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Abstract

Background. Internet-based interventions produce comparable effectiveness rates as face-to-
face therapy in treating depression. Still, more than half of patients do not respond to treat-
ment. Machine learning (ML) methods could help to overcome these low response rates by
predicting therapy outcomes on an individual level and tailoring treatment accordingly.
Few studies implemented ML algorithms in internet-based depression treatment using base-
line self-report data, but differing results hinder inferences on clinical practicability. This work
compares algorithms using features gathered at baseline or early in treatment in their capabil-
ity to predict non-response to a 6-week online program targeting depression.
Methods. Our training and test sample encompassed 1270 and 318 individuals, respectively.
We trained random forest algorithms on self-report and process features gathered at baseline
and after 2 weeks of treatment. Non-responders were defined as participants not fulfilling the
criteria for reliable and clinically significant change on PHQ-9 post-treatment. Our bench-
mark models were logistic regressions trained on baseline PHQ-9 sum or PHQ-9 early change,
using 100 iterations of randomly sampled 80/20 train-test-splits.
Results. Best performances were reached by our models involving early treatment character-
istics (recall: 0.75–0.76; AUC: 0.71–0.77). Therapeutic alliance and early symptom change
constituted the most important predictors. Models trained on baseline data were not signifi-
cantly better than our benchmark.
Conclusions. Fair accuracies were only attainable by involving information from early treat-
ment stages. In-treatment adaptation, instead of a priori selection, might constitute a more
feasible approach for improving response when relying on easily accessible self-report features.
Implementation trials are needed to determine clinical usefulness.

In recent years, internet-based interventions (IBI) for mental health disorders have become an
integral part of research and practice, with the ongoing pandemic reinforcing this development
(Lange, 2021; Mahoney et al., 2021). For patients suffering from mild to moderate depression,
IBIs are generally effective and achieve similar effect sizes as their face-to-face counterparts
(Andrews et al., 2018; Carlbring, Andersson, Cuijpers, Riper, & Hedman-Lagerlöf, 2018).
However, a recent meta-analysis revealed that only 37% of participants showed a reliable
response (Cuijpers et al., 2021). Thus, 73% of participants show no meaningful improvements.
The large rates of non-response are highly problematic both from a patient’s and an economic
perspective.

One approach to improve response rates is to optimize treatment selection through
data-informed personalization of mental health care, also called precision therapy
(Chekroud et al., 2021; Salazar de Pablo et al., 2021). The idea behind it is to overcome the
current ‘trial and error’-approach to treatment selection by identifying the ideal treatment
for an individual based on what helped other individuals with similar characteristics in the
past. To ensure an accurate fit (i.e. identify the treatment with the highest probability of effect-
iveness), these characteristics should ideally cover an exhaustive range of information – one
reason why precision therapy goes hand-in-hand with machine learning methods.

Machine learning (ML) generally refers to the application of algorithms to large datasets to
automatically learn patterns and identify relevant features for predicting the outcome of inter-
est (here: non-response). These algorithms vary in their complexity and thus their interpret-
ability – from simple linear models to highly complex multi-level approaches like
convolutional neural networks. They can be used to predict an unobserved target variable
(supervised learning), e.g. predicting antidepressant treatment response (Zhdanov et al.,
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2020), or find clusters in unlabeled data (unsupervised learning),
e.g. identify different types of treatment engagement (Chien et al.,
2020). Compared to conventional statistical methods, most ML
models can depict complex interactions and nonlinearities in het-
erogeneous or noisy datasets.

First studies in face-to-face treatment contexts already demon-
strated that ML models trained on patient characteristics can out-
perform human experts in selecting suitable treatments or
predicting responses (Koutsouleris et al., 2018; van Bronswijk,
Lemmens, Huibers, & Peeters, 2021), pointing out its potential
usefulness. Internet-based interventions might be particularly
well-suited for applying ML approaches. First, their high scalabil-
ity makes it easier to gather large amounts of data necessary to
train those predictive algorithms. Second, common and specific
factors (e.g. applied techniques, communication between patient
and therapist) are often highly standardized, allowing a more pre-
cise matching of patient features to treatment components.
Moreover, it is easily possible to gather variables depicting the
therapeutic process (e.g. time of assessment completion, number
of logins) that might represent a fruitful extension to the set of
self-report features.

