
5

Regularity Results for the Transport Equation

In this chapter we discuss regularity results for the transport equations used
in this monograph. We begin with a discussion on smooth first integrals and
how they are characterized in terms of the operator of even continuation by
the scattering relation. Once this is established we discuss transport equations,
including matrix attenuations, and we show a corresponding regularity result
(Theorem 5.3.6); this will cover all necessary applications in subsequent
chapters. We introduce here the attenuated X-ray transform and we compute
its adjoint, although we leave for Chapter 12 a more thorough discussion of its
significance.

5.1 Smooth First Integrals

Let (M,g) be a compact non-trapping manifold with strictly convex boundary.
Recall that for w ∈ C∞(∂+SM) we set (see Definition 4.2.1)

w�(x,v) = w(ϕ−τ(x,−v)(x,v)).

The function w� is a first integral of the geodesic flow, i.e. it is constant along
its orbits. From the properties of τ we know that w� is smooth on SM \ ∂0SM ,
but it may not be smooth at the glancing region ∂0SM . In this section we
will characterize when smoothness holds. We can easily guess a necessary
condition. Indeed, since w�(x,v) = w ◦ α(x,v) for (x,v) ∈ ∂−SM where α is
the scattering relation in Definition 3.3.4, we see that if w� ∈ C∞(SM), then
the function

w�|∂SM =
{
w(x,v), (x,v) ∈ ∂+SM,

w ◦ α(x,v), (x,v) ∈ ∂−SM

must be smooth in ∂SM . We shall show that this condition is also sufficient.
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5.1 Smooth First Integrals 131

Following Pestov and Uhlmann (2005) we introduce the operator of even
continuation with respect to α: for w ∈ C∞(∂+SM) define

A+w(x,v) :=
{
w(x,v), (x,v) ∈ ∂+SM,

w ◦ α(x,v), (x,v) ∈ ∂−SM .

Clearly A+ : C∞(∂+SM) → C(∂SM). We also introduce the space

C∞
α (∂+SM) := {w ∈ C∞(∂+SM) : A+w ∈ C∞(∂SM)}.

The main result of this section is the following characterization.

Theorem 5.1.1 (Pestov and Uhlmann (2005)) Let (M,g) be a compact non-
trapping manifold with strictly convex boundary. Then

C∞
α (∂+SM) = {w ∈ C∞(∂+SM) : w� ∈ C∞(SM)}.

Proof We assume (M,g) isometrically embedded in a closed manifold (N,g)

of the same dimension as M . Assuming that A+w ∈ C∞(∂SM), we need to
show that w� ∈ C∞(SM). Consider some smooth extension W of A+w =
w�|∂SM into SN . Writing F(t,x,v) = 1

2W(ϕt (x,v)), it follows that

w�(x,v) = 1

2

[
W(ϕτ(x,v)(x,v)) + W(ϕ−τ(x,−v)(x,v))

]
= F(τ(x,v),x,v) + F(−τ(x,−v),x,v).

Recall that we already know that w� is smooth in SM \ ∂0SM , so let us
discuss what happens at the glancing region. Fix some (x0,v0) ∈ ∂0SM and
use Lemma 3.2.9 to write

w�(x,v) = F
(
Q(

√
a(x,v),x,v),x,v

) + F
(
Q(−

√
a(x,v),x,v),x,v

)
near (x0,v0) in SM . Setting G(r,x,v) := F(Q(r,x,v),x,v), we have

w�(x,v) = G
(√

a(x,v),x,v
) + G

( −
√
a(x,v),x,v

)
near (x0,v0) in SM , where G is smooth near (0,x0,v0) in R × SN . Now

G(r,x,v) + G(−r,x,v) = H
(
r2,x,v

)
,

where H is smooth near (0,x0,v0) (cf. Exercise 3.2.12). This finally shows that

w�(x,v) = H(a(x,v),x,v)

near (x0,v0) in SM , proving that w� is smooth near (x0,v0) in SM . Since
(x0,v0) ∈ ∂0SM was arbitrary, we have w� ∈ C∞(SM).
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132 Regularity Results for the Transport Equation

We make right away an application of this result to the function uf in
Definition 4.2.1 solving Xuf = −f and uf |∂−SM = 0. If u is a function
on SM we denote the even and odd parts with respect to v by

u+(x,v) = 1

2
(u(x,v) + u(x,−v)), u−(x,v) = 1

2
(u(x,v) − u(x,−v)).

