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A NOTE ON A THEOREM ON LATTICES IN LIE GROUPS 

BY 

T. S. WU 

ABSTRACT. The aim of this note is to clarify some statements in 
the book: Discrete Subgroups of Lie groups: Springer, 1972. 

The purpose of this note is to respond to a review by James E. Humphreys in 
Mathematical Reviews on the article by A. N. Starkov: A counterexample to 
a theorem on Lattices in Lie groups. Vestnik Moskov, Ser. I Mat. Mekh. 1984, 
no. 5, 68-69, MR86F:22013). We quote that review in its entirety here: 

"Corollary 8.28 in the book of M. S. Raghunathan [Discrete subgroups of 
Lie groups, Springer, New York, 1972; MR 58 #22394a] makes a some­
what technical assertion about a lattice T in a non-semisimple Lie group ^. 
The present author regards this as false, without however pointing to any 
particular gap in the proof, and sketches a proposed counterexample 
modelled on an example in a closely related paper of L. Auslander [Ann. of 
Math. (2) 71 (1960), 579-590; MR 22 #12161]. However, some details are 
omitted, e.g., the proof that the exhibited group T is in fact discrete in &. 
{Raghunathan has informed the reviewer that he and others were aware 
long ago of an error in the proof of Corollary 8.25 in his book, which in 
turn invalidates the proof of Corollary 8.28. It would be useful, in the 
reviewer's opinion, to have a definitive account of what is actually valid or 
invalid in this circle of ideas — lest it remain indeed a circle.}" 

(For statement 8.25, see section 2; for statement 8.28, see proposition 1.3 in this 
note). In fact, the statement 8.25 in [5] is not true, and we shall give a 
counterexample in section 2. The statement 8.28 in [5] is correct l \ a proof 
independent of 8.25 was given by G. D. Mostow ( [2], Lemma 3.9, p. 421). The 
methods used by Mostow in his proof are very useful. Here, we shall present 
a slight variation of his proof in section 1, so bring a closer relation to 8.25 
in [5]. 

( Modulo an apparent misprint in the original statement, i.e. N should be also a normal 
subgroup of G. 
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1.1 LEMMA. (Mostow [2], Lemma 3.8). Let G be an analytic group which is a 
compact extension of an analytic normal solvable group P , i.e. G/R is compact. 
Assume that G does not contain any non-trivial normal semi-simp le factor. Let Ad 
be the adjoint representation of G in the automorphism group Aut(£f(R) ) of the 
Lie algebra <^(R) of R. Let U be the unipotent radical of the Zariski closure of 
Ad G in the algebraic group Aut(-S?(G) ). Then the nilradical M of Gis the identity 
component of the {x e G; Ad x e U}. Furthermore M is a maximal connected 
nilpotent subgroup of G. 

PROOF. We may assume that the maximal nilpotent analytic normal subgroup 
N of R is simply connected. Otherwise, let C be the compact part (Torus part) of 
the center of N. Then C is also in the center of G. Once we show that the lemma 
is true in GIC, it is easy to see that it is also true in the general case. So, in the 
following we shall assume that N is simply connected. R/N is connected 
abelian, so it is isomorphic to the product of a vector group and a torus group. 
Let F be the inverse image of the vector group in R. Then F is simply connected 
and R/F is compact. Therefore, G and R both split over F ; F c P ; x i Z ) = P c 
F XI DTK, where Z), T are torus groups and A'is a compact semi-simple analytic 
subgroup. D and T are central in DTK. It is clear that the radical R' of G is 
the subgroup RDT. 

We shall first study the kernel P of the adjoint representation Ad. The 
identity component P0 of P does not contain any nontrivial semi-simple 
Levi-factor. Otherwise it will violate the assumption that G has no semi-
simple factor. Therefore P0 is contained in the radical R' = RDT. Because P/P0 

is discrete and normal in G/P0, so it is central. In particular, the commutator 
[P, P] of P is in P0. Use the expression G = FDTK, by a calculation, we see that 
[G, R'] c F c P, [R\ R'] c F c R. This implies [ [ [P, P] , P], P] is trivial, i.e. 
P is nilpotent. Because U is a normal nilpotent subgroup of (Ad G)*. So, 
M' = Ad~l(U) = {x:Ad x ^ U} is nilpotent. We conclude that the identity 
component M of M' is a normal nilpotent analytic subgroup of G. 

Now, we shall prove that M is a maximal connected nilpotent subgroup of G. 
Let L be any connected nilpotent subgroup of G which contains the nil radical 
N of R. Then (RL)~ is solvable. Furthermore, [R, L] (z N (For a proof, see [1], 
Corollary 2, p. 51). Therefore L is a normal nilpotent subgroup of the solvable 
group (RL)~. (RL)~ is solvable, the unipotent elements in the adjoint 
representation of (RL)~ in Aut(J?(R) ) forms a group. Because G is a compact 
extension of solvable group. And U in (Ad G)* is the group generated by parts 
of Ad x where x comes from R. Since L acts on <Sf(R) unipotently (by ad­
joint action). Therefore U Ad L is a group of unipotent elements. However, 
(Ad G)* = U XI 0, where <£> consists of only semi-simple elements. Therefore, 
U Ad L c U, i.e., Ad L c U. Hence L c M. This completes the proof that M is 
a maximal analytic nilpotent subgroup of G. 
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1.2 REMARK. In addition to the assumptions in the Lemma 1.1, assume that 
G/R is semi-simple, then M = N. Another sufficient condition for M = N is 
that R is an exponential group. The following is the statement 8.28 in [5]. 

