+At(f))"Φs>

and which is equal to

(4.26) fv(ds) | |/ | |f I {»-c.p.p.2JV} I

if n = 2N and zero if n is odd. Where

..ω-χ, . M J i l iC/r^"
is the density function of the Wigner distribution on [•— | | / | | s , ll/llj.

Finally, we consider an example in which M = R with d > 1 and the in-

teraction functions have of form:
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(4.28) λn(xv...,xn) = e-cΣ::'Σ:-^ *J, V » = l , 2 , . . .

where, c > 0 is a constant. In this case, for any ε ε ί θ , l } + and text functions gv

£2> > g2N, we have that

(4.29) <Φ,Atω(gι) -A"2m(g21t)Φ> =

= fμidyj •••μidyN) Π {gh-gr)iyh) - e ^ * - 1 " ^ ' .—<'->.
J h=l " "

The formula shows that this example is in fact a natural analogue of the example

obtained from the central limit of the time evolution of the quantum

electro-magnetic field (see [1,2]) and its proof is similar as what did there.

Moreover, the distribution of the field operator in this case is under investigation

(see [5]).

At the end of the paper, we would like to make some discussions. It is well

known that the Wigner distribution was found from the investigation on some phe-

nomena in heavy particle physics. Wigner presented the Wigner distribution (or

semi-circle distribution) as some type of limit distribution of the biggest eigenva-

lue of some random matrices (see [6,7]). 30 years after, Voiculescu found the same

distribution by studying Free type non-commutative probability (see [8,9] and the

references within) and Kϋmmerer, Speicher set and then Fagnola developed the

corresponding Free stochastic calculus theory (see [10,11,12,13] and the refer-

ences within). The interacting Free Fock space comes, originally, from the inves-

tigation of the central limit behaviour of the time evolution operator of the quan-

tum electric-magnetic field (see [1,2]) and the corresponding quantum stochastic

calculus theory is set in [4,14] (the reference [14] is devoted to study the Free

quantum stochastic calculus theory on some Hubert modules). We can ask

ourselves: Is it possible to get some interesting constructions of the interacting

Free Fock space in the ways similar as did by Wigner or Voiculescu ? Such in-

vestigation now is being performed.

Remark. Recently, some interacting Free Fock spaces have been constructed

by central limit theorem (see [15, 16, 17]) and the distribution of field operator on

some interacting Free Fock spaces is also be investigated (see [18, 19, 20]).
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