To date, only a few studies have attempted to develop prognos-
tic models in IBI targeting depressive symptoms. They achieved
mixed results, and comparisons are hampered by differing defini-
tions of treatment outcomes, sample sizes, and reported metrics
of predictive capability. Wallert et al. (2022) tested three ML algo-
rithms to predict remission following a 12-week internet-based
CBT program for depression. Their best classifier correctly iden-
tified 66% of individuals as remitters or non-remitters, exploiting
self-report, process, and genetic variables collected pre-treatment.
The area under the curve (AUC) was 0.69, which can be consid-
ered close to fair, according to Bone et al. (2021). Nemesure,
Heinz, McFadden, and Jacobson (2021) report an AUC of 0.75
predicting response to a 9-week internet-based physical activity
intervention for major depressive disorder with demographic,
symptom-related, and healthcare utilization data. However, the
results should be interpreted cautiously, given the small training
sample of n = 24 participants. Finally, Pearson, Pisner, Meyer,
Shumake, and Beevers (2019) investigated whether an ensemble
of ML algorithms trained on baseline self-report measures,
usage data, and environmental context variables (e.g. access to
mental healthcare providers) explain more variance in depressive
symptoms after 8-weeks of internet-based CBT than a linear
regression model using only pre-treatment symptom scores. The
explained variance increased only marginally from 0.17 to 0.25.

To summarize, it remains unclear whether the prediction of
non-response beyond moderate accuracy levels can be achieved
with patient intake characteristics alone in IBIs for depression.
However, integrating features from the early stages of treatment
might provide incremental information. For example, early symp-
tom changes were predictive of non-response in IBI targeting
depression, anxiety, and panic disorder (Beard & Delgadillo,
2019; Forsell et al., 2020; Schibbye et al., 2014). Bone et al.
(2021) found that gradually (i.e. on a weekly base) incorporating
patient information improved therapy outcome prediction of dif-
ferent ML models, especially in the early phases of treatment.

Identifying non-responders before treatment initiation would
be ideal for preventing treatment failures and increasing cost-
effectiveness. Still, it was shown that the treatment adaptation
for patients identified as at risk of non-response after 3 weeks
of internet-based CBT for insomnia could still significantly
improve therapy effects (Forsell et al., 2019). If baseline features

are insufficient to develop clinically trustworthy models, incorp-
orating features gathered during the first weeks of therapy to
increase predictive performance and potentially adjust treatment
could still benefit patients and providers.

The current study uses data from a 6-week CBT-based IBI for
adults with mild to moderate depression. All participants filled
out a range of questionnaires at intake, covering empirically cor-
roborated predictors like treatment expectancy, self-efficacy, and
symptom severity. They further provided weekly self-reports of
depressive symptoms, cognitive distortions, and therapeutic alli-
ance, resulting in a rich set of candidate predictors. We aimed
to examine if the prediction of non-response can be achieved
using easily accessible process and self-report data gathered (a)
at baseline or (b) in an early stage of treatment. We hypothesized
that integrating self-report data from early treatment stages would
significantly improve predictive performance compared to the
models trained on baseline features only.

Methods

Dataset

The data we used for model training was obtained as part of a
Germany-wide study analyzing the effects of different treatment
sequences in a guided, CBT-based IBI for mild to moderate
depression (Brose et al., 2023a). The intervention was developed
in cooperation with a German public healthcare provider. It con-
tains seven standardized modules, covering established cognitive-
behavioral methods like psychoeducation and expressive writing,
and established CBT methods such as behavioral activation (e.g.
daily planner, diary of positive events) and cognitive restructuring
(e.g. negativity bias training, positive imagery). Study eligibility
was verified using the participant’s medical records, online assess-
ments, and the structured clinical interview for DSM-IV (SCID-I,
sections A through F; Wittchen, Zaudig, and Fydrich, 1997) con-
ducted via telephone by trained interviewers. Inclusion criteria
comprised a 14–28 on Beck’s Depression Inventory-II (BDI-II;
Hautzinger, Keller, and Kühner, 2006), indicating mild to moder-
ate depression and computer-based internet access. Exclusion cri-
teria were (1) a current mania or hypomania, (2) psychotic
symptoms (lifetime), and (3) risk of suicide (score of 1 on
BDI-II item 9). Participants assessed eligible were randomly
assigned to one of two study conditions, that differed in the
order of presented modules (they either started with positive
behavioral activation or cognitive restructuring) and allocated to
a trained counselor. For more details on study onboarding and
experimental conditions, see Brose et al. (2023a). Participants
completed approximately one module per week over the course
of 6–8 weeks, with each module consisting of (1) a feedback letter
from their respective counselor, (2) psychoeducation, (3) intro-
duction to an exercise or homework, and (4) the introduced
online exercise. To measure depressive symptomatology on a
weekly basis, the Patient Health Questionnaire-9 (PHQ-9;
Kroenke, Spitzer, & Williams, 2001) was assessed before every
intervention module. The PHQ-9 is a validated instrument to
measure depression severity, consisting of nine items that can
be scored from zero to three. Only participants who completed
the intervention and filled out the post-assessment were included
in this analysis. All subjects provided their written informed con-
sent for data collection and analysis. the study protocol was
approved by the Ethics Committee of Freie Universität Berlin
prior to recruitment start (processing sign: 125/ 2016).
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Features and outcome

