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Abstract

Let E be an elliptic curve over a field k. Let R := EndE. There is a functor HomR(−, E)

from the category of finitely presented torsion-free left R-modules to the category of

abelian varieties isogenous to a power of E, and a functor Hom(−, E) in the opposite

direction. We prove necessary and sufficient conditions on E for these functors to be

equivalences of categories. We also prove a partial generalization in which E is replaced

by a suitable higher-dimensional abelian variety over Fp.

1. Introduction

Let E be an elliptic curve over a field k. Let R := EndE. We would like to classify all abelian
varieties isogenous to a power of E. There is a functor HomR(−, E) that takes as input a
finitely presented (f.p.) left R-module M and produces a commutative group scheme. (This
functor appears in articles by Giraud [Gir68, § 1] and Waterhouse [Wat69, Appendix], and is
attributed by the former to Serre and Tate; we will give a self-contained exposition in § 4.1.) We
will prove that, when restricted to torsion-free modules, it becomes a fully faithful functor of
additive categories

HomR(−, E) : {f.p. torsion-free left R-modules}opp

−→ {abelian varieties isogenous to a power of E}. (1)

In the other direction, we have a functor

Hom(−, E) : {abelian varieties isogenous to a power of E}
−→ {f.p. torsion-free left R-modules}opp (2)

that provides the inverse on the essential image of (1). These are useful because the modules can

be classified for each possible R.

We find necessary and sufficient conditions on E for (1) and (2) to be equivalences of

categories. For simplicity, in this introduction we state the answer only for elliptic curves over

finite fields.
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Abelian varieties isogenous to a power of an elliptic curve

Theorem 1.1. Let E be an elliptic curve over a finite field k = Fq. Let R := EndE. Let π ∈ R
be the q-power Frobenius endomorphism. Then (1) and (2) are equivalences of categories if and
only if one of the following holds:

– E is ordinary and Z[π] = R;

– E is supersingular, k = Fp, and Z[π] = R; or

– E is supersingular, k = Fp2 , and R is of rank 4 over Z.

Theorem 1.1 is close to many results in the literature. Waterhouse [Wat69] proves many
results relating the isogeny class of an elliptic curve E to the ideal classes of EndE, and he also
considers such issues when E is replaced by an abelian variety. An analogue of Theorem 1.1 with
the functors Hom and Hom(−, E) replaced by similarly defined functors ⊗ and Hom(E,−) is
proved in Serre’s appendix to [Lau02] in the case where Z[π] is the maximal order in an imaginary
quadratic field (in this case, R = Z[π] necessarily). Other cases are handled in [SM74], [Lan75],
[Sch92], and especially Kani’s work [Kan11]; although these works do not define the functor
Hom, they too classify all abelian varieties isogenous to a power of E in the case where E is
ordinary and rkR = 2 (see [Kan11, Theorems 1, 2, and 3]). In fact, at one point (in the proof of
our Theorem 4.8(a)), we make use of one of the easier results of [Kan11].

The category of all ordinary abelian varieties over a finite field is equivalent to the category of
Deligne modules [Del69], which are f.p. torsion-free Z-modules provided with an endomorphism
that corresponds to the Frobenius. The ordinary case of Theorem 1.1 could be deduced from
Deligne’s equivalence. For a prime ground field Fp, Yu [Yu12, Theorem 3.1] and (in a stronger
form) Centeleghe and Stix [CS15] extended Deligne’s equivalence to a category including
most non-ordinary abelian varieties. For suitable abelian varieties B over Fp, this leads to a
classification of the quotients of powers of B; in particular, when B is simple, these quotients are
the abelian varieties isogenous to a power of B. Centeleghe and Stix did not mention the functor
HomR(−, B), but in § 8 we prove that a functor they used is isomorphic to HomR(−, B).
Combining their work with ours, we can rewrite their classification in terms of the functor
HomR(−, B). In particular, this yields a second proof of Theorem 1.1 in the case where the
ground field k is Fp. Our first proof, although only for elliptic curves, applies also to non-ordinary
elliptic curves over Fpn for n > 1 and to elliptic curves over infinite fields (see Theorems 7.1
and 7.7, for example). It includes the quaternionic endomorphism case, and also determines
exactly when the functors above give an equivalence.

Let us now outline the rest of the paper. Section 2 introduces notation to be used. If R is the
endomorphism ring of an elliptic curve, then R is Z, an imaginary quadratic order, or a maximal
quaternionic order; § 3 reviews the classification of f.p. torsion-free left R-modules in each case,
and in a little more generality. Section 4 introduces the two functors above and proves their
basic properties; in particular it is shown that applying HomR(−, E) to torsion-free modules
produces abelian varieties isogenous to a power of E. Moreover, § 4.3 relates duality of modules
to duality of abelian varieties. Section 5 proves that, when E is a supersingular elliptic curve
over Fp2 with rk EndE = 4, the functors (1) and (2) are equivalences of categories, so that there
is a clean classification of abelian varieties isogenous to a power of E. In preparation for the
other cases, § 6 defines the notion of a kernel subgroup, and shows that the functors (1) and (2)
are equivalences of categories if and only if every finite subgroup scheme of every power of E is
a kernel subgroup. All this is combined in § 7, which gives a complete answer to the question of
when (1) and (2) are equivalences of categories. Section 8 contains the argument involving the
work of Centeleghe and Stix for certain abelian varieties of higher dimension over Fp.
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2. Notation

Let R be a noetherian integral domain. Let K = FracR. The torsion submodule of an R-module
M is

Mtors := {m ∈M : rm = 0 for some nonzero r ∈ R}.

Call M torsion-free if Mtors = 0. Call a submodule N of M (or an injection N →M) saturated
if the cokernel of N → M is torsion-free. Given a f.p. R-module M , define its rank as rkM :=
dimK(K ⊗RM). The notion of rank extends to f.p. left modules over a subring R in a division
algebra K.

If k is a field, let k be an algebraic closure of k, let ks be the separable closure of k in k, and
let Gk := Gal(ks/k). If G is a finite group scheme over a field k, its order is #G := dimk Γ(G,OG).

Let A be a commutative group scheme over a field k. Then EndA denotes its endomorphism
ring as a commutative group scheme over k, i.e., the ring of endomorphisms defined over k; an
analogous convention applies to Hom. If λ ∈ EndA, then A[λ] := kerλ denotes the group scheme

kernel of A
λ
→ A. In particular, if n ∈ Z>0, then A[n] is the group scheme kernel of A

n
→ A. If `

is a prime not equal to char k, then the `-adic Tate module of A is

T`A := lim
←−
e

A[`e](ks).

If X is a scheme over a field k of characteristic p > 0, and q is a power of p, let πX,q : X→X(q)

be the q-power Frobenius morphism; if k = Fq, then let πX be πX,q : X → X.
Recall that the essential image of a functor F : C→ D consists of the objects of D isomorphic

to FC for some C ∈ C; from now on, we call this simply the image of F .

3. Classifying torsion-free modules

3.1 Dedekind domains
Suppose that R is a Dedekind domain. Finitely presented (henceforth denoted f.p.) torsion-free
R-modules can be completely classified, as is well known [Rei03, Theorem 4.13]. To describe
the result, we need the notion of determinant of a module. Given a torsion-free R-module M
of rank r, its determinant detM :=

∧rM is a f.p. torsion-free R-module of rank 1; sometimes
we identify detM with its class in PicR. For example, if M = I1 ⊕ · · · ⊕ Ir, where each Ij is a
nonzero ideal of R, then rkM = r and

detM ' I1 ⊗
R
· · · ⊗

R
Ir ' I1 · · · Ir (the product ideal in R).

Theorem 3.1.

(a) A f.p. R-module is torsion-free if and only if it is projective.

(b) Every f.p. projective R-module is isomorphic to a finite direct sum of invertible ideals.

(c) The isomorphism type of a f.p. projective R-module is determined by its rank and
determinant.

(d) Every pair (r, c) ∈ Z>0×PicR arises as the rank and determinant of a nonzero f.p. projective
R-module M ; one representative is M := Rr−1 ⊕ I where [I] = c.

3.2 Quadratic orders
For a general order in a Dedekind domain, the structure theory of torsion-free f.p. modules is
wild. Fortunately, for quadratic orders there is a theory that is only slightly more complicated
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than that for Dedekind domains. Recall that if Rmax is the ring of integers in a quadratic field
K, then every order in K is of the form Rf := Z + fRmax for a positive integer f called the
conductor. The orders containing Rf are the orders Rg for g|f .

Theorem 3.2. Let R be a quadratic order, i.e., an order in a degree 2 extension K of Q. Let M
be a f.p. torsion-free R-module.

(i) There exists a unique chain of orders R1 ⊆ · · · ⊆ Rn between R and K and invertible ideals
I1, . . . , In of R1, . . . , Rn, respectively, such that M ' I1 ⊕ · · · ⊕ In as an R-module.

(ii) The Ii are not unique, but their product I1 · · · In is an invertible Rn-ideal whose class
[M ] ∈ PicRn depends only on M .

(iii) The isomorphism type of M is uniquely determined by the chain R1 ⊆ · · · ⊆ Rn and the
class [M ] ∈ PicRn.

