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ORTHONORMAL EXPANSIONS AND THE PRINCIPLE OF
UNIFORM BOUNDEDNESS

S.A. HusAIN AND V.M. SEHGAL

Let {¢s : v € N (non-negative integers)} C C|[0, 1] be a complete orthonormal
sequence of complex-valued functions in L?[0,1], {Xv : v € N} and {doy :
v,p € N} be sequences of complex numbers. In this paper, the necessary

and sufficient conditions are developed for the series Y. A.,f(v)q&., to converge
v=0

0 -
and also lim Y A.uf(v)¢s to exist, in C[0,1] for each f € L'[0,1] where
p—oo

v=0

flv) = [} £()g(2)dt, v EN.

Let C[0, 1] denote the Banach space of continuous complex-valued functions with
the usual sup norm and C be the complex number field. Further, let {¢, : v € N} C
C[0, 1] be a complete orthonormal sequence of complex valued functions in L2[0, 1].
For any f € L'(0, 1], let f(v) = fol f(t)d>,,—(t)dt be the vth Fourier coefficient of f with
respect to the sequence {¢, : v € N}. It is well known that the formal Fourier series
io: f(v)qﬂ,, of f € L'|0, 1] may not converge in C|[0, 1]. In Section 1, we consider a

v=0
sequence {A, : ¥ € N} of complex numbers and develop the necessary and sufficient

o0 ~

conditions for the series Y. A, f(v)$, to converge in C[0, 1] for each f € L*[0, 1].
v=0

In Section 2, we consider a doubly infinite sequence {A,, : v, € N} and investigate

the necessary and sufficient conditions for the series Y Ay f(v)éo to converge for each
00 -~ v=0
¢ € N and also the lim Y A, f(v)¢y to exist in C[0, 1] for each f € L[0, 1].
H—00 y—¢
Aljanéié [10] and Husain (2] have similar results for general orthonormal expansions of
class C and L™ respectively. Husain {3] and others have also obtained similar results
for Fourier series of summable functions.
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1

Throughout, let S denote the linear span of {¢, : v € N}. Then § is a dense subset
of L?[0, 1] and hence also a dense subset of L![0, 1]. Let {), : v € N} be a sequence of
complex numbers. For each n € N, we define the linear operator S, : L![0, 1] — C[0,1]
by

(1) Salf) =D Af(0)po,  feL0,1].

v=0

and for any z € [0, 1],

@) (5nf)z = 3 AF(0)bo(2) = / F(§)Kn(z,)dt ,

v=0

where

(3) Kn(z,t) = ) Autho(2)84(?) -

v=0

Note that for each fixed z € [0, 1], Kn(z,) € C[0, 1] and hence K,(z,-) € L*(0, 1].
Let

1l = sup (s sup Km0 )

The lemma below shows that || K|, < 0.
LEMMA 1. Foreach ne N, let S, :L*[0, 1] — C[0, 1] be defined by (1). Then

(a) Sy is a bounded linear operator with |[Sp|| = ||Knllo -
(b) Forany g€ S, lim Sn(g) exists in C[0, 1].

PROOF: (a) The boundedness of S, follows from the definition (1). To obtain
|S»ll, let = € [0, 1] and define the linear functional S, : L![0, 1] — C by

S.(f) = (Snf)z = /01 FO)Ka(z,t)dt,  fe L0, 1).

Then S, is a continuous linear functional on L[0, 1} with ||S,|| = ess sup |Kna(z,t)|-
t

Further, by (2),

IISnII="sug 1Sa(fllec = sup (sup I(Snf)z|)= sup (sup ISz(f)I)

fly<t Il < \=€f0,1) =€lo.1] \listh <1
= sup "S::” = ”K""oo *
z€[0.1]
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To prove (b), let g € S. Then there exists a N € N and complex numbers {C, : v =
N

0,1,2,--- ,N} such that g = Y  C,¢,. By definition, for any u € N,
v=1

1 fv=u,

) $,,(u) = { 0 ifv#u.

