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Abstract

We consider a single-server queue with Poisson input operating under first-come–first-
served (FCFS) or last-come–first-served (LCFS) disciplines. The service times of the
customers are independent and obey a general distribution. The system is subject to costs
for holding a customer per unit of time, which can be customer specific or customer class
specific. We give general expressions for the corresponding value functions, which have
elementary compact forms, similar to the Pollaczek–Khinchine mean value formulae.
The results generalize earlier work where similar expressions have been obtained for
specific service time distributions. The obtained value functions can be readily applied
to develop nearly optimal dispatching policies for a broad range of systems with parallel
queues, including multiclass scenarios and the cases where service time estimates are
available.
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1. Introduction

The value function of a system describes the relative value of a state with respect to a
long-term cost or revenue rate. This depends on the stochastic model and the costs associated
with it. For a single-server queue with an infinite number of system places, no customer is
rejected and the natural objective is to study the mean sojourn time, i.e. the mean delay. This is
equivalent to defining unit holding costs for customers present in the system. The knowledge
of the value function gives important insight into a particular queueing discipline and allows
one to compare different states in terms of the chosen objective. For example, the availability
of the value function allows one to develop efficient and theoretically sound dispatching rules
for the corresponding system of parallel queues. In particular, starting from an arbitrary state-
independent policy such as Bernoulli splitting, the so-called first policy iteration (FPI) step of
the Markov decision processes can be carried out.

In this paper we first consider a general single-server queue with first-come–first-served
(FCFS), and both preemptive and nonpreemptive last-come–first-served (LCFS) queueing
disciplines, a Poisson arrival process, and a general service time distribution. The arriving
customers have arbitrary holding costs and can also be tagged with some additional information
such as the customer’s class. In the multiclass scenario, the service times are assumed to be class
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specific. For any given state, the remaining service times are conditional random variables. In
this rather general setting, we are able to give exact expressions for the corresponding value
functions.

Throughout the paper, we consider three specific levels of state information: (i) the size-
aware system, where the exact (remaining) service times of the existing customers are available,
(ii) the time-aware system, where the service each customer has received (in time) is available,
and (iii) the number-aware system, where only the number in the system is available. For the
number-aware system, the actual state is as seen by a random observer, e.g. an arriving customer
from a Poisson process. The size-aware setting with a unit holding cost has been treated in
[17], which we first generalize to customer- or class-specific holding costs. These results are
then utilized in deriving general expressions for value functions, from which the time-aware
and number-aware results follow as special cases. The analytical results are further elaborated
by considering the important case of a single class with unit holding cost, which can be related
to the sojourn time (i.e. response time).

The analytical results can be applied to a broad range of dispatching problems where service
time distributions can also be server specific. The dispatcher is assumed to be aware of the
underlying service time distributions, queueing discipline, service rate, and the number of
customers in each queue (number-aware). Optionally, the amount of service each customer has
received may be available (time-aware), or the exact remaining service times can be known
(size-aware). The information on the service received in the time-aware case becomes relevant
when the service times have general distributions. For exponentially distributed service times
and identical servers, Winston [37] has already shown that the join the shortest queue (JSQ)
minimizes the mean sojourn time.

The rest of the paper is organized as follows. First, in the following section, we briefly review
earlier work on the value function for queueing systems and dispatching problems. Section 2
contains the necessary definitions. Then we derive the value functions for FCFS in Section 3,
and for preemptive and nonpreemptive LCFS in Sections 4 and 5. In Section 6 we discuss the
application of the value function to dispatching problems. Section 7 concludes the paper.

1.1. Prior work

Prior work has studied the value function in order to find optimal dispatching rules in different
settings. In particular, value functions enable FPI [30], where the idea is to improve a given
basic policy by choosing an alternative action leading to an alternative system state such that
the expected future costs in that state are lower for an infinite time horizon. The information is
provided by the value function.

Several results already exist for minimizing the mean delay in queueing systems. In the
context of routeing packets in a data network, Krishnan [23] obtained the value function for the
M/M/s system. The M/M/1 queue was considered in [1]. For Markovian systems, a sufficient
state description is the number in the system. Bhulai [6] derived the value function for the
M/Cox(r)/1-FCFS queue, with a state description of (n, k), where n denotes the number in
the system and k denotes the service phase of the customer being processed (if any). A state
description with service phases can sometimes be impractical. Sassen et al. [32] considered the
M/G/1-FCFS queue. In order to avoid dealing with the remaining service times, they resorted
to an approximation and assumed that the remaining service time of the service in progress
(if any) obeys the equilibrium excess distribution. In a size-aware system, the service times
become known upon arrival. The value functions for a size-aware M/G/1 queue with FCFS,
LCFS, SPT, and SRPT are given in [17], while M/D/1-PS and M/M/1-PS are treated in [18]
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and [19], respectively. To the best of our knowledge, no expression for M/G/1-PS is known. In
contrast to the above work, we give, without resorting to any approximations, exact expressions
for the value function in M/G/1-FCFS and LCFS queues under the time-aware assumption that
only the number in the queue and the service received (in time) are available.

