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ORTHONORMAL EXPANSIONS AND THE PRINCIPLE OF
UNIFORM BOUNDEDNESS

S.A. HUSAIN AND V.M. SEHGAL

Let {<f>v : v 6 N (non-negative integers)} C C[0, 1] be a complete orthonormal
sequence of complex-valued functions in L2[0, 1], {Av : v £ N} and {AVM :
v,/i € N} be sequences of complex numbers. In this paper, the necessary

oo ^

and sufficient conditions are developed for the series ^ Av/(v)^t> to converge
oo ^ v~

and also lim ^,\vpf(v)(f>v to exist, in C{0, 1] for each / 6 £ l [0 , 1] where

Let C[0, 1] denote the Banach space of continuous complex-valued functions with
the usual sup norm and C be the complex number field. Further, let {<j>v : « £ N} C
C[0, 1] be a complete orthonormal sequence of complex valued functions in L2[0, 1].
For any / £ ^[0, 1], let f(v) = /„* f(t)<j>v(t)dt be the vth Fourier coefficient of / with
respect to the sequence {<j>v : v £ N}. It is well known that the formal Fourier series

oo ^

Z) f{v)4>v of / G X1[0, 1] may not converge in C[0, 1]. In Section 1, we consider a
v=0
sequence {Xv : v G N} of complex numbers and develop the necessary and sufficient

oo ^

conditions for the series Y^ ^vf{v)<f>v to converge in C[0, 1] for each / £ ^[O, 1]-
v=0

In Section 2, we consider a doubly infinite sequence {Ao/1 : v,fj, £ N} and investigate
oo ^

the necessary and sufficient conditions for the series 5Z ^vnf(v)4>v to converge for each
oo ^ v=0

fj. £ N and also the lim £ \vlif{v)<j>v to exist in C[0, 1] for each / £ L^O, 1).
il-"x>v=o

Aljancic [10] and Husain [2] have similar results for general orthonormal expansions of
class C and L°° respectively. Husain [3] and others have also obtained similar results
for Fourier series of summable functions.
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342 S.A. Husain and V.M. Sehgal [2]

Throughout, let S denote the linear span of {<f>v : v G N}. Then 5 is a dense subset
of L2[0, 1] and hence also a dense subset of L1^, 1]. Let {Xv : v G N} be a sequence of
complex numbers. For each n £ N, we define the linear operator Sn '• Ll\Q, 1] —> C[0,1]
by

(1) sn(f) =
v=0

and for any x G [0, 1],

(2) (Snf) x = V A./(w)^,(x) = / f(t)Kn(x, t)dt ,

where

(3)
v=0

Note that for each fixed x G [0, 1], Kn(x,-) G C[0, 1] and hence Kn(x,) G L°°[0, 1].

Let

t

The lemma below shows that H-K̂ Hoo < oo.

LEMMA 1 . For each n G N, let Sn : L^O, 1] -» C[0, 1] be defined by (1). Then

(a) Sn is a bounded Unear operator with \\Sn\\ = 11-Knlloo-
(b) For any g G S, lim Sn(g) exists in C[0, 1].

PROOF: (a) The boundedness of Sn follows from the definition (1). To obtain

| | 5 n | | , let x G [0, 1] and define the linear functional Sx : L^O, 1] -> C by

S.(/) = (Snf)x= I f(t)Kn(x,t)dt , f G LMO, 1].
Jo

Then Sx is a continuous linear functional on L1^, 1] with ||5j;|| = ess sup\Kn(x,t)\.
t

Further, by (2),

||5B||= sup ||Sn(/)||oo= sup sup \(Snf)x\]= sup sup |S.(/)|
ll/ll< ll/ll< \*€[0,l] / *6(0,l] \||/|lx<l y

= SUP |
x€[0,l]
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To prove (b), let g G S. Then there exists a N G N and complex numbers {Cv : v =
N

0, 1,2, • • • ,N} such that g = £) Cv<f>v By definition, for any u G N,
v=l

f 1 if v = u,
(4) * . («) = n ., ,

^ 0 if v ± u.

