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In this note a theorem, giving a relation between the Hankel transform of /(x) and
Meijer's Bessel function transform of f(x)g(x), is proved. Some corollaries, obtained by
specializing the function g (x), are stated as theorems. These theorems are further illustrated
by certain suitable examples in which certain integrals involving products of Bessel functions
or of Gauss's hypergeometric function and Appell's hypergeometric function are evaluated.
Throughout this note we use the following notations:

t{f(xy,p}=Fe-'*f{x)dx, (1)
Jo

K,{/(x); p} = f" (px)*K,(px)/(x) dx, (2)
Jo

W(x); y) = P
Jo

dx, (3)

and 2Fi(

We call (2) a Meijer's Bessel function transform; it is a generalisation of (1), and

THEOREM 1. If f(x) eL(0, oo), g(x) eL(O, oo), ^v{/(x); ^} eL(O, oo), /?(f±M)>0,

ix^Cx); y} dy. (4); p} = f°
Jo

o

Proo/. Since [1, p. 5]

f(x) = f" (xy)*JXxy)Uf(x); y} dy, (5)
Jo

we have

f{x);y}dy~\dx,

H2
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which on change of order of integration yields (4). Change of order of integration is admissible
under the conditions given in the statement of the theorem, since

(x) iy}~A cos (xy+a)%{/(x); y} for large y,

~ Byi+*e,v{f(x); y} for small y,

and xKfl{px)Jv(xy)g (x) ~ e ~ px cos (xy+<x)g (x) for large x,

~x1±M+vg(x) for small x.

If we take \i = ±i in Theorem 1, we obtain

THEOREM l(a). Iff(x) and £?¥{/(x); y) e L(0, oo), g{x) e L(0, oo), and if .R(i+v) > 0,
R(p) > 0, then

(x) ;p}=r £?v{/(x); y} t{(xy)*JXxy)g (x); y} dy. (6)
Jo

When we take g(x) = xx in Theorem 1, we obtain

THEOREM l(b). Iff(x) and £}v{/(x); y) e 1(0, oo), and if

> 0, tf (f ±/z) > 0, *(A±/z+v+2) > 0, R(p) > 0,

then

* I"" (7)
Jo

mce [3, p. 52]

f" x'^K&xVM dx = (py)-*9(p, y),
Jo

0, >>>0, R(X±fi+v+2) > 0.
If we put /t = i , then replace /(x) by x*/(x), A by / i - i and write y**?,{/(x); >>} for

£jv{x*/(x); y}, we get the result given by Bhonsle [4], since [2, p. 129]

and 22l-1r(z)r(z+l

Similarly, if we take g(x) = xx~2Jp(ax), we get
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THEOREM 1(C). If fix) and £?,{/(*); y] both belong to L(0, oo), and if R($+v)>0,
J?(A±/i+v+p) > 0, Rip) >Qanda is real, then

f°°
; />} = f?v{/W; y}6ip, <*; y) dy, (8)•J"

Jo

F4 being the fourth type of Appell's hypergeometric function of two variables.
The above result is readily obtained from (4) when we evaluate ^v{(px)iKfl(px)g(x); y)

with the help of the result by Bailey [5, p. 38].
We now illustrate the above theorems by certain suitable examples and give below certain

integrals involving products of Bessel functions.

Example 1. If we start with /(x) = x"~x+iKa(bx), then [3, p. 93]

for R(p+b) > 0, R(K±(I±O+2) > 0; and [3, p. 52]

for Rib) > 0, J?(v+K-A±a+2) > 0, y > 0.

Therefore the result (7) gives us

for K(c) > 0,K(a+y-c) > 0, R(a + 5-c) > 0, R(P+y-c) > 0, R(f+5-c) > 0, and the result

https://doi.org/10.1017/S204061850003481X Published online by Cambridge University Press

https://doi.org/10.1017/S204061850003481X


110 K. C.SHARMA

(8) gives us

tKfcxyKJibxyjiax) dx
Jo

' b2)
1+2v F

" 2 \ v+i

^ 4
Since

) ^

the integral on the right of (10) can be evaluated with the help of (9). On evaluating it and
then using the well known result

T(c)

-a-b^F^a, b; a + b-c+l; z)

a)r(c-b)r(a + b-c)zc-a-b
2F1(c-a,c-b; c-a-b + 1; z), (12)

and interpreting it again with the help of (11), we get

^cx) dx - I ^P x*-' / (ax\K (bx\K (
Jo

xFAUK-

for R(K±H+O+P) > 0, R(b + c) > 0, a > 0.

Also we know that

sin (an)

and therefore, from (13), we get

(14)

P
Jo

dx =
r(n-p)r(i+a)cK+p+<'

i(K+ff+/i+p);l + p ) l + ff; - p » ^ j .

for i?(K+ff±/i + p)> 0, R(c-b) > 0, a > 0.
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When we compare (10) and (13), we get
/•oo

/ " V i f e 05 y> -by)Fi(l;, ti; C, y; -ac, -cy) dy
Jo

; -ac, - f \ (16)

for R(a+£-y) > 0, R(a + rj-y) > 0, R(fi + £-y) > 0, R(fi + ti-y) >0,a,b,c> 0.

Example 2. If we start with /(x) = xK~k~iKp(ax)Ka(bx) in (7), then, by virtue of (13),
we get

f
J
= z

o 2 L 1 + v ' P2] \ 1 + v, 1 + ff ' a2'a2)

+ v a a'

The integral on the right, when evaluated with the help of (16), gives us

dxT xK~ 'K
Jo

<r, - < r ft, —ii

xF4U(K+n+o-p), \(K+H+O + P); 1 + <T, l + n; _ , - £ _ ) , (17)

for /?(K±p±a±/i) > 0, R(a + b + c) > 0.

The above result can also be obtained by the application of (14) to the result given by
Bailey [6].
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The results (13) and (15) help us in obtaining two more particular cases of the Theorem 1,
given below.

then

THEOREM \{d). Iff(x), £?,{/(*); y] e_(0, oo), and if

R(X±H+v+o)>0, R(i + v)>0,R(p-a)>0,

f
Jo

; 1 + v, 1+a; - ^ , ^ dy. (18)
P P

then

K tx

The above result is obtained when we take g(x) = x*~2/o(a;c) in (4) and use (15).
Similarly, when we take g(x) = xx~2Ka(bx) in (4), then, by virtue of (13), we have

THEOREM \{e). Iff(x), %{f{x)\ y] e £(0, oo), and if

>0, RQ+v)>0,R(p+a)>0,

r
Jo

_ _ _ _ _ _ _

- ^ ^ W (19)
P P /
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