For blocking systems, so as to minimize the blocking probability, Krishnan and Ott [24]
obtained the value functions of an M/M/s/s system in order to route calls in the telephone
network. This result was generalized by Leeuwaarden et al. [34] to an M/M/s/k system, where
the example application was the assignment of telephone calls to base stations in a mobile
network.

For the dispatching problem in a system of parallel queues, which is the prime application
of the value function, a wealth of results exist in the literature. First, Winston [37] showed
the optimality of JSQ for identical servers, the Poisson arrival process, and exponentially
distributed service times when the number in the queue is available. Weber [35] showed that
JSQ is also optimal for identical servers with a more general arrival process and service times
having a nondecreasing hazard rate. Ephremides et al. [10] also showed the optimality of JSQ
for identical servers and exponentially distributed service times with a more general arrival
process, and additionally argued for the optimality of the round-robin policy, when the only
information is that the queues were initially in the same state. The latter result was later
generalized by Liu and Towsley [26] to independent and identically distributed (i.i.d.) service
times with increasing hazard rate and an arbitrary arrival process, and further, by Liu and
Righter [25] to a setting of distributed homogeneous unreliable servers capable of redirecting
only some tasks to other servers. However, the optimality results are available only for specific
settings (e.g. identical servers and the FCFS discipline, as above).

Situations where a heterogeneous dispatching problem arises are numerous. Becker et al.
[5] considered static Bernoulli routeing motivated by routeing telephone calls in call centres to
different experts. Schwartz [33] and Conolly [8] mentioned toll booths in highways. Ansell
et al. [4] additionally mentioned grid computing. Bonomi [7] also considered task assignment
in distributed systems and compared JSQ with FCFS and processor-sharing (PS) scheduling
disciplines, where PS is motivated by CPU scheduling in time-shared computer systems.
Recently, Gupta et al. [13] also considered the JSQ policy in the setting of web server farms
and PS. Similarly, Crovella et al. [9] and Harchol-Balter et al. [14] considered distributed
server systems such as web server farms and distributed batch computing systems under the
assumptions that only the size of a new customer is available and that each queue is served
according to FCFS. They proposed an efficient service requirement (job size) based policy
referred to as size interval task assignment or SITA for short, which Feng et al. [12] later
proved to be the optimal policy in the given setting (see also [15]). Ephremides et al. [10], and
Aalto and Virtamo [1], formulated a dispatching problem in the context of routeing packets in
data networks. Additionally, dispatching problems have been studied in, e.g. [21] and [36].

2. Preliminaries

We consider queueing systems and, in particular, single-server FCFS and LCFS queues with
a Poisson arrival process, general service time distributions, and a general cost model, where
customer i has a certain holding cost denoted by ai . Let z denote the information regarding
the queue’s state, which includes the number in the system, n, the customers’ holding costs
ai , and optional information regarding their (remaining) service times Yi . The distributions
for the initial service times Xi are also known. In the size-aware case, z describes the exact
remaining service times of the customers, but, in general, z stands for an arbitrary amount of
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information regarding the system’s state. Thus, for a given z, the system accrues costs at rate
r(z) := ∑n

i=1 ai. Let the random variable Zz(t) denote the state of the system at time t , where
z defines the initial state, and let the random variable Vz(t) denote the costs incurred during
time (0, t):

Vz(t) :=
∫ t

0
r(Zz(s)) ds.

A stable queue incurs costs at an average cost rate of r ,

r := lim
t→∞

1

t
E[Vz(t)],

which is independent of the initial state information z (ergodic system), r = E[r(Z)]. The value
function characterizes the deviation from the average cost rate r for a given state information z

in the infinite time horizon:
vz := lim

t→∞ E[Vz(t) − rt].

3. FCFS queue

In this section we give exact expressions for the value function in the single-server FCFS
queue. FCFS is the most common queueing discipline and is often the default assumption in
the literature unless otherwise specified. It is fair in the sense that the customers leave in the
same order as they arrive.