Theorem 5.1.2 Let (M,g) be a non-trapping manifold with strictly convex
boundary and let f ∈ C∞(SM). If f is even then u

f
− is smooth in SM .

Similarly, if f is odd then u
f
+ is smooth in SM .

Proof Assume f is even (the proof for f is odd is almost identical). Since X

maps odd/even functions to even/odd functions, we have Xu
f
− = −f .

By Proposition 3.3.1 there is h ∈ C∞(SM) such that Xh = −f . Thus
w := h − u

f
− is a first integral, i.e. Xw = 0. We claim that w is smooth and

hence so is u
f
− (if f is odd then h − u

f
+ would be smooth).

Let a denote the flip a(x,v) = (x,−v). Since a ◦ ϕt = ϕ−t ◦ a and f is
even, we have

uf (x,−v) =
∫ τ(x,−v)

0
f (ϕt (a(x,v)) dt =

∫ τ(x,−v)

0
f (ϕ−t (x,v)) dt

= −
∫ −τ(x,−v)

0
f (ϕt (x,v)) dt .

Hence

w = h − 1

2

∫ τ(x,v)

0
f (ϕt (x,v)) dt − 1

2

∫ −τ(x,−v)

0
f (ϕt (x,v)) dt,

and therefore for (x,v) ∈ ∂SM we have

w(x,v) = h(x,v) − 1

2

∫ τ̃ (x,v)

0
f (ϕt (x,v)) dt .

By Lemma 3.2.6, τ̃ ∈ C∞(∂SM) and as a consequence w|∂SM is smooth. By
Theorem 5.1.1, w ∈ C∞(SM) and the result follows.

5.2 Folds and the Scattering Relation

The original proof of Theorem 5.1.1 was based on a result in Hörmander
(1983–1985, Theorem C.4.4), which is in turn underpinned by a result similar
to Lemma 3.2.10. In this section we explain the original approach in Pestov
and Uhlmann (2005) as it is geometrically quite illuminating.

We start with a general definition from differential topology; for what
follows we refer to Hörmander (1983–1985, Appendix C) for details.
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5.2 Folds and the Scattering Relation 133

Definition 5.2.1 Let f : M → N be a smooth map between manifolds of the
same dimension n. We say that f has a Whitney fold at m ∈ M if dfm : TmM →
Tf (m)N has rank n − 1 and given smooth n-forms ωM and ωN that are non-
vanishing at m and f (m), respectively, we have

f ∗ωN = λωM,

where λ ∈ C∞(M) is such that λ(m) = 0 and dλ|ker df |m �= 0.

Remark 5.2.2 This definition is a little different from the one given in
Hörmander (1983–1985, Appendix C), but it is easily seen to be equivalent
(and a bit easier to use for computations). Note that the function λ is well
defined up to a non-vanishing C∞-multiple, so the conditions imposed on
λ are indeed independent of the choices of n-forms. To gain more insight,
note that if df |m has rank n − 1, we can choose local coordinates in N such
that the map f can be represented as f = (f1, . . . ,fn) with dfn = 0 at m.
Then df1, . . . ,dfn−1 are linearly independent at m, so we can choose local
coordinates in M with yj = fj , j < n. It follows that we can represent f as

f (y) = (y1, . . . ,yn−1,fn(y)).

Using this representation and the canonical volume form in Euclidean space we
see that λ(y) = ∂fn(y)/∂yn, so to have a fold at m we need ∂2fn(0)/∂y2

n �= 0.

If f has a fold at m ∈ M , there exists an involution σ : M → M (locally
defined) such that σ 2 = Id, σ �= Id, f ◦ σ = f and the set of fixed points L of
σ coincides with the set of points near m where df has rank n − 1. In fact, f
has a very simple normal form near m, that is, in suitable coordinates f has a
local expression at zero:

f (y1, . . . ,yn) = (
y1, . . . ,yn−1,y

2
n

)
.