Proof. See [BF60]. For generalizations to other integral domains, see [Bas63, § 7], [BF65], [Lev85],
and the survey article [Sal02]. 2

3.3 Maximal orders in quaternion algebras
Let B be a quaternion division algebra over Q. Let O be a maximal order in B. Suppose that M
is a f.p. left O-module. The abelian group B ⊗O M inherits a left B-module structure from B;
it is a free left B-module by [Bou70, II, § 7, Théorème 1]. The nonnegative integer rkM is the
dimension of the left B-vector space B ⊗O M ; then rkM = 1

4 rkZM . Call M torsion-free if the
natural map M → B ⊗OM is an injection, or equivalently, if M is torsion-free as a Z-module.

The classification of f.p. torsion-free left O-modules is similar to the classification over a
Dedekind domain, and even simpler in ranks at least 2.

Theorem 3.3.

(a) A f.p. left O-module is torsion-free if and only if it is projective.

(b) Every f.p. projective left O-module is isomorphic to a finite direct sum of ideals.

(c) A f.p. projective left O-module of rank at least 2 is free.

Proof.

(a) See [Rei03, Corollary 21.5].

(b) This follows from the final statement of [Rei03, Corollary 21.5].

(c) This is a classical result due to Eichler [Eic38]; see also [Shi79, Theorem 3.5]. 2

4. Categorical constructions

4.1 A functor to an abelian category
We recall the following general construction (cf. [Gir68, § 1], [Wat69, Appendix], or [Ser85, pp. 50–
51]). Fix an abelian category C, an object E ∈ C, a ring R, and a ring homomorphism R→ EndE.
For each f.p. left R-module M , choose a presentation

Rm→ Rn→M → 0. (3)

If we view Rm and Rn as spaces of row vectors, then the R-module homomorphism Rm → Rn

is represented by right-multiplication by some matrix X ∈ Mm,n(R). Since R acts on E, left-
multiplication by X defines a morphism En→ Em, whose kernel we call A:

0→ A→ En→ Em. (4)
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For any C ∈ C, applying Hom(C,−) yields an exact sequence

0→ Hom(C,A)→ Hom(C,E)n→ Hom(C,E)m.

On the other hand, applying HomR(−,Hom(C,E)) to (3) yields an exact sequence

0→ HomR(M,Hom(C,E))→ Hom(C,E)n→ Hom(C,E)m.

Comparing the previous two sequences yields an isomorphism

Hom(C,A) ' HomR(M,Hom(C,E)),

and it is functorial in C. This gives a presentation-independent description of A up to
isomorphism as an object of C representing the functor HomR(M,Hom(−, E)) : C→ Sets. Define
HomR(M,E) := A.

An R-module homomorphism M →M ′ induces a homomorphism

HomR(M ′,Hom(C,E))→ HomR(M,Hom(C,E))

for each C ∈ C, functorially in C, so by Yoneda’s lemma it induces also a morphism between the
representing objects HomR(M ′, E)→HomR(M,E). Thus we obtain a functor

HomR(−, E) : {f.p. left R-modules}opp −→ C. (5)

If 0→M1→M2→M3 is an exact sequence of f.p. left R-modules, then, for each C ∈ C,

0→ HomR(M1,Hom(C,E))→ HomR(M2,Hom(C,E))→ HomR(M3,Hom(C,E))

is exact. This implies that the sequence of representing objects

0→HomR(M1, E)→HomR(M2, E)→HomR(M3, E)

is exact. That is, the functor HomR(−, E) is left exact.

Remark 4.1. Following Serre’s appendix to [Lau02], one can also define a functor

−⊗RE : {f.p. right R-modules} −→ C.

Namely, given a f.p. right R-module M , choose a presentation

Rm→ Rn→M → 0,

and define M ⊗R E as the cokernel of Em→ En.

4.2 The functor for an elliptic curve produces abelian varieties
The category of commutative proper group schemes over a field k is an abelian category (the
hardest part of this statement is the existence of cokernels, which is [Gro61, Corollaire 7.4]).
From now on, we assume that C is this category.

Proposition 4.2. Let M be an R-module. Let A := HomR(M,E). For every k-algebra L, we
have A(L) ' HomR(M,E(L)).

Proof. Taking L-points of (4) yields an exact sequence

0→ A(L)→ E(L)n→ E(L)m.

On the other hand, applying HomR(−, E(L)) to (3) yields an exact sequence

0→ HomR(M,E(L))→ E(L)n→ E(L)m.

The maps E(L)n→ E(L)m in both sequences are the same, so the result follows. 2
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Proposition 4.3. Let E be an abelian variety over a field k. Let R be a domain that is f.p. as
a Z-module. Let R → EndE be a ring homomorphism. Let M be a f.p. left R-module. Let
A := HomR(M,E). Then dimA = (rkM)(dimE).

Proof. For any n > 1, the presentation R
n
→ R→ R/nR→ 0 shows that HomR(R/nR,E) '

E[n]. If M is torsion, then it is a quotient of (R/nR)m for some m,n > 1; then A ⊆ E[n]m, so
A is finite.

In general, let r = rkM . There is an exact sequence

0→ Rr →M → T → 0

for some torsion module T ; this yields

0→HomR(T,E)→ A→ Er. (6)

By the previous paragraph, HomR(T,E) is finite, so dimA 6 r dimE. There exists a nonzero
ρ ∈ R such that ρT = 0. Since R is f.p. as a Z-module, it follows that there exists a positive integer
n such that nT = 0. Then Rr

n
→ Rr factors as Rr ↪→ M → Rr, which induces Er → A→ Er

whose composition is multiplication by n, which is surjective. Thus A → Er is surjective, so
dimA > r dimE. Hence dimA = r dimE. 2

If E is an elliptic curve, and I is a subset of EndE, let E[I] :=
⋂
α∈I kerα.

Theorem 4.4. Let E be an elliptic curve over a field k. Let R be a saturated subring of EndE
(saturated as a Z-module). Let M be a torsion-free f.p. left R-module. Let A := HomR(M,E).
Then the following hold.

(a) The group scheme A is an abelian variety isogenous to a power of E.

(b) The functor HomR(−, E) is exact.

(c) If f : Er → Es is a homomorphism arising from applying HomR(−, E) to an R-
homomorphism g : Rs → Rr, then the image of f is isomorphic to HomR(N,E) for some
f.p. torsion-free R-module N ⊆ Rr. (Moreover, if R = EndE, then every homomorphism
f : Er → Es arises from some g.)

(d) If I is a nonzero left R-ideal, then HomR(R/I,E) ' E[I] and HomR(I, E) ' E/E[I].

(e) If T is an R-module that is finite as a set, then HomR(T,E) is a finite group scheme of
order (#T )2/rkR.

(f) If n ∈ Z>0, then A[n] 'HomR(M,E[n]), where the latter is defined by using the induced
ring homomorphism R→ EndE[n].

(g) If ` is a prime not equal to char k, then T`A ' HomR(M,T`E).

Proof. (a) Let r = rkM = dimA. The proof of Proposition 4.3 shows that A admits a surjection
to Er with finite kernel, so if A is an abelian variety, it is isogenous to Er.

The ring R is either Z, a quadratic order, or a maximal quaternionic order. In the first and
third cases, M is projective of rank r over R (the quaternionic case is Theorem 3.3(a)); in other
words, M is a direct summand of Rn for some n; thus A is a direct factor of En, so A is an
abelian variety.

So suppose that R is a quadratic order. Let c be the conductor, i.e., the index of R in its
integral closure. Let ` denote a prime. If ` - c, then the semi-local ring R ⊗ Z(`) is a Dedekind
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domain, but a semi-local Dedekind domain is a principal ideal domain, so M ⊗ Z(`) is free of
rank r over R⊗ Z(`), and M/`M is free of rank r over R/`R.

We claim that A is smooth. This is automatic if char k = 0. So suppose that char k = p > 0.
By [Wat69, Theorem 4.2], we have p - c, so by the above, M/pM is free of rank r over R/pR.
By Proposition 4.2, applying HomR(M,−) to

0 −→ LieE −→ E(k[ε]/(ε2)) −→ E(k) −→ 0

yields
0 −→ HomR(M,LieE) −→ A(k[ε]/(ε2)) −→ A(k) −→ 0.

Thus
LieA ' HomR(M,LieE) ' HomR/pR(M/pM,LieE) ' (LieE)r.

In particular, dim LieA = r, so A is smooth.
Since A is also proper, it is an extension of a finite étale commutative group scheme Φ

by an abelian variety B. The constructed surjection A → Er with finite kernel restricts to a
homomorphism B → Er with finite kernel, and it must still be surjective since Er does not
have algebraic subgroups of finite index; thus B is isogenous to Er. Since B(k) is divisible, the
extension splits over k. In particular, for each prime `,

#A(k)[`] = #E(k)[`]r#Φ[`]. (7)

On the other hand, Proposition 4.2 implies

A(k)[`] = HomR(M,E(k)[`]) = HomR/`R(M/`M,E(k)[`]). (8)

We claim that
#A(k)[`] = #E(k)[`]r. (9)

If ` - c, then M/`M is free of rank r over R/`R, so (9) holds. Now suppose that `|c; in particular,
` 6= p. Then R/`R ' F`[e]/(e2). Every (R/`R)-module is a direct sum of copies of F` and
F`[e]/(e2). Since R is saturated in EndE and ` 6= p, the homomorphisms

R

`R
−→ EndE

`(EndE)
−→ EndE(k)[`]

are injective. On the other hand, #E(k)[`] = `2 = #(R/`R). The previous three sentences imply
that E(k)[`] is free of rank 1 over R/`R. The equality # HomR/`R(N,R/`R) = #N holds for
N = F` and N = F`[e]/(e2), so it holds for every finite (R/`R)-module N , and in particular for
M/`M . Thus (8) implies

#A(k)[`] = #(M/`M) = #(R/`R)r = #E(k)[`]r;

the middle equality holds since M and Rr are torsion-free Z-modules of the same rank. Hence
(9) holds for all `.