It follows by (1) that for any n ^ N,

N N

c = 0

N

(*)K) = E ^
/ ti=0

Hence lim Sn(g) — $3 C«Ac^r exists in C[0, 1]. U

THEOREM 1 . The series £ Ao/(«)<£,, converges in C[0, 1] for each f G £*[(), 1]
v=O

if and only if sup H-KnU^ < oo.
n

PROOF: Consider the sequence Sn : ^[O, 1] -• C[0, 1] of bounded hnear operators
given by (1). If hm 5n(/) exists in C[0, 1] for each / G L^O, 1], then sup ||5n(/)||0O <

n—>oo n

oo for each / G Lx[0, 1]. Hence, by the uniform boundedness theorem ([4], p.267),
sup H-Knlloo = s u P n ll̂ nll < °°• Conversely, suppose supll-KnH^ < oo. Let / G L1^, 1]

n n
a n d e > 0 b e g iven . S ince 5 is d e n s e in L 1 ^ , 1 ] , t h e r e e x i s t s a g G 5 w i t h \\f — g^ ^

/ \ - 1 N

t I 2 sup Halloo I • If g = X) Ct><£», then as shown in Lemma 1, Sng — Smg for all
\ n / v=l

n,m ^ N and

\\Snf ~ Sm/IL < | |S n / " ^nfflL + ||5n<7 - S^W^ + \\Smg - SrnfW^

<2s*v\\Kn\\eo\\f-g\\lZe.
n

Thus {Snf} is a Cauchy sequence in C[0, 1] and hence lim Snf exists in C[0, 1], D
n—+oo

2

In this section, we consider a fixed doubly indexed sequence {AOM :»,/» € N} of
complex numbers and the corresponding associated operators Sni/1 : Z

1[0, 1] —» C[0, 1]
defined by

(5) *«,„(/) =
u=0
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Clearly, Sntll is a bounded linear operator and for any x G [0, 1]

(6) ($„,„/) x = JT A.M/(«)^(«) = f f(t)Knili(x, t)dt,
v=0

where

(7) *»,„(*, t)

As before, note that for any fixed x G [0, 1], Kn>li{x,) G I°°[0, 1]. Let for each
n./xGN,

(8) II*».MIL = S U P f

It follows from Lemma 1 that for each n, \i in N,

(9) ||Sn,,.|| = Hifn.JL < oo.

DEFINITION 1: The sequence {Sn,n -n,fi G N} of operators in (5) is /i-convergent
oo ^

in C[0, 1] if and only if lim Sntli(f) = ^2 ̂ viif(v)<f>v exists in C[0, 1] for each / G
"—°° v=o

L1^, 1] and each fj. £ N .

As a restatement of Theorem 1, we have

THEOREM 2 . For each n,fj.£N,let 5n ,^ : LX[Q, 1] -> C[0, 1] be defined by (5).

Then the sequence {Snilt} is (i-convergent it and only if supH-Kn^H^ < oo for each

DEFINITION 2: Let the sequence {Sn,,i : n , / i £ N} of operators in (5) be /x-

convergent in C[0, 1]. For each / i £ N , define the operator 5M : £ J [0 , 1] -» C7[0, 1]

by

(10) $ „ ( / ) = lim 5B,M(/) , / G £ i [0 , 1].
n—>oo

It follows by (10) and the Banach-Steinhaus Theorem that for each fi G N, 5M is
a bounded linear operator and

(11) fell < sup ||5B,M||.
II II n

LEMMA 2 . For each n,fi G N , let Sn<li : Z^O, l] -> C[0, 1] be defined by (5).