It follows by (1) that for any n > N,

N N n . N
S,.(g) = Z CoSn (¢V) = Z C, (Z Au¢ﬂ("’)¢u) = Z CoAvdy.

v=0 v=0 u=0 v=0
N
Hence lim S,(g9) = Y Cu).¢, exists in C[0, 1]. 0
n-—+oo v=0

THEOREM 1. The series § Xof(v)¢, convergesin C[0, 1) for each f € L*[0, 1]

v=0

if and only if sup | Kn||,, < oo.
PRrOOF: Consider the sequence S, : L*[0, 1] — C[0, 1] of bounded linear operators
given by (1). If lim S,(f) existsin C[0, 1] for each f € L![0, 1], then sup ||Sx(f)|| <
n—o0 n

oo for each f € L'[0,1]. Hence, by the uniform boundedness theorem ([4], p.267),
sup || Kp|| ., = sup, ||Sx|| < co. Conversely, suppose sup || Kn|lo, < 0. Let f € L0, 1]
n n
and £ > 0 be given. Since § is densein L[0, 1], there exists a g € S with ||f — g||;, <
v=1

€ (2sup ”K,.”oo) .If g= Y C,dy, then as shown in Lemma 1, Spg = Smg for all

n,m > N and

"Snf - Smf”oo ”Snf - Sng”oo + ||S,.g - Smg”m + ”Smg - Smf"oo

<
< 2sup||Kallo Il f — 9l <&
Thus {Snf} is a Cauchy sequence in C[0, 1] and hence lim S,f existsin C[0,1]. O
2
In this section, we consider a fixed doubly indexed sequence {A,, : v,pu € N} of

complex numbers and the corresponding associated operators Sy, : L'[0, 1] — C[0, 1]
defined by

(5) Sunl£) =3 A F0)be,  FEL,1], mpeN.

v=0
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Clearly, S, is a bounded linear operator and for any z € [0, 1]

(6) (Snuf)z =3 A Fl0)u(2) = / F(O) K u(z,t)dt,

v=0
where
(7) Kas(@8) = 3 Aende(2) 5000
v=0
As before, note that for any fixed z € [0, 1], K, u(z,-) € L*[0,1]. Let for each
n,p €N,
(8) 1Kol = sup (ess sup | u(z,0)])
z€[0,1) t

It follows from Lemma 1 that for each n,u in N,
(9) [[Sm,ull = 1 Kan,ull o < oo

DEFINITION 1: The sequence {Sn,, : 7, € N} of operators in (5) is pu-convergent
in C|0, 1] if and only if Jim Sau(f) = ”iz\,,,,f(v)cﬁ,, exists in C[0, 1] for each f €
L'[0, 1] and each u € N.

As a restatement of Theorem 1, we have

THEOREM 2. For each n,u € N, let S, ,: L'[0, 1] — C[0, 1] be defined by (5).
Then the sequence {Sn,,} is p-convergent if and only if sup [|Kn .|, < oo for each
#EN. "

DEFINITION 2: Let the sequence {S,,:n,u € N} of operators in (5) be pu-
convergent in C[0, 1]. For each p € N, define the operator §, : L![0, 1] — CI0, 1]
by

(10) Su(f)= lim Sau(f),  feLi0,1].

It follows by (10) and the Banach-Steinhaus Theorem that for each p € N, §,, is
a bounded linear operator and