Moreover, the involution is just given by σ(y′,yn) = (y′, − yn) where y′ =
(y1, . . . ,yn−1), and L is determined by yn = 0. Using this normal form it is
not hard to show that the following result holds:

Theorem 5.2.3 (Hörmander, 1983–1985, Theorem C.4.4) Suppose f has a
fold at m and let u be C∞ in a neighbourhood of m ∈ M . Then, there exists
v ∈ C∞ in a neighbourhood of f (m) ∈ N with v ◦ f = u if and only if
u ◦ σ = u.

One implication in the theorem is straightforward: if v exists with v◦f = u,
then u◦σ = v◦f ◦σ = v◦f = u, so the content of the theorem is the converse
statement.
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134 Regularity Results for the Transport Equation

Let us return now to the situation we are interested in, namely, let (M,g)

be a compact non-trapping manifold with strictly convex boundary. Consider
a slightly larger manifold M0 engulfing M so that (M0,g) is still non-trapping
with strictly convex boundary and let τ0 be the exit time of M0. The existence
of such (M0,g) follows right away from Proposition 3.3.1 since Xf > 0 is
an open condition (strict convexity of the boundary is also open under small
perturbations).

We define a map φ : ∂SM → ∂−SM0 by

φ(x,v) := ϕτ0(x,v)(x,v).

This map is C∞ since τ0|SM is C∞. Here is the main claim about φ:

Proposition 5.2.4 The map φ has a Whitney fold at every point of the glancing
region ∂0SM . Moreover, the relevant involution is the scattering relation α.

Proof Let us first check that φ ◦ α = φ. Indeed

φ(α(x,v)) = ϕτ0(ϕτ̃ (x,v)(x,v))(ϕτ̃ (x,v)(x,v)) = ϕτ0(ϕτ̃ (x,v)(x,v))+τ̃ (x,v)(x,v)

and since τ0(ϕτ̃ (x,v)(x,v)) = τ0(x,v) − τ̃ (x,v) the claim follows.
To prove that φ has a Whitney fold at ∂0SM, we first show that given (x,v) ∈

∂0SM , we have

ker dφ(x,v) ⊕ T(x,v)∂0SM = T(x,v)∂SM . (5.1)

To this end, we consider ξ ∈ T(x,v)∂SM and we compute using the chain rule

dφ(x,v)(ξ) = dτ0(ξ)X(φ(x,v)) + dϕτ0(x,v)(ξ), (5.2)

and from this it follows that RX(x,v) = ker dφ(x,v) since dτ0(X(x,v)) = −1
and dϕτ0(x,v)(X(x,v)) = X(φ(x,v)). Note that if dφ(x,v)(ξ) = 0, then ξ ∈
RX(x,v) since dϕτ0(x,v) is a linear isomorphism. Since we are assuming that
∂M is strictly convex, (5.1) follows directly from Lemma 3.6.2.

To complete the proof we need to show the non-degeneracy condition in
Definition 5.2.1. As a top dimensional form on ∂−SM0 we take j∗

0 (iXd!2n−1),
where j0 denotes inclusion of ∂SM0. Using Lemma 3.6.5 we see that this form
does not vanish at φ(x,v). Using (5.2) we compute its pull-back under φ to be

φ∗(j∗
0

(
iXd!2n−1)) = j∗(iXd!2n−1),

since the geodesic flow preserves d!2n−1. This is checked exactly as in the
proof of Proposition 3.6.8.

Using Lemma 3.6.5 again we deduce that we can use λ = μ, so to complete
the proof we need to show that dμ(x,v)(X(x,v)) �= 0 for (x,v) ∈ ∂0SM .
But if ρ is a boundary defining function as in Lemma 3.1.10, we have
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5.3 A General Regularity Result 135

seen that μ(x,v) = 〈∇ρ(x),v〉 for (x,v) ∈ ∂SM and dμ(x,v)(X(x,v)) =
Hessx(ρ)(v,v) = −�x(v,v) < 0 for (x,v) ∈ ∂0SM .