Comparing (7) and (9) shows that #Φ[`] = 1 for all `, so Φ is trivial. Thus A = B, an abelian
variety.

(b) By Lemma 4.5 below, it suffices to show that if M → P is an injection of modules with
P projective, then HomR(P,E)→HomR(M,E) is surjective. We have an exact sequence

0 −→HomR(P/M,E) −→HomR(P,E) −→HomR(M,E).
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By (a), HomR(P,E) and HomR(M,E) are abelian varieties, so the image I of HomR(P,E)
→HomR(M,E) is an abelian subvariety of HomR(M,E). By Proposition 4.3,

dim HomR(P,E) = dim HomR(P/M,E) + dim HomR(M,E),

so dim I = dim HomR(M,E). Thus I = HomR(M,E); i.e., HomR(P,E)→ HomR(M,E) is
surjective.

(c) Since HomR(−, E) is exact, it transforms the co-image of g into the image of f . (Co-image
equals image in any abelian category, though the proof above does not need this.)

(d) The proof of [Wat69, Proposition A.2] shows that HomR(R/I,E) ' E[I] (there R is
equal to EndE, but this is not used). The proof of [Wat69, Proposition A.3] shows that E/E[I]
is the connected component of HomR(I, E), but HomR(I, E) is already connected, by (a).

(e) The function (#T )2/rkR of T is multiplicative in short exact sequences. So is the quantity
#HomR(T,E), since HomR(−, E) is exact. Thus we may reduce to the case in which T is
simple, i.e., T ' R/I for some maximal ideal I. Then HomR(T,E) = E[I] by (d). We have
I ⊇ `R for some prime `. If I = `R, then E[I] = E[`], which has order `2 = #(R/I)2/rkR.

Now suppose that I 6= `R. If R has rank 2, then #(R/I) = `; if R has rank 4, then #(R/I) =
`2. Choose f ∈ I\`R; then f does not kill E[`], so E[I] ( E[`]. Thus #E[I] 6 ` = #(R/I)2/rkR.
Thus #HomR(T,E) 6 (#T )2/rkR holds for each Jordan–Hölder factor of R/`R, but for T =
R/`R equality holds, so all the inequalities must have been equalities.

(f) Start with the exact sequence

0→ E[n]→ E
n
→ E.

Given S ∈ C, apply the left exact functors HomC(S,−) and then HomR(M,−); taken for all S,
this produces an exact sequence of representable functors

0 −→HomR(M,E[n]) −→HomR(M,E)
n−→HomR(M,E).

Hence HomR(M,E[n]) ' A[n].
(g) We have

T`A := lim
←−
e

A[`e](ks)

' lim
←−
e

HomR(M,E[`e])(ks) (by (f))

' lim
←−
e

HomR(M,E[`e](ks)) (by Proposition 4.2 with E replaced by E[`e])

' HomR

(
M, lim
←−eE[`e](ks)

)
=: HomR(M,T`E). 2

The following was used in the proof of Theorem 4.4(b).

Lemma 4.5. Let C be an abelian category with enough projectives. Let F : Copp → D be a left
exact functor. Suppose that for each monomorphism M → P with P projective, the morphism
FP → FM is an epimorphism. Then F is exact.

Proof. Given A ∈ C, choose an epimorphism P → A with P projective, and let K be the kernel.
The sequence 0→ K → P → A→ 0 yields

0→ FA→ FP → FK → (R1F )A→ (R1F )P = 0,

and the hypothesis implies that FP → FK is surjective, so (R1F )A = 0. This holds for all A,
so F is exact. 2

941

https://doi.org/10.1112/S0010437X17007990 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007990


B. W. Jordan et al.

Remark 4.6. The hypothesis that R is saturated in Theorem 4.4 cannot be dropped. For example,
if E is an elliptic curve over C with EndE = Z[i], and R is the subring Z[2i], then the R-module
Z[i] has a presentation

R

(
2i
−2

)
−→ R2 (1 i)

−→ Z[i] −→ 0,

so by definition,

HomR(Z[i], E) ' ker
(
E2 (2i −2)

−→ E
)
' E × E[2],

which is not an abelian variety. Moreover, applying HomR(−, E) to the injection Z[i]
2
→ R

yields a homomorphism E → E × E[2], which is not surjective, so HomR(−, E) is not exact.
Finally, Z[i] is isomorphic as R-module to the R-ideal I := 2Z[i], so HomR(I, E) is not an
abelian variety.

4.3 Duality of abelian varieties
Let E be an elliptic curve over a field k. Let R := EndE. The Rosati involution, sending an
endomorphism to its dual, is an isomorphism R→ Ropp. If M is a left R-module, then M∗ :=
HomR(M,R) (the group of homomorphisms of left R-modules) is a right R-module: given f ∈M∗

and r ∈ R, let f · r be the composition M
f
→ R

r
→ R, where R

r
→ R is right-multiplication by r.

In other words, M∗ is a left Ropp-module, which we may reinterpret as a left R-module by using
the Rosati involution. Moreover, if M is f.p., then it is finite over Z, and then so is M∗. Also,
M∗ is torsion-free.

Given an abelian variety A, let A∨ be the dual abelian variety. The following lets us
understand the duals of abelian varieties arising from modules.

Theorem 4.7. Given a f.p. torsion-free left R-module M , we have

HomR(M,E)∨ 'HomR(M∗, E),

functorially in M .

Proof. Let M be a f.p. torsion-free left R-module. Choose a presentation as in (3),

Rm
X−→ Rn −→M −→ 0, (10)

in which the first homomorphism is right-multiplication by some X ∈Mm×n(R) on row vectors.
Apply HomR(−, E) to obtain

0 −→ A −→ En
X−→ Em,

in which X now acts on the left. Taking dual abelian varieties yields

Em
X†
−→ En −→ A∨ −→ 0, (11)

where X† ∈ Mn×m(R) is obtained from X by taking the transpose and applying the Rosati
involution entrywise.

On the other hand, applying HomR(−, R) to (10) yields an exact sequence of right R-modules

0 −→M∗ −→ Rn
X−→ Rm
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involving left-multiplication by X on column vectors. This may be reinterpreted via the Rosati
involution as an exact sequence of left R-modules

0 −→M∗ −→ Rn
X†
−→ Rm

involving right-multiplication by X† on row vectors. Applying the exact functor HomR(−, E)
yields

Em
X†
−→ En −→HomR(M∗, E) −→ 0.

Comparing with (11) yields an isomorphism

HomR(M∗, E) ' A∨ = HomR(M,E)∨. (12)

Given a homomorphism of f.p. torsion-free left R-modules M
f
→ N , we can build a

commutative diagram
Rn //

��

Rm //

��

M //

f

��

0

Ri // Rj // N // 0

and apply the constructions above to show that (12) is functorial in M . 2

4.4 The other Hom functor
Under the assumptions of Theorem 4.4(b), we have a functor of additive categories

HomR(−, E) : {f.p. torsion-free left R-modules}opp

−→ {abelian varieties isogenous to a power of E},

as promised in the introduction. From now on, HomR(−, E) denotes this functor, restricted to
f.p. torsion-free left R-modules.

Given an abelian variety A over the same field as E, the abelian group Hom(A,E) (the group
of homomorphisms of abelian varieties) is a left (EndE)-module, and hence also a left R-module,
and it is f.p. because it is f.p. over Z [Mum70, p. 178, Corollary 1]. In fact, we get a functor in
the opposite direction:

Hom(−, E) : {abelian varieties isogenous to a power of E}
−→ {f.p. torsion-free left R-modules}opp.

For which elliptic curves E are HomR(−, E) and Hom(−, E) inverse equivalences of
categories? If we start with the R-module R and apply HomR(−, E) and then Hom(−, E),
we obtain EndE, so we should have R ' EndE as R-modules; then the only R-module
endomorphisms of EndE are given by multiplication by elements of R, but multiplication by
elements of EndE also give endomorphisms, so R = EndE. Thus we assume from now on that
R = EndE.

Theorem 4.8. Let E be an elliptic curve over a field. Let R := EndE. Then the following hold.

(a) The functor HomR(−, E) is fully faithful.

(b) The functor Hom(−, E) on the image of HomR(−, E) is an inverse to HomR(−, E).

