BULL. AUSTRAL. MATH. SOC. Vol. 43 (1991) [341-347]

ORTHONORMAL EXPANSIONS AND THE PRINCIPLE OF UNIFORM BOUNDEDNESS

S.A. HUSAIN AND V.M. SEHGAL

Let $\{\phi_v : v \in \mathbb{N} \text{ (non-negative integers)}\} \subseteq C[0, 1]$ be a complete orthonormal sequence of complex-valued functions in $L^2[0, 1]$, $\{\lambda_v : v \in \mathbb{N}\}$ and $\{\lambda_{v\mu} : v, \mu \in \mathbb{N}\}$ be sequences of complex numbers. In this paper, the necessary and sufficient conditions are developed for the series $\sum_{v=0}^{\infty} \lambda_v \widehat{f}(v) \phi_v$ to converge and also $\lim_{\mu \to \infty} \sum_{v=0}^{\infty} \lambda_{v\mu} \widehat{f}(v) \phi_v$ to exist, in C[0, 1] for each $f \in L^1[0, 1]$ where $\widehat{f}(v) = \int_0^1 f(v) \overline{\phi_v(t)} dt$, $v \in \mathbb{N}$.

Let C[0, 1] denote the Banach space of continuous complex-valued functions with the usual sup norm and C be the complex number field. Further, let $\{\phi_v : v \in N\} \subseteq C[0, 1]$ be a complete orthonormal sequence of complex valued functions in $L^2[0, 1]$. For any $f \in L^1[0, 1]$, let $\widehat{f}(v) = \int_0^1 f(t)\overline{\phi_v(t)}dt$ be the vth Fourier coefficient of f with respect to the sequence $\{\phi_v : v \in N\}$. It is well known that the formal Fourier series $\sum_{v=0}^{\infty} \widehat{f}(v)\phi_v$ of $f \in L^1[0, 1]$ may not converge in C[0, 1]. In Section 1, we consider a sequence $\{\lambda_v : v \in N\}$ of complex numbers and develop the necessary and sufficient conditions for the series $\sum_{v=0}^{\infty} \lambda_v \widehat{f}(v)\phi_v$ to converge in C[0, 1] for each $f \in L^1[0, 1]$. In Section 2, we consider a doubly infinite sequence $\{\lambda_{v\mu} : v, \mu \in N\}$ and investigate the necessary and sufficient conditions for the series $\sum_{v=0}^{\infty} \lambda_{v\mu} \widehat{f}(v)\phi_v$ to exist in C[0, 1] for each $f \in L^1[0, 1]$. Aljančić [10] and Husain [2] have similar results for general orthonormal expansions of class C and L^{∞} respectively. Husain [3] and others have also obtained similar results for Fourier series of summable functions.

Received 25 May 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

[2]

Throughout, let S denote the linear span of $\{\phi_v : v \in \mathbb{N}\}$. Then S is a dense subset of $L^2[0, 1]$ and hence also a dense subset of $L^1[0, 1]$. Let $\{\lambda_v : v \in \mathbb{N}\}$ be a sequence of complex numbers. For each $n \in \mathbb{N}$, we define the linear operator $S_n : L^1[0, 1] \to C[0, 1]$ by

(1)
$$S_n(f) = \sum_{v=0}^n \lambda_v \widehat{f}(v) \phi_v , \qquad f \in L^1[0, 1].$$

and for any $x \in [0, 1]$,

(2)
$$(S_n f) x = \sum_{\nu=0}^n \lambda_\nu \widehat{f}(\nu) \phi_\nu(x) = \int_0^1 f(t) K_n(x,t) dt ,$$

where

(3)
$$K_n(x,t) = \sum_{v=0}^n \lambda_v \phi_v(x) \overline{\phi_v(t)} .$$

Note that for each fixed $x \in [0, 1]$, $K_n(x, \cdot) \in C[0, 1]$ and hence $K_n(x, \cdot) \in L^{\infty}[0, 1]$. Let

$$\|K_n\|_{\infty} = \sup_{x} \left(\operatorname{ess\,sup}_{t} |K_n(x,t)| \right) .$$

The lemma below shows that $||K_n||_{\infty} < \infty$.