The full set of features is listed in Online Supplementary Table 1.
Before treatment started, participants completed a comprehen-

sive set of questionnaires. These covered demographics, disorder-
related clinical symptom scales (e.g. cognitive distortions,
self-efficacy beliefs), (psycho-) social and functional circum-
stances (e.g. social support, healthcare usage), life aims and
values, as well as treatment expectations. Questionnaire features
were included on a single-item level and as aggregated scores.
Beyond that, the presence of a current or remitted depressive or
dysthymic episode and changes in medication within the last 6
weeks before starting to work with the intervention, as assessed
by the SCID-I interview, were included as predictors.

At the beginning of week 2 (i.e. M3), participants filled out
the PHQ-9, the Cognitive Style Assessment measuring cognitive
distortions (COSTA; Bohn et al., 2022) and the Scale for the
Multiperspective Assessment of General Change Mechanisms in
Psychotherapy assessing the therapeutic relationship (SEWIP;
Mander et al., 2013). These were added to the set of baseline fea-
tures as single items and sum scores. In addition, we implemented
early change scores for PHQ-9 and COSTA by subtracting base-
line sum scores from week 2 sum scores.

Process features encompassed the registration year, study vari-
ant, and if treatment overlapped with the first wave of infections
within the global SARS-CoV-2 pandemic (yes/no).

As our outcome variable, we implemented the binary criterion
of reliable and clinically significant change on PHQ-9 (yes/no), in
accordance with Jacobson and Truax criteria (Jacobson & Truax,
1992). Accordingly, we defined individuals with an improvement
of ≥5 points and a sub-clinical post-PHQ-9 score of <10 as
responders (group = 0) and everyone else as non-responders
(group = 1).

Data preparation and partitioning

Data preparation was done in Jupyter Notebook and Visual
Studio Code, using Python v. 3.7.4 and the Python packages pan-
das v. 0.25.1 and scikit-learn v 0.0.24.1. All advanced analyses
were performed using the packages scikit-learn v 0.0.24.1 and
numpy v. 1.19.5.

The original sample consisted of 2304 participants. We first
removed all participants with missing values on one of the
PHQ-post (28.7% from total) or PHQ-M3 (11.8% from total)
items, leaving a sample of 1591 records for model training and
validation. Missing values on the remaining features amounted
to max. 2.8% and were imputed by either mean or mode depend-
ing on the respective data type. Categorical features with no clear
ordering (e.g. assigned counselor, recruitment strategy) were one-
hot encoded, creating binary variables that indicate the presence
or absence of a certain category. Aggregating categories reduced
high feature cardinality. Features representing clinical symptom
scale items were reverse-scored and/or aggregated if indicated in
the respective manual. Finally, continuous features like age and
minutes of daily internet usage were centered and scaled. The
final datasets contained 213 (baseline) and 260 (early change) fea-
tures, respectively.