(c) The image of HomR(−, E) consists exactly of the products of elliptic curves of the form
HomR(I, E) for a nonzero left R-ideal I.
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Proof.
(a) The ring R is Z, a quadratic order, or a maximal quaternionic order. By Theorem 3.1,

Theorem 3.2(i), or Theorem 3.3(b), respectively, every f.p. torsion-free left R-module is a finite
direct sum of nonzero left R-ideals. Thus, (a) follows if, for any two nonzero R-ideals I and J ,
the natural map

HomR(J, I) −→ Hom(HomR(I, E),HomR(J,E))

is an isomorphism. If R = Z, this is trivial. If R is a quadratic order, this is the elliptic curve case
of the isomorphism given in [Kan11, Proposition 17, (48)]. If R is a maximal quaternionic order,
then by Theorem 3.3(a) all f.p. torsion-free left R-modules are projective, i.e., direct summands
of f.p. free left R-modules; since HomR(−, E) is fully faithful when restricted to free modules,
it is also fully faithful on projective modules.

(b) Let M be a f.p. torsion-free left R-module. Then

Hom(HomR(M,E), E) = Hom(HomR(M,E),HomR(R,E)) = HomR(R,M) = M

since E = HomR(R,E) and HomR(−, E) is fully faithful by (a).
(c) As remarked in the proof of (a), every f.p. torsion-free left R-module is a finite direct

sum of nonzero left R-ideals I. 2

5. Maximal abelian varieties over Fp2

Fix a prime p. Call an abelian variety A over Fp2 maximal if A has the maximum possible number
of Fp2-points for its dimension, namely (p+ 1)2 dimA.

Proposition 5.1. Let A be a g-dimensional abelian variety over Fp2 . Let ` be a prime not equal
to p. The following are equivalent:

(a) The abelian variety A is maximal; i.e., #A(Fp2) = (p+ 1)2g.

(b) The characteristic polynomial of πA on T`A equals (x+ p)2g.

(c) We have πA = −p.
(d) We have A(Fp2) ' (Z/(p+ 1)Z)2g as abelian groups.

If E is a fixed maximal elliptic curve over Fp2 , then the following also is equivalent to the above:

(e) The abelian variety A is isogenous to Eg.

Proof.
(a) ⇒ (b) Let λ1, . . . , λ2g ∈ Q be the eigenvalues of πA acting on T`A. Then |λi| = p and

#A(Fp2) =
∏

(1−λi) =
∏
|1−λi| 6 (p+ 1)2g; if equality holds, then λi = −p for all i. Thus the

characteristic polynomial is (x+ p)2g.
(b)⇒ (c) Since πA is determined by its action on T`A, which is semisimple [Mum70, pp. 203–

206], we obtain πA = −p.
(c) ⇒ (d) We have

A(Fp2) = ker(πA − 1)(Fp) = ker(−p− 1)(Fp) = A[p+ 1](Fp) ' (Z/(p+ 1)Z)2g.

(d) ⇒ (a) Trivial.
(e) ⇔ (b) By (a) ⇒ (b), the characteristic polynomial of πE is (x+ p)2, so the characteristic

polynomial of πEg is (x+ p)2g. Two abelian varieties over a finite field are isogenous if and only
if their characteristic polynomials are equal [Tat66, Theorem 1(c)]. 2

Lemma 5.2. If A and B are maximal abelian varieties over Fp2 , then any homomorphism
AFp
→ BFp

is the base extension of a homomorphism A→ B.
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Proof. Any homomorphism respects the p2-power Frobenius endomorphisms (both are equal
to −p) and hence descends to Fp2 . 2

Every supersingular elliptic curve over Fp admits a unique model over Fp2 that is maximal:
the existence is [BGGP05, Lemma 3.21], and uniqueness follows from Lemma 5.2. In particular,
maximal elliptic curves over Fp2 exist. If E is any such curve, then E is supersingular, and
Lemma 5.2 implies that EndE = EndEFp

, which is a maximal order O in a quaternion algebra

over Q ramified at p and ∞. Also, the kernel of the p-power Frobenius morphism E → E(p) is
isomorphic to αp.

By Proposition 5.1(a)⇒(e), any maximal abelian variety A over Fp2 is isogenous to a power
of E. The main result of this section strengthens this as follows.

Theorem 5.3.

(a) Every maximal abelian variety A over Fp2 is isomorphic to a product of maximal elliptic
curves over Fp2 .

(b) Fix a maximal elliptic curve E over Fp2 . Let O := EndE. Then the functors HomO(−, E)
and Hom(−, E) are inverse equivalences of categories. Also, the categories involved can be
rewritten so that HomO(−, E) becomes

HomO(−, E) : {f.p. projective left O-modules}opp ∼−→ {maximal abelian varieties/Fp2}.
(c) Fix a maximal elliptic curve E over Fp2 . Let g > 2. Every g-dimensional maximal abelian

variety over Fp2 is isomorphic to Eg. In particular, any product of g maximal elliptic curves
over Fp2 is isomorphic to any other.

The analogous results hold if maximal is replaced by minimal; i.e., we consider abelian varieties
A over Fp2 such that #A(Fp2) = (p− 1)2 dimA.

We need a few lemmas for the proof of Theorem 5.3.

Lemma 5.4. There exists an elliptic curve E over Fp such that EFp2
is maximal.

Proof. There exists an elliptic curve E over Fp with p + 1 points [Wat69, Theorem 4.1(5)(i)].
The p-power Frobenius endomorphism πE of E satisfies π2E = −p, so EFp2

satisfies condition (c)
in Proposition 5.1. 2

Lemma 5.5. If E and E′ are maximal elliptic curves over Fp2 , there exists a separable isogeny
E → E′.

Proof. For elliptic curves E and E′, write E ∼ E′ if there exists an isogeny E → E′ of degree
prime to p. The relation ∼ is an equivalence relation: reflexive because of the identity, symmetric
because of the dual isogeny (which has the same degree), and transitive because of composition
of isogenies.

Any isogeny φ : E → E′ factors as f ◦ λ where deg f = pn for some n > 1, and p - deg λ.
Here λ is separable. On the other hand, f is a factor of [pn], which is purely inseparable if E is
maximal. Thus, assuming that E is maximal, φ is separable if and only if p - deg φ.

Let E0 be the maximal elliptic curve over Fp2 in Lemma 5.4. Since #E0(Fp2) = #E(Fp2),

there exists an isogeny E0 → E, which factors as E0
f
→ E0

λ
→ E, where f is a power of the

p-power Frobenius morphism (which goes from E0 to itself since E0 is definable over Fp), and λ
is separable. By the previous paragraph, p - deg λ. Thus E0 ∼ E. Similarly, E0 ∼ E′, so E ∼ E′.
Thus there exists an isogeny E → E′ of degree prime to p. Any such isogeny is separable. 2
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Remark 5.6. Even better, if E and E′ are maximal elliptic curves over Fp2 , there exists an isogeny
of `-power degree for any prime ` 6= p: for an argument due to Serre, see [Mes86, p. 223].

Lemma 5.7. If A is a maximal abelian variety over Fp2 , then every finite étale subgroup scheme
of AFp

is defined over Fp2 .

Proof. The p2-power Frobenius field automorphism acts on (prime-to-p) torsion points of AFp
as

−p, so it preserves any finite subgroup of order prime to p. 2

Corollary 5.8. If A is a maximal abelian variety over Fp2 , and G is a nonzero finite étale
subgroup scheme of A, then G contains a subgroup scheme of prime order.

Proof. Choose a prime-order subgroup of G(Fp). The corresponding finite étale subgroup scheme
of GFp

is defined over Fp2 by Lemma 5.7. 2

Lemma 5.9. Let A be a supersingular abelian variety over a field k of characteristic p. Every
p-power order subgroup scheme G ⊆ A is an iterated extension of copies of αp.

Proof. By induction, it suffices to show that, if G 6= 0, then G contains a copy of αp. The
a-number dimk Hom(αp, G) is unchanged by field extension [LO98, § 1.5], so we may assume
that k is algebraically closed. Then A is isogenous to a power Er of a supersingular elliptic
curve. The group scheme E[p] is an extension of αp by αp, so all Jordan–Hölder factors of E[pn]
are isomorphic to αp. The image of E[pN ] under the isogeny Er → A contains A[pn] if N is
sufficiently large relative to n, and A[pn] contains G if n is large enough. Thus all Jordan–Hölder
factors of G are isomorphic to αp. 2

Lemma 5.10. Let E and E′ be maximal elliptic curves over Fp2 . Identify αp with a subgroup
scheme of each. Then each homomorphism E → E′ restricts to a homomorphism αp→ αp and
the resulting map

Hom(E,E′) −→ Endαp ' Fp2 (13)

is surjective.

Proof. Since each αp is the kernel of the p-power Frobenius morphism, any homomorphism
E → E′ must map αp to αp. If E′ = E, then the resulting ring homomorphism

EndE −→ Endαp ' Fp2

is surjective because every ring homomorphism from O to Fp2 is surjective. In the general case,
Lemma 5.5 provides a separable isogeny λ : E→ E′; then λ|αp 6= 0, so {λ◦e : e ∈ EndE} surjects
onto Endαp. 2

Lemma 5.11. Let E and E′ be maximal elliptic curves over Fp2 . Let G be a subgroup scheme of
E such that #G is prime. Then every homomorphism h : G→ E′ extends to a homomorphism
E → E′.