(11) S,

< sup||Sn,ull -
n

LEMMA 2. For each n,p € N, let S, , : L'[0, 1] —» C[0, 1] be defined by (5).
If the sequence {Snp .} is p-convergent in C[0, 1] then the following statements are

equivalent:
(a) Fll’ngo S.(f) exists in C[0, 1] for each f € S;
(b) lim A,, exists for each v € N.
p—oo
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PROOF: Suppose (a) holds. Since the sequence {Sy, ,} is p-convergent in C[0, 1],
it follows that for any u,v € N, §,,¢,, € C[0, 1]. Hence by (4) forany n > v, p €N,

g;l (¢v) = nli—omoo Sn,p (¢v) = "li_.ngc (Z Awn$v(w)¢w) = Avu¢v;

w=0

consequently by (a), im A,,¢, exists in C[0, 1] for each v € NI. Since for m,n €N,
B$—r00

lAvm - A'uml = ”Aom¢v - Avn¢v"°° ”¢v| ;1 ’

It follows that lim A,, exists in C for each v € N. Conversely, suppose (b) holds and
B—oo0

lim A, = X, for each v € N. Let f € §. Then there exists a nonnegative integer N

p—oco

N
and complex numbers Co(v =0, 1,--- ,N) such that f = ) Cy¢,. Thusfor n 2 N
v=0

and u €N,

N N
Sn,p(f) = E Cvsn,u (¢v) = Z CvAup‘ﬁv-

v=0 v=0

-~ N
Hence, for any p € N, S,(f) = ¥ Culyués. Consequently, by assumption (b)

v=0

~ N ~
lim S,(f)= Y Col.¢, exists in C[0, 1]. Thus (b) implies (a). 0
p—oo v=0

As an immediate consequence of Lemma 2 and the uniform boundedness theorem,
we have:

THEOREM 3. For each n,p € N, let S, , : L*[0, 1] — C[0, 1] given in (5) be
p-convergent in C|[0, 1]. Then the sequence {gﬂ(f) Tp € N} converges in C[0, 1] for

each f € L'[0, 1} if and only if (a) sup ||§,,|| < oo and (b) lingok,,. exists for each
» b=
v €N.

Combining Theorem 2 and Theorem 3, we obtain:
COROLLARY 1. The necessary and sufficient conditions for S,(f) = § Aouf(v) o
€ C[0, 1] for each p € N and Jim S.(f) exists in C[0, 1], for each f € L'ﬁg, 1] are
(i) s?‘p||K,,',,||°° < oo for each p € N,
(ii) sup ”i” < oo,

(i) Lm X,, exists for each v € N.
p—oo
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As another view of the characterisation in Theorem 3, assume that for each u € N,
§“ : L'[0, 1] — CJ[0, 1] given in Definition 2 is a bounded linear operator. It then
follows that for each fixed z € [0, 1], g € N, the mapping T}, : L'[0, 1] — C defined

by T,.(f) = (§“ f) z is a bounded linear functional on L![0, 1]. Hence, by the well-

known Riesz integral representation theorem (see [4], p.276) for each z € [0, 1] and
4 € N, there exists a function K,(z,-) € L*[0, 1] satisfying

(§,,f) z= /ol f()Ku(z,t)dt, =z€[0,1), peN.

Consequently, it follows as in Lemma 1 that for each y € N,
||§,,“ = sup (ess sup lI?,,(a:,t)l) < oo.
z t

Setting ”I?,," = sup (ess sup |I?,,(z,t)|) , it follows from (9) and (11) that for each
oo z t
pEN,

(12) [5]) = | Bu]|, < sup 1Kl

Consequently, Theorem 3 may be rephrased as:
THEOREM 4. For n,u € N, let S,, : L'[0,1] — C[0, 1] given in (5) be p-
convergent in C|[0, 1]. Then the sequence {g,‘f TS N} converges in C[0, 1] for each

f € L'[0, 1] if and only if (i) sup ”I?,,“ < oo and (ii) Em MA,, exists for each v € N.
u oo u—00

As a consequence of (12), we also obtain:

COROLLARY 2. If {sup|[Kn,ll_, :n,p € N} < oo and lim A,, exists for each
p—co

v € N, then for each u € N, the series ), A,,,,f(v)d),, converges and lim (i /\,,,f(v)qS,,)
v=0 P00 \v=0
exists in C[0, 1] for each f € L'[0, 1].
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