For cross-validation and to avoid overfitting and bias, a
train-test split of 80/20 was employed. Due to a small class imbal-
ance favoring responders, we performed down sampling of the
majority class, leaving 1270 records for training and 318 records
for model validation. Since generalization performance is strongly

dependent on the respective train-test partitioning (Orrù,
Monaro, Conversano, Gemignani, & Sartori, 2020), we performed
100 iterations of our ML pipeline with independent train-test
splits per iteration as done by Hilbert et al. (2021). Model per-
formance is therefore reported as mean across all 100 iterations,
including range and standard deviations. Since we were mainly
interested in correctly identifying non-responders, our main per-
formance measure, also used for feature selection and hyperpara-
meter tuning, is recall (also known as sensitivity, i.e. the
proportion of correctly identified non-responders). To allow com-
parison with other studies, we further report balanced accuracy
(i.e. the arithmetic mean of recall/sensitivity and specificity),
AUC (i.e. the probability that the model will correctly distinguish
between true negatives and true positives), and f1 scores (i.e. the
harmonic mean of recall/sensitivity and precision).

Model versions and machine learning pipeline

We chose a random forests (RF) classifier to develop our predict-
ive models, as it can automatically deal with nonlinearities and
higher-order interaction effects, has been demonstrated to be
robust against bias, and is a commonly used model in studies pre-
dicting therapy outcomes (Breiman, 2001). Four versions of ran-
dom forest classifiers were compared against two simpler
benchmark models, a linear main-effects logistic regression
(C = 1.0) predicting non-response using (1) baseline PHQ-9
sum scores or (2) the PHQ-9 early change score.

To determine the impact of including early treatment informa-
tion, we contrasted models including baseline characteristics only
or baseline plus early treatment characteristics. Further, we com-
pared different model pipelines by applying either no feature
selection or hyperparameter tuning or applying both feature
selection using Elastic Net (L1-penalty = 0.5, max_iter = 1000)
and random search hyperparameter tuning (Bergstra & Bengio,
2012) using nested cross-validation with five folds and 100 itera-
tions. This resulted in the following models:

1. RF with baseline features; no feature selection or hyperpara-
meter tuning.

2. RF with baseline features; feature selection and hyperpara-
meter tuning.

3. RF with baseline and early treatment features; no feature selec-
tion or hyperparameter tuning.

4. RF with baseline and early treatment features; feature selection
and hyperparameter tuning.

To compare those models with our benchmark, we implemented
corrected resampled t-tests (Nadeau & Bengio, 2003).

We report the mean number of features chosen by automatic
feature selection, as well as the 10 most important features ranked
by their Gini impurity index (or mean decrease impurity: mea-
sures the weighted average of uncertainty reduction achieved by
the respective feature across trees) and number of occurrences
across 100 iterations in case of feature selection.

Results

Sample characteristics

Sociodemographic, clinical, and process features per outcome
group (reliable and clinically significant change from pre-to post-
treatment yes/no) are depicted in Table 1. Among participants
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Table 1. Patient summary characteristics stratified by treatment outcome

Overall Responder Non-responder p-Value

n 1591 797 794

Age, mean (S.D.) 43.5 (12.8) 43.5 (12.8) 43.4 (12.9) 0.895a

Sex, n (%) Male 610 (38.3) 306 (38.4) 304 (38.3) 0.999b

Female 981 (61.7) 491 (61.6) 490 (61.7)

Highest educational level, n (%)

Certificate of secondary education or no school
leaving certificate

68 (4.3) 40 (5.0) 28 (3.5) 0.111b

General certificate of secondary education 283 (17.8) 155 (19.4) 128 (16.1)

Higher education entrance qualification 372 (23.4) 180 (22.6) 192 (24.2)

Polytechnic school degree 189 (11.9) 100 (12.5) 89 (11.2)

University degree 679 (42.7) 322 (40.4) 357 (45.0)

Living arrangement, n (%)

Alone 412 (25.9) 205 (25.7) 207 (26.1) 0.422b

With partner only 536 (33.7) 263 (33.0) 273 (34.4)

With partner and children 424 (26.6) 226 (28.4) 198 (24.9)

With other people or with children only 219 (13.8) 103 (12.9) 116 (14.6)

Marital status, n (%)

Single 688 (43.2) 342 (42.9) 346 (43.6) 0.738b

Married 754 (47.4) 384 (48.2) 370 (46.6)

Divorced or widowed 149 (9.4) 71 (8.9) 78 (9.8)

Employment status, n (%)

Employed worker 1045 (65.7) 538 (67.5) 507 (63.9) 0.111b

Student, pupil or trainee 160 (10.1) 85 (10.7) 75 (9.4)

Retired or currently unemployed 217 (13.6) 102 (12.8) 115 (14.5)

Self-employed or other 169 (10.6) 72 (9.0) 97 (12.2)