Proof. Case 1 : #G is a prime ` 6= p. Then extend G(Fp) → E′(Fp) to a homomorphism
E[`](Fp)→ E′[`](Fp) and lift it arbitrarily to a Z`-module homomorphism t : T`E→ T`E

′. Since
the p2-power Frobenius automorphism acts as −p on both sides, t respects the action of GFp2

.

By Tate’s theorem on homomorphisms [Tat66], t comes from some τ ∈ Hom(E,E′) ⊗ Z`. Any
τ ′ ∈ Hom(E,E′) congruent to τ modulo ` extends h.

Case 2 : #G = p. By Lemma 5.9, G is the copy of αp of E (the kernel of the p-power Frobenius
morphism). By Lemma 5.10, h extends to a homomorphism E → E′. 2
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Lemma 5.12. Let f : X → Y be a homomorphism of commutative group schemes. Let Γ be the
graph of f . Then there exists an automorphism of X × Y sending Γ to X × {0}.

Proof. Use (x, y) 7→ (x, y − f(x)), which has inverse (x, y) 7→ (x, y + f(x)). 2

Lemma 5.13. Let B be a product E1 × · · · × Eg of maximal elliptic curves over Fp2 . Let G be
a finite subgroup scheme of B. Then B/G is isomorphic to a product of maximal elliptic curves
over Fp2 .

Proof. First suppose that #G is prime. Let prj : B → Ej denote the jth projection. Then
prj(G) 6= 0 for some j, say j = 1. Since #G is prime, pr1 maps G isomorphically to its image
G1 ⊂ E1. Thus G is the graph of a homomorphism h : G1→ E2×· · ·×Eg. Applying Lemma 5.11
to each factor G1 → Ej shows that h extends to a homomorphism f : E1 →

∏
j>2Ej . Then G

is contained in the graph of f . By Lemma 5.12, after applying an automorphism of B we may
assume that G ⊆ E1. Then B/G is the product of the maximal elliptic curves E1/G,E2, . . . , Eg.

By Corollary 5.8 and Lemma 5.9, every Jordan–Hölder factor of G has prime order, so the
general case follows by induction. 2

Proof of Theorem 5.3.
(a) By Proposition 5.1(a)⇒(e), A ' B/G, where B is a product of maximal elliptic curves

(in fact, a power) and G is a finite subgroup scheme of B. Apply Lemma 5.13.
(b) First let us justify the rewriting of the categories. F.p. torsion-free left O-modules are

projective by Theorem 3.3(a). By Proposition 5.1(a)⇔(e), the abelian varieties isogenous to a
power of E are exactly the maximal abelian varieties over Fp2 .

By (a), every maximal abelian variety is a product of maximal elliptic curves, each of which
is HomO(I, E) for some left O-ideal I, by the bottom of page 541 in [Wat69]. The result now
follows from Theorem 4.8.

(c) Combine Theorem 3.3(c) and part (b).
The same proofs apply in the minimal case. 2

Remark 5.14. Because of Lemma 5.2, Theorem 5.3(c) could be deduced also from its analogue
over Fp, that for g > 2, any product of g supersingular elliptic curves over Fp is isomorphic to
any other. The latter is a well-known theorem of Deligne, proved in a similar way: see [Ogu79,
Theorem 6.2] and [Shi79, Theorem 3.5].

Remark 5.15. A related result can be found in [Oor75]: Theorem 2 there states that, if A is an
abelian variety over an algebraically closed field of characteristic p, and the a-number of A equals
dimA, then A is isomorphic to a product of supersingular elliptic curves.

6. Kernel subgroups

6.1 General properties of kernel subgroups
Definition 6.1. Let A be an abelian variety over a field. Call a subgroup scheme G ⊆ A a kernel
subgroup if G = A[I] for some I ⊆ EndA. (These are called ideal subgroups in [Kan11, p. 302].)

In the definition, we may replace I by the left (EndA)-ideal it generates without changing
A[I]. Thus we may always assume that I is a left (EndA)-ideal.
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Proposition 6.2.

(a) An intersection of kernel subgroups in A is a kernel subgroup.

(b) Let A1, . . . , An be abelian varieties. Suppose that Gi ⊆ Ai for i = 1, . . . , n. Then
∏n
i=1Gi

is a kernel subgroup of
∏n
i=1Ai if and only if each Gi is a kernel subgroup of Ai.

(c) Let I1, . . . , In be pairwise coprime 2-sided ideals of EndA. Let Gi ⊆ A[Ii] for i = 1, . . . , n.
Then

∑n
i=1Gi is a kernel subgroup if and only if each Gi is a kernel subgroup.

Proof.
(a) We have

⋂
A[Ii] = A[

∑
Ii] for any left ideals Ii.

(b) Let A =
∏
Ai and G =

∏
Gi. Suppose that G = A[I]. For each f ∈ I, the composition

Ai ↪→ A
f
→ A� Ai defines f̄ ∈ EndAi, and Gi is the intersection of the kernels of all such f̄ .

Conversely, suppose that Gi = Ai[Ii] for each i. Let I :=
∏
Ii denote the set of ‘diagonal’

endomorphisms (f1, . . . , fn) : A→ A with fi ∈ Ii. Then G = A[I].
(c) By induction, we may assume n = 2. Since I1 and I2 are coprime 2-sided ideals, we have

A[I1I2] = A[I1]⊕A[I2], and every subgroup scheme H ⊆ A[I1I2] decomposes as H1⊕H2, where
Hi ⊆ A[Ii]; namely, Hi = H ∩A[Ii].

If G1 +G2 is a kernel subgroup, then so is Gi = (G1 +G2) ∩A[Ii], by (a).
Conversely, suppose that Gi = A[Ji] for some left ideal Ji. Replace Ji by Ji + Ii to assume

that Ji ⊇ Ii. Let K := I2J1 + I1J2. We claim that A[K] = G1 +G2. First, I2J1 ⊆ J1, which kills
G1; also, I1J2 ⊆ I1, which kills G1. Thus K kills G1. Similarly, K kills G2. Thus G1+G2 ⊆ A[K].
On the other hand, if we write A[K] = H1 ⊕H2 with Hi ⊆ A[Ii], we will show that Hi ⊆ Gi, so
that A[K] ⊆ G1 + G2. Write 1 = e1 + e2 with ei ∈ Ii. Then the subsets e1J1 ⊆ I2J1 ⊆ K and
e2J1 ⊆ I2 kill H1, so J1 kills H1; i.e., H1 ⊆ A[J1] = G1. Similarly H2 ⊆ G2. So A[K] ⊆ G1 +G2.
Hence G1 +G2 = A[K], a kernel subgroup. 2

6.2 Kernel subgroups of a power of an elliptic curve
Proposition 6.3. Let E be an elliptic curve over a field, and let r ∈ Z>0. Let R := EndE. For
a subgroup scheme G ⊆ Er, the following are equivalent:

(i) G is a kernel subgroup.

(ii) G is the kernel of a homomorphism Er → Es for some s ∈ Z>0.
(iii) There exists a f.p. torsion-free R-module M such that Er/G 'HomR(M,E).

(iv) There exists a submodule M ⊆ Rr such that applying HomR(−, E) to

0→M → Rr → Rr/M → 0

yields
0→ G→ Er → Er/G→ 0.

Proof.
(i) ⇒ (ii) Suppose that G is a kernel subgroup, say A[I]. Let f1, . . . , fn be generators for I.

Then G is the kernel of Er
(f1,...,fn)

// (Er)n .

(ii) ⇒ (iii) This is a special case of Theorem 4.4(c).
(iii) ⇒ (iv) If Er/G 'HomR(M,E) for some f.p. torsion-free M , then by Theorem 4.8(a),

the natural surjection Er � Er/G comes from some injection M ↪→ Rr. Applying HomR(−, E)
to

0→M → Rr → Rr/M → 0
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yields
0→ H → Er � Er/G

for some H, which must be isomorphic to G.
(iv) ⇒ (ii) Choose a surjection h : Rs � M . Applying HomR(−, E) to the composition

Rs
h
�M ↪→ Rr produces a homomorphism Er � Er/G ↪→ Es with kernel G.
(ii) ⇒ (i) We may increase s to assume that r|s. Then G is an intersection of s/r

endomorphisms of Er, so it is a kernel subgroup by Proposition 6.2(a). 2

Proposition 6.4. Let E be an elliptic curve. Let R := EndE. Then the following are equivalent:

(i) For each r ∈ Z>0, every subgroup scheme of Er is a kernel subgroup.

(ii) For each r ∈ Z>0, every finite subgroup scheme of Er is a kernel subgroup.

(iii) The functors HomR(−, E) and Hom(−, E) are inverse equivalences of categories.

Proof.
(i) ⇒ (ii) Trivial.
(ii) ⇒ (iii) Suppose that A is an abelian variety isogenous to Er. Then A ' Er/G for

some finite subgroup scheme G. By assumption, G is a kernel subgroup. Proposition 6.3(i)⇒(iii)
implies that A is in the image of HomR(−, E). The result now follows from Theorem 4.8.

(iii) ⇒ (i) Let G be a subgroup scheme of Er. Then Er/G is isogenous to Es for some
s 6 r. By assumption, HomR(−, E) is an equivalence of categories, so Er/G is of the form
HomR(M,E). By Proposition 6.3(iii)⇒(i), G is a kernel subgroup. 2

In the next few sections, we investigate when it holds that all finite subgroup schemes of
powers of E are kernel subgroups, in order to determine when HomR(−, E) and Hom(−, E) are
inverse equivalences of categories.