We now explain how to use Theorem 5.2.3 to give a proof of Theorem
5.1.1. Consider a function w ∈ C∞(∂+SM) such that A+w ∈ C∞(∂SM).
Clearly A+w is invariant under α and thus by Theorem 5.2.3, there is a smooth
function v defined in a neighbourhood of φ(∂SM) such that v ◦ φ = w.

Consider the map � : SM → ∂−SM given by �(x,v) = ϕτ(x,v)(x,v) and
the analogous one �0 : M0 → ∂−SM0 using τ0. Note that w� = w ◦α ◦� and
that φ ◦ α ◦ � = �0|SM . Hence

w� = w ◦ α ◦ � = v ◦ φ ◦ α ◦ � = v ◦ �0|SM,

and since v and �0|SM are C∞ it follows that w� is C∞ as desired.

5.3 A General Regularity Result

Let (M,g) be a non-trapping manifold with strictly convex boundary and let
A : SM → C

m×m be a matrix-valued smooth function. We sometimes refer to
A as a matrix attenuation.

We would like to study regularity results for solutions u : SM → C
m to

equations of the form

Xu + Au = f,

where f ∈ C∞(SM,Cm) and u|∂SM = 0. We shall show that under these
conditions u must be C∞.

As we have done before, consider (M,g) isometrically embedded in a closed
manifold (N,g) and extend A smoothly to N . Under these assumptions A on
N defines a smooth cocycle over the geodesic flow ϕt of (N,g). The cocycle
takes values in the group GL(m,C) and is defined as follows: let C : SN ×
R → GL(m,C) be determined by the following matrix ODE along the orbits
of the geodesic flow

d

dt
C(x,v,t) + A(ϕt (x,v))C(x,v,t) = 0, C(x,v,0) = Id.

The function C is a cocycle:

C(x,v,t + s) = C(ϕt (x,v),s) C(x,v,t)

for all (x,v) ∈ SN and s,t ∈ R.

Exercise 5.3.1 Prove the cocycle property by using uniqueness for ODEs and
the fact that ϕt is a flow.
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136 Regularity Results for the Transport Equation

Having this cocycle is just as convenient as having ϕt defined for t ∈ R in
SN . We shall see that using this we can reduce smoothness questions to τ ; a
recurrent theme.

Consider as before (M0,g) non-trapping with strictly convex boundary and
containing (M,g) in its interior. Let τ0 be the exit time of M0.

Lemma 5.3.2 The function R : SM → GL(m,C), defined by

R(x,v) := [C(x,v,τ0(x,v))]
−1,

is smooth and satisfies

XR + AR = 0,

X(R−1) − R−1A = 0.

Proof Since τ0|SM is smooth and the cocycle C is smooth, the smoothness of
R follows right away. To check that R satisfies the stated equation, we use that
τ0(ϕt (x,v)) = τ0(x,v) − t together with the cocycle property to obtain

R(ϕt (x,v)) = [C(ϕt (x,v),τ0(ϕt (x,v))]
−1

= C(x,v,t)[C(x,v,τ0(x,v))]
−1.

Differentiating at t = 0 yields

XR = −AR.

It also follows that X(R−1) = −R−1(XR)R−1 = R−1A.

In subsequent chapters, we will discuss the attenuated X-ray transform in
detail, but for now we give the most basic definitions as they are useful for
phrasing the main regularity result for the transport equation with general
matrix attenuation. In the scalar case, the attenuated X-ray transform Iaf of
a function f ∈ C∞(SM,C) with attenuation coefficient a ∈ C∞(SM,C) can
be defined as the integral

Iaf (x,v) :=
∫ τ(x,v)

0
f (ϕt (x,v)) exp

[∫ t

0
a(ϕs(x,v)) ds

]
dt

for (x,v) ∈ ∂+SM . Alternatively, we may set Iaf := u|∂+SM where u is the
unique solution of the transport equation

Xu + au = −f in SM, u|∂−SM = 0.