1.3 PROPOSITION. Let G be a connected Lie group, T c G a lattice. Let R be the 
radical of G and N the maximum connected closed nilpotent normal subgroup of G. 
Let S be a semi-simple subgroup of G such that G = S • R. Let o denote 
the action of S on R. Assume that the kernel of o has no compact factor in its 
identity component. Let TT.G —» G/R and ir':G —> G/N be the natural maps. Then 
R/R n r andN/N D T are both compact. Moreover IT(T) and IT'(T) are lattices in 
G/R and G/N respectively. 

PROOF (Mostow). Let Rx = (TR)Q, the identity component of the closure of 
TR. Then Rx c KR where AT is a maximal compact analytic semi-simple 
subgroup of G (see [2] Lemma 3.41 d) or [6] ). 

By the Theorem 8.24 of [5], Rx is a solvable analytic group. Since Rx/T n 
Rx = TRX/T has finite invariant measure, T n Rx is a uniform lattice in Rx 

by a theorem of Mostow (Theorem 6.2 of [4] or Theorem 3.5 of [5] ). By 1.1 
and 1.2, the nilradical N of G is again a nilradical of Rx. Notice that N a Rx, 
NnT = NC)(Tr) Rx). Therefore N/N n T is compact again by a theorem of 
Mostow ( [3], or Theorem 3.3 of [5] ). From the fact N/N n T is compact, the 
map N/N f i T ^ NT/T is a homeomorphism. Therefore NT is locally compact, 
it is a closed subgroup of G (cf. Theorem 1.13 of [5] ). Because NT is closed; 
TT'(T) is a lattice in <n'(G). In <ir\G\ TT\R) is the nilradical. So <n'(R)<n\T) is 
closed. This implies RP is closed. We conclude R/R n T is compact, i.e., 77(1") 
is closed. 

2.1. The following is the statement 8.25 in [5]: Let G be a Lie group of the 
form K - R where K is a compact group and R is a connected normal solvable 
closed subgroup on which K acts with a finite kernel. Let T be a lattice in G. 
Then G/T and N/N O T are compact where N is the maximum normal 
connected nilpotent subgroup of R. Following the original proof, let U be the 
closure of TR and U0 be the identity component of U. Then U0 is a compact 
extension of the solvable group R. Let Nx be the maximal connected nilpotent 
subgroup of U0. It is clear that NXT is closed and Nx/Nx n T is compact. Also 
N c Nx. However, in general iV is properly contained in Nx. Also NT is not 
always closed. The original proof was based upon the false assertion that 
N = Nx to draw the conclusion that NT is closed and N/N Pi T is compact. 
Now, we shall give an example to show this is not true in general. 

2.2 EXAMPLES. Let A = { (x, y, z); x, y, z real numbers}. Define the 
multiplication in A by (x, y, z)(x\ y', z') = (x + x', y + y\ z + z' + xy'). This 
makes A a nilpotent group which is isomorphic with the group of upper 
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triangular matrices. Let B = {a, b, e ):a, b, t any real numbers}. Define the 
multiplication in B by 

(a, b, * > ' V , b', e2"u) 

= (a 4- a! cos lirt - b' sin 2irt, b + a' sin 2<nt + V cos 2irt, <?"*<+<">). 

Then B is the group of rigid motion of the plane. Let G = A X B. Let R be the 
subgroup of A X B, R = { (t, x9 y, a, b, e2mt)\t, x, y, a, b real numbers}. Then G 
is a compact extension of R, G = R XI C, C = { (0, 0, 0, 0, 0, e27rit):t reals}. The 
nilradical N of R = { (0, y, z, a, b, l):y, z, a, b are reals}. The nilradical N} of 
G is A X iÊ = A X { (a, b, \):a, b reals}. Hence N is properly contained 
in JVj. 

We given another example: Let G be the semi-direct product of the 
two-dimension vector group V and the 2 dimension torus group C . A typical 
element in G is of the form (je, y e2™, e2™*). The action of C2 on V is de­
fined by: 

t){e2m\ e2mt)(x, y) = (x cos 2775- — y sin 2fl\s, x sin 2TTS + >> cos 27™) 

So, in fact; FXI (C X (1)) is the rigid motion of the plane. Let R be the 
subgroup o f G , ^ = F X A where D c C2, D = { (e2™, £>"):>* real}. Then the 
nilradical N of R is the subgroup K But the nilradical ^ of G is F XI ( (1) X C). 
Hence N is a proper subgroup of Nx. Now, we shall define the lattice T of G. Let 
]8 be a real number rationally independent to 77. Hence the group {e^ml:m 
integer} is a dense subgroup of the circle group C. Let T = { (m, «, 1, em^):m, n 
integers}. Then T is a lattice in G. But NT is dense but not closed in Nx. Also 
TVViV n P is not compact. Therefore 8.25 in [5] is not true in general. 
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