6.3 Prime-to-p subgroups
We continue to assume that E is an elliptic curve and R = EndE. Let ` be a prime not equal to
char k. Let R` := R⊗Z`. The natural map R`→ EndZ`

T`E is injective since an endomorphism
that kills E[`n] for all n is 0, and has saturated image since an endomorphism that kills E[`]
is equal to ` times an endomorphism. Let C := EndR`

T`E, which is the commutant of R` in
EndZ`

T`E ' M2(Z`). For any elliptic curve, we have rkR ∈ {1, 2, 4}, so one of the following
holds:

(i) R` = Z` and C = M2(Z`);
(ii) R` = C = Z` ⊕ Z`α, a Z`-algebra that is a saturated rank 2 Z`-submodule of M2(Z`) for

some α ∈ M2(Z`); or

(iii) R` = M2(Z`) and C = Z`.

(To see that C = R` in case (ii), one may argue as follows. By [Mum70, III, § 19, Corollary 3], the
Q-algebra R⊗Q is semisimple, so R⊗Q` is either a degree 2 field extension of Q`, or is conjugate
to Q` ×Q`. In either case, the commutant C ⊗Z`

Q` of R ⊗Q` in M2(Q`) is 2-dimensional. On
the other hand, an algebra generated by one element is commutative, so C contains R`. Also,
R` is saturated in M2(Z`). The previous three sentences imply that C = R`.)

Let e ∈ Z>0.

Lemma 6.5. Every finitely generated left C/`eC-module injects into a free C/`eC-module.
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Proof. If C = Z`, this is trivial. For any ring A and positive integer n, the category of A-modules
is equivalent to the category of Mn(A)-modules [Lam99, Theorem 17.20], and the equivalence
preserves injections, finite generation, and projectivity [Lam99, Remark 17.23(A)]; applying this
to A = Z`/`eZ` and n = 2 shows that the case C = Z` implies the case C = M2(Z`).

Finally, suppose that C is of rank 2. Then C/`eC is free of rank 2 over Z/`eZ; say, with basis
1, α. For c ∈ C/`eC, let λ(c) be the coefficient of α in c. Multiplying any nonzero element of
kerλ by α gives an element outside kerλ. Therefore the pairing

C/`eC × C/`eC −→ Z/`eZ,
x, y 7−→ λ(xy)

is a perfect pairing. In other words, the Pontryagin dual (C/`eC)D is isomorphic to C/`eC
as a C/`eC-module. If M is a finitely generated C/`eC-module, there exists a surjection
(C/`eC)r �MD for some r ∈ Z>0; taking Pontryagin duals yields an injection

M ↪→ ((C/`eC)r)D ' (C/`eC)r. 2

Lemma 6.6. The group (T`E)2 is free as an R`-module and as a C-module. The group E[`e](ks)
2

is free as an R/`eR-module and as a C/`eC-module.

Proof. Since E[`e](ks) = T`E/`
eT`E, by Nakayama’s lemma it is enough to check that E[`](ks)

2

is free as an A-module, for A = R/`R and for A = C/`C. Identify E[`](ks)
2 with F2

` , so that
A ⊆M2(F`). The case A = F` is trivial. If A is F`⊕F`α for some α ∈M2(F`), then every faithful
A-module of dimension 2 over F` is free. If A = M2(F`), then the free A-module A is a direct
sum of two copies of F2

` (the two column spaces). 2

Lemma 6.7. The natural maps

C/`eC −→ EndR/`eRE[`e](ks),

R/`eR −→ EndC/`eC E[`e](ks)

are isomorphisms.

Proof. The first map is an isomorphism since C = EndR`
T`E and C and R` are saturated in

EndT`E ' M2(Z`). Lemma 6.6 and [Lam99, Theorem 18.8(3)⇒(1)] imply that E[`e](ks) is a
generator of the category of finitely generatedR/`eR-modules, so [Lam99, Proposition 18.17(2)(d)]
yields the second isomorphism. 2

Recall that Gk = Gal(ks/k). There is a group homomorphism Gk → C× since each σ ∈ Gk
respects the R-action on the groups E[`e](ks) and T`E.

Proposition 6.8. Let E be an elliptic curve over a field k. Let `, e, and C be as above. Let G
be a subgroup scheme of E[`e]r for some r. Then G is a kernel subgroup if and only if G(ks) is
a C/`eC-submodule of E[`e]r(ks).

Proof. Suppose that G(ks) is a C/`eC-submodule of E[`e]r(ks). Let H := E[`e]r/G. Then
H(ks) is a finitely generated C/`eC-module. By Lemma 6.5, H(ks) injects into a free C/`eC-
module, which in turn injects into E[`e]s(ks) for some s. Because of the homomorphisms
Gk → C× → (C/`eC)×, the C/`eC-module homomorphism H(ks)→ E[`e]s(ks) is a Gk-module
homomorphism, so it comes from a homomorphism H → E[`e]s of étale group schemes.
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The composition E[`e]r � H ↪→ E[`e]s is given by an s × r matrix Ne with entries in
EndC/`eC E[`e](ks) = R/`eR (the equality is Lemma 6.7). Lift Ne to N ∈ Ms×r(R). Then G
is the intersection of the kernel subgroups E[`e]r and ker(N : Er → Es). By Propositions 6.2(a)
and 6.3, G is a kernel subgroup.

Conversely, if G is a kernel subgroup, say the kernel of Er → Es, then it is also the kernel
of E[`e]r → E[`e]s, which is a homomorphism of C/`eC-modules, so G is a C/`eC-module. 2

The group homomorphism Gk → C× induces algebra homomorphisms Z`[Gk] → C and
F`[Gk]→ C/`C.

Proposition 6.9. Let E, k, `, R, R`, and C be as above. The following are equivalent:

(i) The homomorphism F`[Gk]→ C/`C is surjective.

(ii) The homomorphism Z`[Gk]→ C is surjective.

(iii) Every `-power order subgroup scheme of Er for every r is a kernel subgroup.

Proof.
(i) ⇒ (ii) Nakayama’s lemma.
(ii) ⇒ (iii) Let G be an `-power subgroup scheme of Er, say G ⊆ E[`e]r. Then G(ks) is a

Z`[Gk]-module. Since Z`[Gk] → C is surjective, G(ks) is also a C-module, and hence a C/`eC-
module. By Proposition 6.8, G is a kernel subgroup.

(iii) ⇒ (i) Suppose that F`[Gk]→ C/`C is not surjective; let D be the image. The algebra
C/`C is one of F`,

{(
a b
0 a

)}
' F`[ε]/(ε2),

{(
a 0
0 b

)}
' F` × F`, F`2 , or M2(F`). The first is excluded

since it has no nontrivial subalgebras. In the second, third, and fourth cases, D can only be F`,
and it is easy to find a subspace of F2

` ' E[`](ks) that is not a C/`C-module. In the fifth case, D
is contained in a copy of either

{(
a b
0 c

)}
or F`2 . Now

{(
a b
0 c

)}
fixes a line in F2

` not fixed by M2(F`).
And F`2 fixes an F`2-line in F2

`2 ' E
2[`](ks) that is not fixed by M2(F`). Thus in each case, there

is a subgroup scheme of E[`] or E2[`] that is not a C/`C-module, and hence by Proposition 6.8
not a kernel subgroup. 2

6.4 p-power subgroups
Proposition 6.10. Let E be an ordinary elliptic curve over a field k of characteristic p. Assume
that EndE 6= Z (automatic if k is finite). Then every p-power order subgroup scheme G ⊆ Er is
a kernel subgroup.

Proof. The ring R := EndE ' EndEk is a quadratic order. Although R is not necessarily
a Dedekind domain, its conductor is prime to p, so it makes sense to speak of the splitting
behavior of (p) in R. In fact, since E is ordinary, (p) splits, say as pq. So E[p] is the direct sum
of group schemes E[p] and E[q], each of order p by Theorem 4.4(e). Since E is ordinary, one of
them, say E[p], is étale, and the other is connected. For any e ∈ Z>0, we have (pe) = peqe so
E[pe] ' E[pe] ⊕ E[qe]. The Jordan–Hölder factors of E[pe] are isomorphic to E[p], so E[pe] is
étale; similarly E[qe] is connected. We have G ⊆ E[pe]r for some e. By Proposition 6.2(c), we
may assume that G ⊆ E[pe]r or G ⊆ E[qe]r.

In the first case, E[pe](ks) ' Z/peZ, so G is the kernel of a homomorphism E[pe]r → E[pe]s

given by a matrix in Ms×r(Z). Since E[pe] is a kernel subgroup, so is E[pe]r, and so is G, by
Propositions 6.2(a) and 6.3.

In the second case, we take Cartier duals: E[pe]r � G∨. Then G∨ is the cokernel of some
homomorphism E[pe]s → E[pe]r given by a matrix N ∈ Mr×s(Z). So G is the kernel of the
homomorphism E[qe]r → E[qe]s given by the transpose NT ∈ Ms×r(Z). Since E[qe] is a kernel
subgroup, so is E[qe]r, and so is G, by Propositions 6.2(a) and 6.3. 2
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Proposition 6.11. Let E be a supersingular elliptic curve over a field k of characteristic p.