The last definition generalizes without difficulty to the case of a general
matrix attenuation A. Let f ∈ C∞(SM,Cm) be a vector-valued function and
consider the following transport equation for a function u : SM → C

m,
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5.3 A General Regularity Result 137

Xu + Au = −f in SM, u|∂−SM = 0.

On a fixed geodesic the transport equation becomes a linear ODE with zero
final condition, and therefore this equation has a unique solution that will be
denoted by u = u

f

A in this chapter.

Definition 5.3.3 The attenuated X-ray transform of f ∈ C∞(SM,Cm) is
given by

IAf := u
f

A|∂+SM .

It is a simple task to write an integral formula for u
f

A using a matrix
integrating factor as in Lemma 5.3.2.

Lemma 5.3.4 With R as in Lemma 5.3.2 we have

u
f

A(x,v) = R(x,v)

∫ τ(x,v)

0
(R−1f )(ϕt (x,v)) dt for (x,v) ∈ SM .

Proof Let u = u
f

A. A computation using XR−1 = R−1A (which follows
easily from XR + AR = 0) and Xu + Au = −f yields

X(R−1u) = (XR−1)u + R−1Xu = −R−1f .

Since R−1u|∂−SM = 0, the lemma follows.

Remark 5.3.5 It is useful for future purposes to understand how the formula
in the lemma changes if we consider a different integrating factor, i.e. another
invertible matrix R1 satisfying XR1 + AR1 = 0. Since

X
(
R−1R1

) = X
(
R−1)R1 + R−1X(R1) = R−1AR1 − R−1AR1 = 0,

we derive

R1 = RW�,

where W = R−1R1|∂+SM .

Lemma 5.3.4 shows that u
f

A is, in general, as smooth as τ , i.e. smooth
everywhere except perhaps at the glancing region ∂0SM . However, the next
result will show that if IAf = 0, then u

f

A is C∞.

Theorem 5.3.6 (Paternain et al. (2012)) Let (M,g) be a non-trapping man-
ifold with strictly convex boundary. Let A ∈ C∞(SM,Cm×m) and f ∈
C∞(SM,Cm) be such that IAf = 0. Then u

f

A ∈ C∞(SM,Cm).
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138 Regularity Results for the Transport Equation

Proof It is enough to show that the function r := R−1u
f

A is smooth. According
to Lemma 5.3.4, r satisfies

Xr = −R−1f in SM, r|∂SM = 0.

Choose h ∈ C∞(SM,Cm) such that Xh = −R−1f . We know such a function
exists either by appealing to Proposition 3.3.1 or by using the enlargement M0

of M , extending R−1f smoothly to N and setting

h(x,v) =
∫ τ0(x,v)

0
(R−1f )(ϕt (x,v)) dt for (x,v) ∈ SM .

Recall that τ0|SM is smooth. Thus the function h − r satisfies X(h − r) = 0
and since (h − r)|∂SM = h|∂SM ∈ C∞(∂SM,Cm), Theorem 5.1.1 gives that
h − r is smooth in SM and thus r is smooth as desired.

We conclude this section with a brief discussion as to what happens if we
swap the choice of boundary conditions in the transport equation. Suppose that
we consider the equation

Xu + Au = f in SM, u|∂+SM = 0.

Note the change of sign in the right-hand side of the transport equation and the
fact that we now demand u to vanish on the influx boundary. Let us call wf

the unique solution.

Lemma 5.3.7 We have the following identity on ∂+SM:

wf ◦ α = R−1 uf ,

where R is the unique integrating factor for A with R|∂−SM = Id.

Exercise 5.3.8 Prove the lemma.

5.4 The Adjoint I ∗
A

Let (M,g) be a non-trapping manifold with strictly convex boundary and let
A : SM → C

m×m be a smooth matrix attenuation. In this section we shall
compute the adjoint I ∗

A of

IA : L2(SM,Cm) → L2
μ(∂+SM,Cm).

We endow C
m with its standard Hermitian inner product, so the L2 spaces

are defined using this inner product and the usual volume forms d!2n−1 and
dμ = μd!2n−2.
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Using the same arguments as in Proposition 4.1.2 one shows:

Proposition 5.4.1 The operator IA extends to a bounded operator

IA : L2(SM,Cm) → L2
μ(∂+SM,Cm).