Residence size

Big city 529 (33.2) 252 (31.6) 277 (34.9) 0.148b

Outskirts or suburb of a big city 292 (18.4) 159 (19.9) 133 (16.8)

Medium or small town 287 (18.0) 153 (19.2) 134 (16.9)

Village, farmstead or detached house 483 (30.4) 233 (29.2) 250 (31.5)

BMI, median[Q1, Q2] 24.1 [21.5,27.4] 24.0 [21.7,27.1] 24.2 [21.5,27.5] 0.697c

Internet usage, median [Q1,Q3] 180.0
[90.0240.0]

180.0
[90.0240.0]

180.0
[90.0240.0]

0.795c

Treatment during corona, n (%)

No 1363 (85.7) 680 (85.3) 683 (86.0) 0.744b

Yes 228 (14.3) 117 (14.7) 111 (14.0)

Registration year, n (%)

2016 87 (5.5) 43 (5.4) 44 (5.5) 0.301b

2017 607 (38.2) 284 (35.6) 323 (40.7)

2018 316 (19.9) 169 (21.2) 147 (18.5)

2019 329 (20.7) 172 (21.6) 157 (19.8)

2020 252 (15.8) 129 (16.2) 123 (15.5)

Study version, n (%)e

PAF 773 (48.6) 406 (50.9) 367 (46.2) 0.067b

CRF 818 (51.4) 391 (49.1) 427 (53.8)

(Continued )
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Table 1. (Continued.)

Overall Responder Non-responder p-Value

Previous psychotherapy, n (%)

No 623 (39.2) 328 (41.2) 295 (37.2) 0.113b

Yes 968 (60.8) 469 (58.8) 499 (62.8)

Other prof. support, n (%)

No 1104 (69.4) 552 (69.3) 552 (69.5) 0.953b

Yes 487 (30.6) 245 (30.7) 242 (30.5)

Prefers conventional therapy, n (%)

No 392 (24.6) 181 (22.7) 211 (26.6) 0.084b

Yes 1199 (75.4) 616 (77.3) 583 (73.4)

Serious illness, n (%)

No 962 (60.5) 464 (58.2) 498 (62.7) 0.074b

Yes 629 (39.5) 333 (41.8) 296 (37.3)

Sick leave, n (%)

No 968 (60.8) 484 (60.7) 484 (61.0) 0.030b

Yes 384 (24.1) 209 (26.2) 175 (22.0)

Unemployed 239 (15.0) 104 (13.0) 135 (17.0)

Physician visits, n (%)

No 764 (48.0) 358 (44.9) 406 (51.1) 0.015b

Yes 827 (52.0) 439 (55.1) 388 (48.9)

Neurologist visits, n (%)

No 1366 (85.9) 686 (86.1) 680 (85.6) 0.862b

Yes 225 (14.1) 111 (13.9) 114 (14.4)

Counseling, n (%)

No 1505 (94.6) 757 (95.0) 748 (94.2) 0.567b

Yes 86 (5.4) 40 (5.0) 46 (5.8)

Psychotherapy, n (%)

No 1498 (94.2) 759 (95.2) 739 (93.1) 0.084b

Yes 93 (5.8) 38 (4.8) 55 (6.9)

Medication intake, n (%)

No 821 (51.6) 411 (51.6) 410 (51.6) 0.999b

Yes 770 (48.4) 386 (48.4) 384 (48.4)

TId sum score, median [Q1,Q3] 17.0 [13.0,20.0] 17.0 [13.0,20.0] 17.0 [13.0,20.0] 0.460c

TId MDE, mean (S.D.)

No 1089 (68.4) 549 (68.9) 540 (68.0) 0.748b

Yes 502 (31.6) 248 (31.1) 254 (32.0)

TId dysthymia, mean (S.D.)

No 1431 (89.9) 733 (92.0) 698 (87.9) 0.009b

Yes 160 (10.1) 64 (8.0) 96 (12.1)

TIdMDE fully remitted, mean (S.D.)

No 1175 (73.9) 578 (72.5) 597 (75.2) 0.249b

Yes 416 (26.1) 219 (27.5) 197 (24.8)

TId MDE part. remitted, mean (S.D.)