(a) If k = Fp, then every p-power order subgroup scheme G ⊆ Er is a kernel subgroup, and in
fact is a kernel of an endomorphism of Er.

(b) If k = Fp2 and rkR = 4 (i.e., #E(Fp2) = (p± 1)2), then every subgroup scheme G ⊆ Er is
a kernel subgroup.

(c) If k = Fp2 and rkR 6= 4, then there exists a copy of αp in E × E that is not a kernel
subgroup.

(d) If k is Fpa for some a > 3, or if k is infinite, then there exists a copy of αp in E ×E that is
not a kernel subgroup.

Proof. The kernel of πE,p : E → E(p) is αp. Suppose that αp ⊆ E is a kernel subgroup. By
Proposition 6.3(i)⇒(iv), αp 'HomR(R/I,E) for some left R-ideal I. By Theorem 4.4(e), p =
#(R/I)2/rkR. We have three cases:

– If R = Z, this is a contradiction.

– If rkR = 2, then #(R/I) = p, so R/I ' Fp. Since E is supersingular, p is ramified or inert
in R, and the above implies that p is ramified.

– If rkR = 4, then #(R/I) = p2, so I is the unique ideal of index p2 in R, and R/I ' Fp2 .

If J is an R-module with I2 ( J ( R2 (here I2 means I × I), then R2/J ' R/I (since R/I is
a field), and the surjection R2 � R2/J gives rise to an injection αp ↪→ E × E. Conversely, any
kernel subgroup αp ⊆ E × E arises from such a J . So such kernel subgroups are in bijection
with P1(R/I). On the other hand, Endαp ' k, so Hom(αp, E×E) = k2, and the copies of αp in
E×E are in bijection with P1(k). Thus if every αp in E×E is a kernel subgroup, then P1(R/I)
is in bijection with P1(k), so #(R/I) = #k; i.e., k ' R/I, which is Fp or Fp2 as above. This
proves (c) and (d).

(a) By Lemma 5.9, Er → Er/G factors as a chain of p-isogenies, each with kernel αp. If we
show that any quotient Er/αp is isomorphic to Er, then each abelian variety in the chain must
be isomorphic to Er, so G is a kernel of an endomorphism of Er, as desired.

The group GLr(Z) ⊆ GLr(EndE) acts on Er, and acts transitively on the nonzero elements
of Hom(αp, E

r) = Frp. Therefore it suffices to consider the quotient Er/αp in which the αp is
contained in E × 0× · · · × 0. Now E/αp = E/E[πE ] ' E, so Er/αp ' Er.

(b) The abelian variety Er/G is isogenous to a power of E, so by Theorem 5.3(b), it is of
the form HomR(M,E). By Proposition 6.3(iii)⇒(i), G is a kernel subgroup. 2

7. Abelian varieties isogenous to a power of an elliptic curve

Let E be an elliptic curve over k. We break into cases, first according to whether E is ordinary
or supersingular, and next according to rk EndE and #k. By convention, elliptic curves over a
field of characteristic 0 are included among the ordinary curves.

7.1 E is ordinary and rkEndE = 1
Theorem 7.1. Fix an elliptic curve E over a field k such that EndE ' Z.

(a) The image of HomR(−, E) consists of abelian varieties isomorphic to a power of E.

(b) The functors HomR(−, E) and Hom(−, E) are inverse equivalences of categories (i.e., every
abelian variety isogenous to a power of E is isomorphic to a power of E) if and only if
char k = 0 and for every prime ` the homomorphism F`[Gk] → EndE[`](ks) ' M2(F`) is
surjective.
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Proof of Theorem 7.1.
(a) Every f.p. torsion-free Z-module is free.
(b) By Proposition 6.4, HomR(−, E) and Hom(−, E) are equivalences if and only if every

finite subgroup scheme G is a kernel subgroup. By Proposition 6.2(c), we need only consider G
of prime power order.

If char k = p > 0, then # kerπE,p = p, but #E[I] is a square for every nonzero ideal
I ⊆ Z, so kerπE,p is not a kernel subgroup. If char k = 0, then apply Proposition 6.9(i)⇔(iii)
for every `. 2

Remark 7.2. Surjectivity of F`[Gk]→ M2(F`) fails if and only if the image G of Gk → GL2(F`)
is contained in a Borel subgroup or a nonsplit Cartan subgroup, as we now explain. Let A be
the image of F`[Gk]→M2(F`). View V := F2

` as an A-module. If V is reducible, then surjectivity
fails and G is contained in a Borel subgroup. So suppose that V is irreducible. By Schur’s lemma
[Lan02, XVII.1.1], EndA V is a division algebra D. But D ⊆ M2(F`), so D is F` or F`2 . By
Wedderburn’s theorem [Lan02, XVII.3.5], A ' EndD V . If D = F`, then A = M2(F`), and G is
not contained in a Borel subgroup or a nonsplit Cartan subgroup. If D ' F`2 , then dimD V = 1,
so A ' EndD V ' F`2 , and G is contained in the nonsplit Cartan subgroup A ∩GL2(F`).

Example 7.3. Let E be the elliptic curve X0(11) over Q, with equation y2+y = x3−x2−10x−20.
As in [Ser72, 5.5.2], the image of GQ→ AutE[5] ' GL2(F5) is contained in a Borel subgroup, so
by Theorem 7.1(b) and Remark 7.2, the functors HomR(−, E) and Hom(−, E) are not inverse
equivalences of categories.

Example 7.4. Let E be the elliptic curve over Q of conductor 37 with equation y2 + y = x3 − x.
By [Ser72, 5.5.6], the homomorphism GQ → Aut(E[`]) ' GL2(F`) is surjective for every prime
`, so by Theorem 7.1(b), the functors HomR(−, E) and Hom(−, E) are inverse equivalences of
categories.

7.2 E is ordinary and rkEndE = 2
Fix an ordinary elliptic curve E over a field k such that rk EndE = 2. (These are called CM
elliptic curves in [Kan11, § 3].) Then EndE ' EndEk, because if an endomorphism becomes
divisible by a positive integer n over an extension field, it kills E[n], so it is divisible by n
already over k. Let R := EndE and K := FracR.

If E′ is an elliptic curve isogenous to E, then EndE′ is another order R′ in K. Let fE′ be
the conductor of R′, i.e., the index of R′ in its integral closure. More generally, if A is an abelian
variety isogenous to Er, then EndA is an order in Mr(K), and its center Z(EndA) is an order
in Z(Mr(K)) = K, and we let fA be the conductor of Z(EndA).

Theorem 7.5. Fix an ordinary elliptic curve E over a field k such that rk EndE = 2. Let
R := EndE. The image of HomR(−, E) consists of the abelian varieties A isogenous to a power
of E such that fA|fE , i.e., such that R ⊆ Z(EndA). These are exactly the products of elliptic
curves E′ each isogenous to E and satisfying fE′ |fE .

Proof. Suppose that φ : Er→ A is an isogeny and fA|fE . Since fA|fE , there is an R-action on A
such that φ respects the R-actions. Let G := kerφ, so G(ks) is an R-module. Write G =

⊕
`G`,

where G` is a group scheme of `-power order. For ` 6= char k, we are in the case R` = C of § 6.3, so
G`(ks) is also a C/`eC-module for some e, and Proposition 6.8 shows that G` is a kernel subgroup.
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If char k = p > 0, then Gp is a kernel subgroup by Proposition 6.10. By Proposition 6.2(c), G is
a kernel subgroup. By Proposition 6.3(i)⇒(iii), the abelian variety A ' Er/G is in the image of
HomR(−, E).

Conversely, if A is in the image of HomR(−, E), then by Theorem 4.8(c) A is a product of
elliptic curves of the form HomR(I, E). Because the functor HomR(−, E) is fully faithful, if
E′ = HomR(I, E) then E′ is isogenous to E and EndE′ ' EndR I, which contains R since R is
commutative. In particular, fE′ |fE . Finally, fA is the least common multiple of the fE′ , so fA|fE
too. 2

Theorem 7.6. Fix an ordinary elliptic curve E over a finite field Fq. Let R := EndE. Then
HomR(−, E) and Hom(−, E) are equivalences of categories if and only if Z[πE ] = R.

Proof. Suppose that Z[πE ] = R. If A is isogenous to a power of E, then πA has the same minimal
polynomial as πE , so Z(EndA) contains Z[πA] ' Z[πE ]; i.e., fA|fE is automatic.

On the other hand, if Z[πE ] 6= R, then E is isogenous to an elliptic curve E′ satisfying
EndE′ = Z[πE′ ] [Wat69, Theorem 4.2(2)]. Theorem 7.5 shows that E′ is not in the image of
HomR(−, E), so HomR(−, E) is not an equivalence of categories. 2

We can also give a more general criterion that applies even if k is not finite.

Theorem 7.7. Fix an ordinary elliptic curve E over a field k such that rk EndE = 2. Then
HomR(−, E) and Hom(−, E) are equivalences of categories if and only if for every prime ` 6=
char k, there exists σ ∈ Gk whose action on E[`](ks) is not multiplication by a scalar.