Moreover, the following stronger result holds: IA extends to a bounded
operator

IA : L2(SM,Cm) → L2(∂+SM,Cm).

Exercise 5.4.2 Prove the proposition.

Lemma 5.4.3 If R : SM → GL(m,C) is such that XR + AR = 0, then

I∗
Ah = (R∗)−1(R∗h)�.

Proof Recall that given R we can write

IAf = u
f

A|∂+SM = R(x,v)

∫ τ(x,v)

0
(R−1f )(ϕt (x,v)) dt

for (x,v) ∈ ∂+SM . Let us compute using Santaló’s formula:

(IAf,h) =
∫
∂+SM

〈IAf,h〉Cm dμ

=
∫
∂+SM

dμ

〈∫ τ

0
(R−1f )(ϕt (x,v)) dt,R

∗h
〉
Cm

=
∫
∂+SM

dμ

∫ τ

0

〈
R−1f,(R∗h)�

〉
Cm

(ϕt (x,v)) dt

=
∫
SM

〈
R−1f,(R∗h)�

〉
Cm

d!2n−1

= (f ,(R∗)−1(R∗h)�),

and thus I ∗
Ah = (R∗)−1(R∗h)� as desired.

Remark 5.4.4 Observe that U = (R∗)−1 solves the matrix transport equation
XU − A∗U = 0 and since (R∗h)� is a first integral of the geodesic flow,
f = I ∗

Ah solves {
Xf − A∗f = 0,

f |∂+SM = h.

We conclude this chapter by discussing the closely related X-ray transform
with a matrix weight.
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Definition 5.4.5 Let (M,g) be a compact non-trapping manifold with strictly
convex boundary. Given a smooth matrix weight W : SM → GL(m,C), the
matrix weighted X-ray transform is the map

IW : C∞(SM,Cm) → C∞(∂+SM,Cm),

IWf (x,v) =
∫ τ(x,v)

0
(Wf )(ϕt (x,v)) dt,

where (x,v) ∈ ∂+SM .

Note that one always has

IWf = uWf |∂+SM,

where u = uWf is the unique solution of

Xu = −Wf in SM, u|∂−SM = 0.

The following result shows that one can always reduce a matrix weighted
transform IW for W ∈ C∞(SM,GL(m,C)) into an attenuated X-ray transform
IA for a general attenuation A ∈ C∞(SM,Cm×m), and vice versa. We note
that there is a slight abuse of notation, but we hope that it will be clear from
the context whether the transform involves a weight or an attenuation.

Lemma 5.4.6 Let (M,g) be a compact non-trapping manifold with strictly
convex boundary, and let f ∈ C∞(SM,Cm).

(a) Given any W ∈ C∞(SM,GL(m,C)), one has

IWf = WIAf |∂+SM,

where A := W
−1(XW) ∈ C∞(SM,Cm×m).

(b) Given any A ∈ C∞(SM,Cm×m), one has

IAf = W
−1IWf |∂+SM,

where W is any solution in C∞(SM,GL(m,C)) of XW − WA = 0 in
SM (e.g. W could be obtained from Lemma 5.3.2).

Proof (a) If A has the given form, then

(X + A)
(
W

−1uWf
) = (

X
(
W

−1) + AW
−1)uWf + W

−1XuWf = −f .

Since uWf |∂−SM = 0, one has u
f

A = W
−1uWf and thus IWf = WI

f

A|∂+SM .
(b) If W is as stated, then

X
(
Wu

f

A
) = (XW)u

f

A + W
( − Au

f

A − f
) = −Wf .

Thus Wu
f

A = uWf and WIAf |∂+SM = IWf .
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Remark 5.4.7 Using the argument in Proposition 4.1.2, one can show that
IW is bounded L2(SM,Cm) → L2(∂+SM,Cm) and thus it is also bounded
L2(SM,Cm) → L2

μ(∂+SM,Cm). The adjoint

I ∗
W

: L2
μ(∂+SM,Cm) → L2(SM,Cm)

is easily computed as above and it is given by

I ∗
W
h = W

∗h�.
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