No 1357 (85.3) 681 (85.4) 676 (85.1) 0.919b

Yes 234 (14.7) 116 (14.6) 118 (14.9)

(Continued )
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with complete PHQ-9 scores, 50.09% (797/1591) fulfilled the cri-
teria for reliable and clinically significant improvement from pre-
to post-treatment. Participants categorized as non-responders
reported higher unemployment rates but fewer days of sick
leave, as well as doctor visits within the last 4 weeks before treat-
ment. Concerning clinical features, participants fulfilling criteria
for reliable and clinically significant change scored significantly
higher on baseline sum scores of PHQ-9, BDI-II, GAD, and
PATHEV – hope. Furthermore, they were less likely to fulfill
the criteria for dysthymia as determined in the SCID interview
pre-treatment. In turn, they show significantly lower week two
sum scores of PHQ-9 and COSTA and significantly higher thera-
peutic alliances as indicated by higher SEWIP sum scores at week
2. Apart from that, there were no significant differences between
outcome groups.

Model performance

All ML models predicted non-response with above-chance accur-
acies (see Fig. 1). Models incorporating early symptom develop-
ments (RF early) performed significantly better than models
trained solely on baseline features and then both benchmark
models. They achieved recall scores of 0.76 (S.D. = 0.04) and 0.75
(S.D. = 0.04) correctly identified non-responders, using the full
or an automatically reduced set of features respectively (for an
overview of evaluation metrics see Table 2).

With recall scores of 0.59 and 0.60, respectively our baseline
models performed descriptively worse than our benchmark
trained on baseline PHQ-9 sum scores (recall = 0.62, S.D. = 0.03)

and significantly worse than the benchmark using early change
scores (recall = 0.69, S.D. = 0.03, p < 0.001).

We observed similar predictive performances between models
using the same set of features, indicating no disadvantages for the
models involving automatic feature selection and thus, only around
a third of the available variables. Figure 2 compares ROC curves
from the RF early model including feature selection and hyperpara-
meter tuning to the mean ROC of the benchmark using early change.

The 10 most important features, ranked by their Gini impurity
index, are depicted in Fig. 3 topped by information on their
occurrence across the 100 iterations. Among the most important
features were early treatment information, like therapeutic alliance
(SEWIP items 1 and 4) and early change on PHQ-9. Beyond that,
baseline information on cognitive distortions (COSTA items 1, 5,
and 6), anxiety (GAD items 4 and 5), and symptom severity
(PHQ-9 sum) ranked comparatively important.

Discussion

The present paper tested an ML-based approach to predict non-
response in participants of a CBT-based IBI for depression. We
found that fair prediction (e.g. accuracies >0.70) could only be
reached when information on early treatment stages was included.

Models relying exclusively on information assessed before the
intervention reached only moderate performance that even a
benchmark model using only baseline PHQ-9 sum scores
exceeded. This moderate predictive performance lags behind
other studies predicting IBI outcomes using pre-treatment fea-
tures only, like those of Nemesure et al. (2021) and Wallert

Table 1. (Continued.)

Overall Responder Non-responder p-Value

TId change in medication, mean (S.D.)

No 1420 (89.3) 701 (88.0) 719 (90.6) 0.111b

Yes 171 (10.7) 96 (12.0) 75 (9.4)

PHQ-9 pre, median [Q1,Q3] 11.0 [9.0,14.0] 12.0 [10.0,14.0] 10.0 [8.0,13.0] <0.001 c

BDI, median [Q1,Q3] 22.0 [18.0,
25.0]

23.0 [19.0,
25.0]

21.0 [17.0, 24.0] <0.001 c

PHQ-S, mean (S.D.) 8.9 (3.3) 9.1 (3.3) 8.8 (3.4) 0.078a

EUROHIS, mean (S.D.) 24.9 (4.0) 24.7 (4.1) 25.0 (3.9) 0.228a

IMET, median [Q1,Q3] 34.0 [26.0,43.0] 33.0 [26.0,43.0] 34.0 [26.0,43.0] 0.654c

GAD, median [Q1,Q3] 9.0 [7.0,12.0] 10.0 [8.0,13.0] 9.0 [7.0,11.0] <0.001 c

IPQR, median [Q1,Q3] 65.0 [61.0,68.0] 65.0 [62.0,68.0] 65.0 [61.0,68.0] 0.366c

GPSE, mean (S.D.) 24.5 (4.7) 24.6 (4.7) 24.4 (4.8) 0.409a

PATHEV hope, median [Q1,Q3] 15.0 [13.0,17.0] 16.0 [13.0,17.0] 15.0 [13.0,17.0] 0.033 c