LEMMA 1. For each $n \in \mathbb{N}$, let $S_n : L^1[0, 1] \to C[0, 1]$ be defined by (1). Then

- (a) S_n is a bounded linear operator with $||S_n|| = ||K_n||_{\infty}$.
- (b) For any $g \in S$, $\lim_{n \to \infty} S_n(g)$ exists in C[0, 1].

PROOF: (a) The boundedness of S_n follows from the definition (1). To obtain $||S_n||$, let $x \in [0, 1]$ and define the linear functional $S_x : L^1[0, 1] \to \mathbb{C}$ by

$$S_x(f) = (S_n f) x = \int_0^1 f(t) K_n(x,t) dt$$
, $f \in L^1[0, 1]$.

Then S_x is a continuous linear functional on $L^1[0, 1]$ with $||S_x|| = \underset{t}{\operatorname{ess sup}} |K_n(x, t)|$. Further, by (2),

$$\begin{split} \|S_n\| &= \sup_{\|f\|_1 \leq 1} \|S_n(f)\|_{\infty} = \sup_{\|f\|_1 \leq 1} \left(\sup_{x \in [0,1]} |(S_n f) x| \right) = \sup_{x \in [0,1]} \left(\sup_{\|f\|_1 \leq 1} |S_x(f)| \right) \\ &= \sup_{x \in [0,1]} \|S_x\| = \|K_n\|_{\infty} \,. \end{split}$$

To prove (b), let $g \in S$. Then there exists a $N \in \mathbb{N}$ and complex numbers $\{C_v : v = 0, 1, 2, \dots, N\}$ such that $g = \sum_{v=1}^{N} C_v \phi_v$. By definition, for any $u \in \mathbb{N}$,

(4)
$$\widehat{\phi}_{v}(u) = \begin{cases} 1 & \text{if } v = u, \\ 0 & \text{if } v \neq u. \end{cases}$$

It follows by (1) that for any $n \ge N$,

$$S_n(g) = \sum_{v=0}^N C_v S_n(\phi_v) = \sum_{v=0}^N C_v \left(\sum_{u=0}^n \lambda_\mu \widehat{\phi}_v(u) \phi_u \right) = \sum_{v=0}^N C_v \lambda_v \phi_v.$$

Hence $\lim_{n\to\infty} S_n(g) = \sum_{\nu=0}^N C_{\nu}\lambda_{\nu}\phi_{\nu}$ exists in C[0, 1].

THEOREM 1. The series $\sum_{v=0}^{\infty} \lambda_v \widehat{f}(v) \phi_v$ converges in C[0, 1] for each $f \in L^1[0, 1]$ if and only if $\sup_{v \in V} ||K_n||_{\infty} < \infty$.

PROOF: Consider the sequence $S_n: L^1[0, 1] \to C[0, 1]$ of bounded linear operators given by (1). If $\lim_{n\to\infty} S_n(f)$ exists in C[0, 1] for each $f \in L^1[0, 1]$, then $\sup_n \|S_n(f)\|_{\infty} < \infty$ for each $f \in L^1[0, 1]$. Hence, by the uniform boundedness theorem ([4], p.267), $\sup_n \|K_n\|_{\infty} = \sup_n \|S_n\| < \infty$. Conversely, $\sup_n \sup_n \|K_n\|_{\infty} < \infty$. Let $f \in L^1[0, 1]$ and $\varepsilon > 0$ be given. Since S is dense in $L^1[0, 1]$, there exists a $g \in S$ with $\|f - g\|_1 \le \varepsilon \left(2\sup_n \|K_n\|_{\infty}\right)^{-1}$. If $g = \sum_{\nu=1}^N C_\nu \phi_\nu$, then as shown in Lemma 1, $S_n g = S_m g$ for all $n, m \ge N$ and

$$\begin{aligned} \|S_nf - S_mf\|_{\infty} &\leq \|S_nf - S_ng\|_{\infty} + \|S_ng - S_mg\|_{\infty} + \|S_mg - S_mf\|_{\infty} \\ &\leq 2\sup \|K_n\|_{\infty} \|f - g\|_1 \leq \varepsilon. \end{aligned}$$

Thus $\{S_nf\}$ is a Cauchy sequence in C[0, 1] and hence $\lim_{n \to \infty} S_nf$ exists in C[0, 1].