If the sequence {Sn<li} is fj,-convergent in C[0, 1] then the following statements are

equivalent:

(a) lim S^(f) exists in C[0, 1] for each / G 5 ;
fi—>OO

(b) lim \vftl exists for each v G N.
/A—>OO
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PROOF: Suppose (a) holds. Since the sequence {Sn,n} is /i-convergent in C[0,1],

it follows that for any /»,» £ N, S^v G C[0, 1]. Hence by (4) for any n ^ v, ( i £ N ,

= lim
n—»oo

= lim Y] A^fw)^, =
W=0 /

consequently by (a), lim XVfi<f>v exists in C[0, 1] for each v G N. Since for m , n € N,

|A»m — Aon| = | |A r m ^ r — Aen^H^ H t̂ill,,,, ,

It follows that lim Xvll exists in C for each « 6 N . Conversely, suppose (b) holds and

lim \vlt = Xv for each t; e N. Let / € S. Then there exists a nonnegative integer N

N

and complex numbers Cv(v = 0, 1,- • • ,N) such that / = £) Cv<f>v. Thus for n > N

and /i € N,
JV N

v=0 v=0

_ N
Hence, for any y G N, 5M(/) = £3 Cv\vli<j>v. Consequently, by assumption (b)

lim £ „ ( / ) = E Cv\a4>v exists in C[0,1]. Thus (b) implies (a). D
»*—°° B=O

As an immediate consequence of Lemma 2 and the uniform boundedness theorem,
we have:

THEOREM 3 . For each n,y G N, let Sn,p : L^O, 1] -> C[0, 1] given in (5) be

y-convergent in C[0, 1]. Then the sequence < S^f) : y. G N \ converges in C[0, 1] for

each j G £*[(), 1] if and only if (a) sup \\Su\\ < oo and (b) lim Ao/1 exists for each
« II II II—*0O

« G N .

Combining Theorem 2 and Theorem 3, we obtain:
~ oo ^

COROLLARY 1 . The necessary and sufficient conditions for SM(/) = 53 Ar/1/(w)^,
r=0

G C[0, 1] for each y G N and lim £„ ( / ) exists in C[0, 1], for each / G L^O, 1] are

(i) supH-Kn^H^ < oo for each / i £ N ,
n

(ii) sup s j j < oo,
n II II

(iii) lim Xvll exists for each v G N .
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As another view of the characterisation in Theorem 3, assume that for each /x £ N,

5^ : L1 [0, 1] -» C[0, 1] given in Definition 2 is a bounded linear operator. It then

follows that for each fixed z £ [0, 1], (i £ N , the mapping TM,S : Ll[0, 1] -» C defined

by TM,«(/) = (•S'M/) * is a bounded linear functional on £*[(), 1]. Hence, by the well-

known Riesz integral representation theorem (see [4], p.276) for each z £ [0, 1] and

y. £ N , there exists a function K^x,) £ L°°[0, 1] satisfying

(5;/) z = y f(t)K»(x,t)dt , x £ [0, 1] , /i £ N .

Consequently, it follows as in Lemma 1 that for each y. £ N,

\\Su\\ = sup I ess sup Ku.{x,i)\ 1 < oo.
II II * \ t \)

II ~ II / I ~ l\
Setting -Ru = sup ( ess sup iifM(z,t) I, it follows from (9) and (11) that for each

II lloo x \ t I 1/

(12) \\SJU \\kJ

Consequently, Theorem 3 may be rephrased as:

THEOREM 4 . For n,n e N , let Sntlt : £ '[0, 1] -» C[0, 1] given in (5) be \i-

convergent in C[0, 1]. Then the sequence < 5 M / : fi £ N \ converges in C[0, 1] for each

f £ L1^), 1] if and only if (i) sup Ufa < co and (ii) lim Xvll exists for each v £ N.

fl II l l o o Ii-*OO

As a consequence of (12), we also obtain:

COROLLARY 2 . 1/{sup||iifniM|| :n , / i £ N} < o o and lim Ao/i exists for each
ft—*OO

w £ N , tAen for eacA y. £ N , t i e series X) ^vuf(v)^>v converges and lim I 53 ^vnf{v)(f>v 1
n=o z*—00 \t>=o /

exists in C[0, 1] for each f £ Z^O, 1].
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