PATHEV FUR, median [Q1,Q3] 4.0 [3.0,5.0] 4.0 [3.0,5.0] 4.0 [3.0,5.0] 0.844c

PATHEV PAS, mean (S.D.) 13.5 (2.4) 13.5 (2.4) 13.4 (2.3) 0.298a

COSTA, mean (S.D.) 29.5 (9.9) 29.5 (9.9) 29.5 (9.9) 0.876a

PHQ-9 early, median [Q1,Q3] 9.0 [6.0,12.0] 8.0 [5.0,10.0] 10.0 [7.0,13.0] <0.001 c

COSTA early, median [Q1,Q3] 29.0 [23.0,35.0] 28.0 [22.0,34.0] 30.0 [24.0,36.0] <0.001 c

SEWIP early, median [Q1,Q3] 48.0 [36.0,58.0] 50.0 [37.0,60.0] 46.0 [36.0,55.0] <0.001 c

Notes. aTwo-sample t test, bChi-squared test, cKruskal–Wallis test, dTI = expert rating from telephone interview, eStudy version: PAF = positive activities module first; CRF: cognitive
restructuring module first.
p-values meeting the criterion of p < 0.05 are highlighted in bold.
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et al. (2022), which may in part be explained by our more basic
Random Forest algorithm – both studies implemented advanced
ensembling approaches like XGBoost (Chen & Guestrin, 2016).
On the other hand, studies often find similar performances for
algorithms of varying complexity, especially in low-dimensional

data like self-report variables (e.g. Hilbert et al., 2021).
Further, larger sample sizes tend to produce more robust and gen-
eralizable ML models (e.g. Luedtke, Sadikova, & Kessler, 2019).
Finally, studies from face-to-face therapy settings with compar-
able study protocols (i.e. baseline features, comprehensive samples

Figure 1. Comparison of model performance in identifying non-response.
Notes: The dashed line indicates chance level. RF, random forest; base, pre-treatment features only; early, features from the beginning of week 2 were incorporated;
LogReg base, logistic regression using the baseline PHQ sum; LogReg EC, logistic regression using PHQ difference from baseline to week 2 (early change)

Table 2. Outcomes by model type averaged across 100 iterations

Model n features Recall Accuracy AUC F1 p-phq-sumc p-phq-ecd

Benchmarka phq-sum Mean (S.D.) 1 0.62 (0.03) 0.62 (0.02) 0.65 (0.03) 0.62 (0.02)

Min, max 0.54, 0.71 0.56, 0.68 0.60, 0.72 0.57, 0.68

Benchmarkb phq-ec Mean (S.D.) 1 0.69 (0.03) 0.68 (0.02) 0.74 (0.02) 0.68 (0.02)

Min, max 0.60, 0.77 0.61, 0.72 0.68, 0.80 0.61, 0.74

RF base Mean (S.D.) 213 0.59 (0.03) 0.63 (0.03) 0.68 (0.03) 0.62 (0.03) 0.043 <0.001

Min, max 0.51, 0.67 0.57, 0.69 0.63, 0.74 0.54, 0.68

RF early Mean (S.D.) 260 0.76 (0.03) 0.70 (0.02) 0.77 (0.02) 0.72 (0.02) 0.004 <0.001

Min, max 0.66, 0.84 0.65, 0.75 0.72, 0.83 0.66, 0.76

p base – early <0.001 <0.001 <0.001 <0.001

RF tuned base Mean (S.D.) 70.32 (4.98) 0.60 (0.04) 0.63 (0.03) 0.68 (0.03) 0.62 (0.02) 0.469 0.003

Min, max 59, 84 0.52, 0.70 0.57, 0.69 0.62, 0.74 0.54, 0.69

RF tuned early Mean (S.D.) 103.91 (5.00) 0.75 (0.04) 0.70 (0.02) 0.77 (0.02) 0.72 (0.02) 0.009 0.003

Min, max 90, 116 0.68, 0.84 0.64, 0.75 0.71, 0.82 0.66, 0.76

p tuned base – early <0.001 <0.001 <0.001 <0.001

Notes: aA logistic regression predicting non-response using baseline PHQ-9 sum scores; bA logistic regression predicting non-response using PHQ-9 early change; cStatisical comparison of
recall scores with the baseline PHQ sum benchmark using corrected resampled t tests; dStatisical comparison of recall scores with the PHQ early change benchmark using corrected
resampled t tests; SD, standard deviation; RF, random forest.
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of patients, ML models of varying complexity) also fail to
exceed moderate thresholds of outcome prediction (Hilbert
et al., 2021).