2

In this section, we consider a fixed doubly indexed sequence $\{\lambda_{\nu\mu}: \nu, \mu \in \mathbb{N}\}$ of complex numbers and the corresponding associated operators $S_{n,\mu}: L^1[0, 1] \to C[0, 1]$ defined by

(5)
$$S_{n,\mu}(f) = \sum_{v=0}^{n} \lambda_{v\mu} \widehat{f}(v) \phi_v , \quad f \in L^1[0, 1], \ n, \mu \in \mathbb{N}.$$

Π

S.A. Husain and V.M. Sehgal

Clearly, $S_{n,\mu}$ is a bounded linear operator and for any $x \in [0, 1]$

(6)
$$(S_{n,\mu}f) x = \sum_{v=0}^{n} \lambda_{v\mu} \widehat{f}(v) \phi_v(x) = \int_0^1 f(t) K_{n,\mu}(x,t) dt,$$

where

(7)
$$K_{n,\mu}(x,t) = \sum_{v=0}^{n} \lambda_{v\mu} \phi_v(x) \overline{\phi_v(t)}.$$

As before, note that for any fixed $x \in [0, 1]$, $K_{n,\mu}(x, \cdot) \in L^{\infty}[0, 1]$. Let for each $n, \mu \in \mathbb{N},$

(8)
$$||K_{n,\mu}||_{\infty} = \sup_{x \in [0,1]} \left(\operatorname{ess \, sup}_{t} |K_{n,\mu}(x,t)| \right).$$

It follows from Lemma 1 that for each n, μ in N,

(9)
$$||S_{n,\mu}|| = ||K_{n,\mu}||_{\infty} < \infty$$

DEFINITION 1: The sequence $\{S_{n,\mu} : n, \mu \in \mathbb{N}\}$ of operators in (5) is μ -convergent in C[0, 1] if and only if $\lim_{n \to \infty} S_{n,\mu}(f) \equiv \sum_{v=0}^{\infty} \lambda_{v\mu} \widehat{f}(v) \phi_v$ exists in C[0, 1] for each $f \in$ $L^1[0, 1]$ and each $\mu \in \mathbb{N}$.

As a restatement of Theorem 1, we have

THEOREM 2. For each $n, \mu \in \mathbb{N}$, let $S_{n,\mu} : L^1[0, 1] \to C[0, 1]$ be defined by (5). Then the sequence $\{S_{n,\mu}\}$ is μ -convergent if and only if $\sup \|K_{n,\mu}\|_{\infty} < \infty$ for each $\mu \in \mathbb{N}$.

DEFINITION 2: Let the sequence $\{S_{n,\mu}: n, \mu \in \mathbb{N}\}$ of operators in (5) be μ convergent in C[0, 1]. For each $\mu \in \mathbb{N}$, define the operator $\widetilde{S}_{\mu} : L^1[0, 1] \to C[0, 1]$ by

(10)
$$\widetilde{S}_{\mu}(f) = \lim_{n \to \infty} S_{n,\mu}(f) , \qquad f \in L_1[0, 1].$$

It follows by (10) and the Banach-Steinhaus Theorem that for each $\mu \in N$, \widetilde{S}_{μ} is a bounded linear operator and

(11)
$$\left\|\widetilde{S}_{\mu}\right\| \leq \sup_{n} \left\|S_{n,\mu}\right\|$$

LEMMA 2. For each $n, \mu \in \mathbb{N}$, let $S_{n,\mu} : L^1[0, 1] \to C[0, 1]$ be defined by (5). If the sequence $\{S_{n,\mu}\}$ is μ -convergent in C[0,1] then the following statements are equivalent:

- (a) $\lim_{\mu \to \infty} \widetilde{S}_{\mu}(f)$ exists in C[0, 1] for each $f \in S$; (b) $\lim_{\mu \to \infty} \lambda_{\nu\mu}$ exists for each $\nu \in \mathbb{N}$.