Proof. By Propositions 6.4(i)⇔(iii), 6.2(c), and 6.10, the functors HomR(−, E) and
Hom(−, E) are equivalences if and only if, for each ` 6= char k, the homomorphism F`[Gk]→ C/`C
is surjective. Since dimF`

C/`C = 2, surjectivity is equivalent to the image of

F`[Gk] −→ C/`C ⊆ EndE[`](ks) ' M2(F`)

not being F`. 2

Example 7.8. Let E be the elliptic curve y2 = x3 − x over k := Q(
√
−1); then j(E) = 1728

and EndE = Z[
√
−1]. The group Gk acts trivially on E[2](ks), so by Theorem 7.7, the functors

HomR(−, E) and Hom(−, E) are not inverse equivalences of categories.

Example 7.9. Let E be the elliptic curve y2 = x3+x2−3x+1 over k := Q(
√
−2); then j(E) = 8000

and EndE = Z[
√
−2]. The field k(E[2]) equals k(

√
−1), so the image of Gk in GL2(F2) has order

2 and hence does not consist of scalars. Now consider a prime ` > 2. Choose a prime p 6= ` such
that p splits in k/Q and (p/`) = −1. Let σ be a Frobenius element of Gk at a prime above p. The
image of σ in Aut(E[`]) ' GL2(F`) has nonsquare determinant (p mod `), so it is not a scalar.
Thus, by Theorem 7.7, the functors HomR(−, E) and Hom(−, E) are inverse equivalences of
categories.

Remark 7.10. If E and E′ are ordinary elliptic curves over an algebraically closed field k and
their endomorphism rings are orders in the same quadratic field, then E and E′ are isogenous.
But over non-algebraically closed fields, this can fail. For example, if E is an ordinary elliptic
curve over a finite field, then its quadratic twist E′ has the same endomorphism ring, but opposite
trace of Frobenius, so E and E′ are not isogenous.
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7.3 E is supersingular and k = Fp
Fix a supersingular elliptic curve E over Fp. Let R := EndE. Let P (x) be the characteristic
polynomial of π := πE . Define fA as in § 7.2. In particular, fE is the conductor of R. We have
the following cases:

The last column, which indicates when HomR(−, E) and Hom(−, E) are equivalences of
categories, is explained by the following analogues of Theorems 7.5 and 7.6, proved in the same
way except that we use Proposition 6.11(a) in place of Proposition 6.10.

Theorem 7.11. Fix a supersingular elliptic curve E over Fp. Let R := EndE. The image of
HomR(−, E) consists of the abelian varieties A isogenous to a power of E such that fA|fE , i.e.,
such that R ⊆ Z(EndA). These are exactly the products of elliptic curves E′ each isogenous to
E and satisfying fE′ |fE .

Theorem 7.12. Fix a supersingular elliptic curve E over Fp. Let R := EndE. Then the functors
HomR(−, E) and Hom(−, E) are equivalences of categories if and only if Z[πE ] = R.

7.4 E is supersingular, k = Fp2, and rkEndE = 4
In this case, E is a maximal or minimal elliptic curve over Fp2 . These cases were already handled:
see Theorem 5.3.

7.5 E is supersingular, k = Fp2, and rkEndE = 2
By Proposition 6.11(c), not every subgroup scheme is a kernel subgroup. By Proposition
6.4(iii)⇔(ii), the functors HomR(−, E) and Hom(−, E) are not equivalences of categories.

Remark 7.13. These are the cases in which the characteristic polynomial of πE is one of
x2 + px + p2, x2 + p2, or x2 − px + p2. Hence πE = pζ for a root of unity ζ of order 3, 4,
or 6, respectively. But p does not divide the conductor of R, so ζ ∈ R. Now ζ ∈ AutE, so E has
j-invariant 0 or 1728.

7.6 E is supersingular and #k > p2

By Proposition 6.11(d), not every subgroup scheme is a kernel subgroup. By Proposition
6.4(iii)⇔(ii), the functors HomR(−, E) and Hom(−, E) are not equivalences of categories.

8. A partial generalization to higher-dimensional abelian varieties over Fp

Let B be an abelian variety over a prime field Fp. Let R ⊆ EndB be the (central) subring Z[F, V ]
generated by the Frobenius and Verschiebung endomorphisms. Given a f.p. reflexive R-module
M , let M∗ := HomR(M,R); then M∗ is reflexive too.
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As in the case of elliptic curves, we can define functors

HomR(−, B) : {f.p. R-modules}opp −→ {commutative proper group schemes over Fp}

and

Hom(−, B) : {commutative proper group schemes over Fp} −→ {f.p. R-modules}opp.

The work of Centeleghe and Stix [CS15], combined with some further arguments, allows us
to analyze this higher-dimensional case. The main extra ingredient we supply is that, under
appropriate hypotheses, the functor M 7→ M∗ ⊗R B implicit in [CS15] is isomorphic to
HomR(−, B).

Theorem 8.1. Let B be an abelian variety over Fp. Let R = Z[F, V ] ⊆ EndB. Then the functors
HomR(−, B) and Hom(−, B) restrict to inverse equivalences of categories

{f.p. reflexive R-modules}opp // {abelian variety quotients of powers of B}oo

if and only if R = EndB. Moreover, in this case, the functor HomR(−, B) so restricted is exact,
and it is isomorphic to the functor M 7→M∗ ⊗B.

Proof. If the functors give inverse equivalences as stated, then the argument in the paragraph
before Theorem 4.8 proves that R = EndB.

Now let us prove the converse. Suppose that R = EndB. Then (EndB)⊗Q is commutative.
This implies that, in the decomposition of B into simple factors up to isogeny, no factor is
repeated, and also no factor is associated to the Weil number

√
p, since such a factor would

give a direct factor of (EndB)⊗Q isomorphic to a quaternion algebra over Q(
√
p); see [Wat69,

p. 528, Case 2]. Let w be the set of Weil number conjugacy classes associated to B. Then the
category AVw of [CS15, 5.1] is the category of abelian variety quotients of powers of B. The ring
Rw in [CS15, Definition 2] is R = Z[F, V ]. It is Gorenstein by [CS15, Theorem 11(2)]. Reflexive
finitely generated R-modules are the same as f.p. torsion-free R-modules, or equivalently f.p. R-
modules that are free over Z [CS15, Lemma 13]. By [CS15, Proposition 24], for every prime ` the
(R⊗Z`)-module T`B (Tate module or contravariant Dieudonné module) is free of rank 1, so the
abelian variety Aw in [CS15, Proposition 21] may be taken to be B by [CS15, Proposition 24].

We now check that if M is a f.p. torsion-free R-module, then the commutative proper group
scheme G := HomR(M,B) is an abelian variety. It suffices to prove that for every prime ` and

n > 0, the homomorphism G[`n+1]
`
→ G[`n] is surjective. Choose a presentation Ra

N
→ Rb →

M → 0, so G := ker(Bb
→ Ba). Both M and M∗ are reflexive R-modules, so they are free over Z.

Suppose that ` 6= p. Then

G[`n] = (ker(Bb
→ Ba))[`n]

= ker(Bb[`n]→ Ba[`n])

' ker(T`(B
b)/`n→ T`(B

a)/`n)

= ker((R/`n)b
NT

→ (R/`n)a)

= ker(HomR(Rb, R/`n)
NT

→ HomR(Ra, R/`n))

' HomR(M,R/`n)

'M∗/`n (since Ext1R(M,R) = 0 by [CS15, Lemma 17])

= M∗ ⊗
Z

`−nZ
Z

.
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Since M∗ is free over Z, the homomorphism

M∗ ⊗
Z

`−(n+1)Z
Z

`−→M∗ ⊗
Z

`−nZ
Z

is surjective, so G[`n+1]
`
→ G[`n] is surjective.

Now suppose that ` = p. For each commutative group scheme H over Fp, let HD denote
its contravariant Dieudonné module. Since the R ⊗ Zp-module TpB is free of rank 1, we have
B[pn]D ' R/pn as an R-module. Next,

G[pn]D = coker(Ba[pn]D → Bb[pn]D)

' coker((R/pn)a
N
→ (R/pn)b)

= M/pn.

Since M is free over Z, the homomorphism M/pn
p
→M/pn+1 is injective, so G[pn]D

p
→ G[pn+1]D

is injective, so G[pn+1]
p
→ G[pn] is surjective.

Thus G is an abelian variety. The proof of Theorem 4.4(b) now shows that HomR(−, B)
is exact. In particular, if 0 → M → Rn → Rm is an exact sequence of R-modules, then
Bm
→ Bn

→ HomR(M,B) → 0 is exact. But M∗ ⊗ B too is defined as coker(Bm
→ Bn),

so HomR(M,B) 'M∗ ⊗R B, and this holds functorially in M .
Finally, by [CS15, Theorem 25 and p. 247],

Hom(−, B) : AVw −→ {f.p. reflexive R-modules}opp

is an equivalence of categories with inverse functor M 7→ M∗ ⊗R B. We may replace the latter
with the isomorphic functor HomR(−, B). 2

Remark 8.2. Over Fpn with n > 1, the functors HomR(−, B) and Hom(−, B) are sometimes
inverse equivalences of categories, and sometimes not, as we saw already in the case of elliptic
curves; see Theorem 1.1.
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