Size-aware queues have been considered by Hyytiä et al. [17]. The state description is a
vector (�1, . . . , �n), where �i denotes the known (remaining) service time of customer i. We
use the convention that customer n is currently receiving service (if any). In what follows, we
rely on the size-aware results given in [17], which we first generalize to arbitrary holding costs
and then, by conditioning on the service times, obtain elegant expressions for the value function
of FCFS with unknown service requirements (and later in Sections 4 and 5 also for the LCFS
disciplines). For the FCFS queue, the size-aware result from [17] is as follows.

Lemma 1. (Size-aware M/G/1-FCFS.) The size-aware relative value of state z=(�1, . . . , �n)

with respect to the sojourn time in an M/G/1-FCFS queue is given by

v(�1,...,�n) − v0 = λu2
z

2(1 − ρ)
+

n∑
i=1

i�i, (1)

where �i denotes the known (remaining) service time of customer i, uz = �1 + · · · + �n is
the backlog, λ is the Poisson arrival rate, ρ = λ E[X] is the offered load, with E[X] the mean
service time, and customer n is served first.

We consider a more general setting with arbitrary i.i.d. customer specific holding costs. Let
ai denote the known holding cost of customer i, and let E[A] denote the mean holding cost of
an arbitrary customer. Result (1) generalizes straightforwardly to this setting.

Lemma 2. (Size-aware M/G/1-FCFS with arbitrary holding costs.) For the size-aware value
function of M/G/1-FCFS with arbitrary holding costs ai , it holds that

v(�1,...,�n) − v0 = λ E[A]u2
z

2(1 − ρ)
+

n∑
i=1

(
�i

i∑
j=1

aj

)
, (2)

where E[A] denotes the mean cost rate of a random customer (i.i.d.).
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Proof. The proof is essentially the same as in [17] for the unit holding cost, and has been
omitted for brevity.

In general, the remaining service times of the present n customers are conditional random
variables that depend on the available information. Let the random variables Yi denote the
remaining service times, and let the ai denote the corresponding holding cost rates, i = 1, . . . , n.
Customers 1, . . . , n − 1 are waiting in the queue and customer n is currently receiving service
(if any). The random variables Yi may depend on the customer’s class, the service received
(in time), or any other additional information available. However, they are assumed to be
pairwise independent. For example, the formulation includes the cases where one has additional
information regarding the service time of particular customers (e.g. an estimate for the mean).
We let z denote an arbitrary state and, for an empty system, we write z := 0.

In this more general setting, by conditioning, the size-aware result (2) gives the following
proposition.

Proposition 1. The value function for a multiclass M/G/1-FCFS with arbitrary holding costs
is given by

vz − v0 = λ E[A]
2(1 − ρ)

E

[( n∑
i=1

Yi

)2]
+

n∑
i=1

(
E[Yi]

i∑
j=1

aj

)
, (3)

where the remaining service times Yi are pairwise independent but may depend on the service
received, the customer’s class, or any other additional information available, E[A] is the mean
holding cost rate of an arriving customer, and the ai denote the known holding cost rates of the
present n customers.

Proof. Let U = Y1 + · · · + Yn denote the amount of unfinished work (backlog). From (2),
by conditioning on the service times, we have

vz − v0 = E[E[vz − v0 | (Y1, . . . , Yn)]]

= E

[
λ E[A]U2

2(1 − ρ)
+

n∑
i=1

(
Yi

i∑
j=1

aj

)]

= λ E[A]
2(1 − ρ)

E

[( n∑
i=1

Yi

)2]
+

n∑
i=1

(
E[Yi]

i∑
j=1

aj

)
.

Corollary 1. For the unit holding cost rate, ai = E[A] = 1, the value function reads

vz − v0 = λ

2(1 − ρ)
E

[( n∑
i=1

Yi

)2]
+

n∑
i=1

i E[Yi]. (4)

We note that (3) and (4) hold in a very general setting, e.g. when the set of customer classes
is noncountable (e.g. when the initial service time defines the class), or when several customers
have received service due to a different queueing discipline executed earlier, as long as the
future evolution of the queue is governed by FCFS.

3.1. Remaining service time

In an FCFS queue, only the first customer (if any) has received service. For a multiclass
setting, a sufficient state description is z = ((k1, a1), . . . , (kn, an)) for a number-aware system,
and z = ((k1, a1), . . . , (kn, an); s) for a time-aware system, where ki denotes the class of
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customer i, ai denotes the holding cost of customer i, and s is the service (if any) customer n

has received so far. Let Xk denote the initial service time of a class-k customer, so that Yi ∼ Xki

for i = 1, . . . , n − 1 and Yn is the remaining service time of the customer currently receiving
service. For number-aware systems with a common service time distribution, we have the
following result.