In line with our hypothesis, both models incorporating infor-
mation from the early stages of therapy (e.g. depressive symptoms,
therapeutic relationship, and cognitive distortions following

Figure 2. ROC curves for the random forest model involving
early treatment features, hyperparameter tuning and auto-
matic feature selection.
Notes: The dashed line indicates chance level. The bold line
indicates the averaged ROC across 100 iterations for the ran-
dom forest model. The bold dotted line indicated the
averages ROC across 100 iterations for the benchmark
model trained on PHQ early-change. RF, random forest;
AUC, area under the curve; SD, standard deviation.

Figure 3. The 10 most important features for the random forest involving early treatment features, hyperparameter tuning and feature selection.
Notes: Importance is computed by the Gini impurity index averaged across iterations. The numbers above the bars indicate the amount of rounds the feature has
been selected by automatic feature selection. There were 100 iterations in total.
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2 weeks of treatment) achieved the best accuracy in identifying
non-responders. The tuned model, involving hyperparameter
tuning and automatic feature selection, performed only slightly
worse using around a third of the original feature stack, making
it the preferred choice for implementation. Our findings align
well with the study by Bone et al. (2021): they repeatedly trained
machine learning algorithms on weekly symptom measures to
predict response to psychotherapy for depression and anxiety.
Predictive performance was moderate at baseline and improved
with each passing week, with a particularly prominent rise in
the early phase (i.e. the first 2–3 weeks of therapy). Beyond
that, Brose et al. (2023b), using the same data set, found that
early symptom change and symptom variability are related to
changes in BDI-II scores from pre- to post-test.

When it comes to integrating predictive algorithms into rou-
tine care, information from early phases of treatment may be
necessary to reach beneficial and trustworthy accuracies for
both patients and therapists. Thus, treatment adaptation – instead
of a priori selection – may constitute a promising avenue forward.
This could take the form of a stepped care approach: patients start
with a low-threshold approach like the (un-)guided internet-
based interventions. Then, after a certain part of the treatment
has been completed, an outcome prognosis is made based on pre-
treatment assessments and information concerning the treatment
progress. Consequently, treatment is either adapted to increase the
chance of a beneficial outcome or continued consistently when a
beneficial outcome is likely.

The improving access to psychological therapy programs in
England followed a similar approach by implementing progres-
sive care (i.e. all patients start with a low-intensity treatment,
and intensity is increased if necessary; Boyd, Baker, & Reilly,
2019). They evaluated that this approach led to higher recovery
rates than a stratified model of care (i.e. the therapist selects
treatment form based on pre-treatment symptom severity). To
increase the usefulness of such an adaptive approach, future
studies should also focus on modifiable predictors, providing
therapists instructions on how to proceed in case of imminent
non-response. Beyond that, one could include ecological
momentary assessments and passive sensing as features to
enhance informative density while keeping costs and expenses
low (Zarate, Stavropoulos, Ball, de Sena Collier, & Jacobson,
2022).

Our study has several limitations. First, we had to remove
around 30% of our original sample due to missing data in
the outcome variable. Since we do not know the mechanism
of missingness (i.e. the proportion of data points not missing
at random) this significant minority might influence the gener-
alizability of our algorithm. As we were conducting secondary
data analysis, we used all available features instead of selecting
predictors based on domain knowledge. Carefully selecting rele-
vant predictors based on domain knowledge may help to
improve prediction accuracy (Salazar de Pablo et al., 2021).
Further, we could not externally validate our algorithms in
another IBI for depression. Thus, it is unclear whether our
results only hold for this specific program or generalize to
other IBI and therapy formats. Finally, clinical usefulness
must be more thoroughly answered before applying these pre-
diction models in real-world practice. Here, trials comparing
‘precision therapy’ (i.e. therapists following algorithm-
supported decision tools) against treatment as usual regarding
patient-related risks and benefits and health-economic aspects
are urgently needed.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723003537.
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