[4]

345

PROOF: Suppose (a) holds. Since the sequence $\{S_{n,\mu}\}$ is μ -convergent in C[0,1], it follows that for any $\mu, v \in \mathbb{N}$, $\tilde{S}_{\mu}\phi_{v} \in C[0,1]$. Hence by (4) for any $n \ge v$, $\mu \in \mathbb{N}$,

$$\widetilde{S}_{\mu}(\phi_{v}) = \lim_{n \to \infty} S_{n,\mu}(\phi_{v}) = \lim_{n \to \infty} \left(\sum_{w=0}^{n} \lambda_{w\mu} \widehat{\phi}_{v}(w) \phi_{w} \right) = \lambda_{v\mu} \phi_{v};$$

consequently by (a), $\lim_{\mu\to\infty} \lambda_{\nu\mu}\phi_{\nu}$ exists in C[0, 1] for each $\nu \in \mathbb{N}$. Since for $m, n \in \mathbb{N}$,

$$|\lambda_{vm} - \lambda_{vn}| = \|\lambda_{vm}\phi_v - \lambda_{vn}\phi_v\|_{\infty} \|\phi_v\|_{\infty}^{-1},$$

It follows that $\lim_{\mu\to\infty} \lambda_{v\mu}$ exists in C for each $v \in \mathbb{N}$. Conversely, suppose (b) holds and $\lim_{\mu\to\infty} \lambda_{v\mu} = \tilde{\lambda}_v$ for each $v \in \mathbb{N}$. Let $f \in S$. Then there exists a nonnegative integer N and complex numbers $C_v(v = 0, 1, \dots, N)$ such that $f = \sum_{v=0}^N C_v \phi_v$. Thus for $n \ge N$ and $\mu \in \mathbb{N}$,

$$S_{n,\mu}(f) = \sum_{v=0}^{N} C_v S_{n,\mu}(\phi_v) = \sum_{v=0}^{N} C_v \lambda_{v\mu} \phi_v.$$

Hence, for any $\mu \in \mathbb{N}$, $\tilde{S}_{\mu}(f) = \sum_{\nu=0}^{N} C_{\nu} \lambda_{\nu \mu} \phi_{\nu}$. Consequently, by assumption (b) $\lim_{\mu \to \infty} \tilde{S}_{\mu}(f) = \sum_{\nu=0}^{N} C_{\nu} \tilde{\lambda}_{\mu} \phi_{\nu} \text{ exists in } C[0, 1]. \text{ Thus (b) implies (a).}$

As an immediate consequence of Lemma 2 and the uniform boundedness theorem, we have:

THEOREM 3. For each $n, \mu \in \mathbb{N}$, let $S_{n,\mu} : L^1[0, 1] \to C[0, 1]$ given in (5) be μ -convergent in C[0, 1]. Then the sequence $\left\{\widetilde{S}_{\mu}(f) : \mu \in \mathbb{N}\right\}$ converges in C[0, 1] for each $f \in L^1[0, 1]$ if and only if (a) $\sup_{\mu} \left\|\widetilde{S}_{\mu}\right\| < \infty$ and (b) $\lim_{\mu \to \infty} \lambda_{\nu\mu}$ exists for each $\nu \in \mathbb{N}$.

Combining Theorem 2 and Theorem 3, we obtain:

COROLLARY 1. The necessary and sufficient conditions for $\widetilde{S}_{\mu}(f) = \sum_{v=0}^{\infty} \lambda_{v\mu} \widehat{f}(v) \phi_v$ $\in C[0, 1]$ for each $\mu \in \mathbb{N}$ and $\lim_{\mu \to \infty} \widetilde{S}_{\mu}(f)$ exists in C[0, 1], for each $f \in L^1[0, 1]$ are

- (i) $\sup_{n,\mu} ||_{\infty} < \infty$ for each $\mu \in \mathbb{N}$,
- (ii) $\sup_{\mu} \left\| \widetilde{S}_{\mu} \right\| < \infty$,
- (iii) $\lim_{\mu\to\infty}^{\mu} \lambda_{\nu\mu} \text{ exists for each } \nu \in \mathbb{N}.$

[5]

As another view of the characterisation in Theorem 3, assume that for each $\mu \in \mathbb{N}$, $\widetilde{S}_{\mu} : L^{1}[0, 1] \to C[0, 1]$ given in Definition 2 is a bounded linear operator. It then follows that for each fixed $x \in [0, 1]$, $\mu \in \mathbb{N}$, the mapping $T_{\mu,x} : L^{1}[0, 1] \to \mathbb{C}$ defined by $T_{\mu,x}(f) = (\widetilde{S}_{\mu}f)x$ is a bounded linear functional on $L^{1}[0, 1]$. Hence, by the well-known Riesz integral representation theorem (see [4], p.276) for each $x \in [0, 1]$ and $\mu \in \mathbb{N}$, there exists a function $\widetilde{K}_{\mu}(x, \cdot) \in L^{\infty}[0, 1]$ satisfying

$$\left(\widetilde{S}_{\mu}f\right)\mathbf{x} = \int_0^1 f(t)\widetilde{K}_{\mu}(\mathbf{x},t)dt , \qquad \mathbf{x}\in[0,1] , \ \mu\in\mathbb{N} .$$

Consequently, it follows as in Lemma 1 that for each $\mu \in \mathbb{N}$,

$$\left\|\widetilde{S}_{\mu}\right\| = \sup_{x} \left(\mathrm{ess} \sup_{t} \left| \widetilde{K}_{\mu}(x,t) \right| \right) < \infty.$$

Setting $\|\widetilde{K}_{\mu}\|_{\infty} = \sup_{x} \left(\operatorname{ess\,sup}_{t} \left| \widetilde{K}_{\mu}(x,t) \right| \right)$, it follows from (9) and (11) that for each $\mu \in \mathbb{N}$,

(12)
$$\left\|\widetilde{S}_{\mu}\right\| = \left\|\widetilde{K}_{\mu}\right\|_{\infty} \leq \sup_{n} \|K_{n,\mu}\|_{\infty}.$$

Consequently, Theorem 3 may be rephrased as:

THEOREM 4. For $n, \mu \in \mathbb{N}$, let $S_{n,\mu} : L^1[0, 1] \to C[0, 1]$ given in (5) be μ convergent in C[0, 1]. Then the sequence $\left\{ \widetilde{S}_{\mu}f : \mu \in \mathbb{N} \right\}$ converges in C[0, 1] for each $f \in L^1[0, 1]$ if and only if (i) $\sup_{\mu} \left\| \widetilde{K}_{\mu} \right\|_{\infty} < \infty$ and (ii) $\lim_{\mu \to \infty} \lambda_{v\mu}$ exists for each $v \in \mathbb{N}$.

As a consequence of (12), we also obtain:

COROLLARY 2. If $\{\sup \|K_{n,\mu}\|_{\infty} : n, \mu \in \mathbb{N}\} < \infty$ and $\lim_{\mu \to \infty} \lambda_{\nu\mu}$ exists for each $\nu \in \mathbb{N}$, then for each $\mu \in \mathbb{N}$, the series $\sum_{\nu=0}^{\infty} \lambda_{\nu\mu} \widehat{f}(\nu) \phi_{\nu}$ converges and $\lim_{\mu \to \infty} \left(\sum_{\nu=0}^{\infty} \lambda_{\nu\mu} \widehat{f}(\nu) \phi_{\nu} \right)$ exists in C[0, 1] for each $f \in L^{1}[0, 1]$.

References

- S. Aljančić, 'Uber Summierbarkeit Von Orthogonalentwicklungen Stetigen Funktion', Publ. Inst. Math. Acad. Serbe Sci. X (1956), 121-130.
- [2] Syed A. Husain, 'On Uniform Convergence Factors of Orthonormal Expansions of Functions of Class L[∞]', J. Reine Angew. Math. 238 (1969), 217-220.
- [3] Syed A. Husain, 'Convergence Factors of Fourier Series of Summable Functions', J. Reine Angew. Math. 259 (1973), 183–186.

[4] A. Mukherjea and K. Pothoven, *Real and Functional Analysis* (Plenum Press, New York and London, 1978).

Department of Mathematics University of Wyoming Laramie, Wyoming 82071 United States of America

[7]