Lemma 3. For a number-aware M/G/1-FCFS queue, the mean remaining service time E[Y ]
of the customer currently receiving service on condition that there are N = n customers is

E[Y ] = 1 − ρ

λπn

∞∑
i=n+1

πi,

where πi denotes the steady-state probability that there are i customers in the system.

The proof of Lemma 3 is given in [11] and [27]. The complete distribution of the conditional
random variable (Y | N = n) is derived in [2], which provides E[Y 2]. Similarly, for time-aware
systems, let Yn,s denote the remaining service time of the customer whose attained service time
is s.

Lemma 4. For a time-aware system, the conditional remaining service time of a customer
whose attained service time is s, is, by definition, Yn,s ∼ (Xkn − s | Xkn > s), giving

E[(Yn,s)
p] = 1

P{Xkn > s}
∫ ∞

s

(x − s)pfkn(x) dx, (5)

where fkn(x) denotes the probability density function of Xkn .

These can be substituted into (3) and (4), yielding exact expressions for the value function.
Next we will consider an important special case related to the mean sojourn time.

3.2. Single class and sojourn time

In the elementary case of a single class with unit holding cost, corresponding to the sojourn
time, the natural state description for a number-aware system is z = (n), and, for a time-aware
system, z = (n, s), where n denotes the number in the system and s denotes the amount of
service (if any) customer n has received (in a time-aware system). Let X denote the common
initial service time, Yi ∼ X for n = 1, . . . , n − 1, and let Y denote the remaining service time
of customer n currently receiving service (if any), Y ∼ (X − s | X > s). As the service times
are also independent, substituting the Yi into (4) gives

λ

2(1 − ρ)
((n − 1) E[X2] + E[Y 2] + (n − 1)(n − 2) E[X]2 + 2(n − 1) E[X] E[Y ])

+ n(n − 1)

2
E[X] + n E[Y ],

which, after some manipulation, gives the following corollary.

Corollary 2. (M/G/1-FCFS with unit holding cost.) The value function for an M/G/1-FCFS
with unit holding costs is given by

vz − v0 = (n − 1)(n − 2ρ) E[X] + 2(n − ρ) E[Y ] + λ(n − 1) E[X2] + λ E[Y 2]
2(1 − ρ)

, (6)

where n = 1, 2, . . . denotes the number in the system, X denotes the initial service time, and
Y denotes the remaining service time of the customer being served (if any).
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For a time-aware system, Lemma 4 gives E[Y ] and E[Y 2], which can then be substituted
into (6). For a number-aware system, (6) can be developed further with the aid of Lemma 3
and the discussion thereafter.

Remark 1. For X ∼ Exp(µ), the memoryless property implies that X ∼ Y , the number in the
queue n describes the state, and the above, in agreement with [1, 6], reduces to

vn − v0 = n(n + 1)

2(µ − λ)
.

The obtained expressions for the value function have intriguing forms. Similar to the
Pollaczek–Khinchine M/G/1 formula [22], [31], the value function of a time-aware M/G/1-
FCFS queue depends on the first two moments of the service time distribution(s). Additionally,
the value function also depends on the first two moments of the conditional remaining service
time Y . Moreover, the single-class expression is quadratic with respect to the number in the
queue, n. We note that the result of Bhulai [6] for the Coxian service time distribution follows
as a special case where Y depends on the phase of the service that is assumed to be observable.

4. Preemptive LCFS queue

In an LCFS queue, arriving customers enter at the head of the queue. Although this may
sound unfair, preemptive LCFS is actually a better option than FCFS with respect to, e.g. the
slowdown criterion [16]. Analysis of LCFS with a general holding cost structure turns out to
be straightforward due to the fact that the current state has no effect on the sojourn times of
future arrivals. From [17], we have again the size-aware result.

Lemma 5. (Size-aware preemptive M/G/1-LCFS.) The size-aware relative value with respect
to the sojourn time in a preemptive M/G/1-LCFS queue for state (�1, . . . , �n) is given by

v(�1,...,�n) − v0 = 1

1 − ρ

n∑
i=1

i�i,

where customer n is served first and customer 1 last.

With arbitrary customer specific holding costs, we have only a slightly more complicated
result.

Lemma 6. (Size-aware preemptive M/G/1-LCFS with arbitrary holding costs.) It holds that

v(�1,...,�n) − v0 = 1

1 − ρ

n∑
i=1

(
�i

i∑
j=1

aj

)
, (7)

where aj denotes the holding cost of customer j .

Proof. As the current state has no effect on future arrival sojourn times, the value function
depends on the mean sojourn times E[Ti] of the present n customers in state z,

v(�1,...,�n) − v0 =
n∑

i=1

ai E[Ti].

The mean remaining sojourn time of customer i in a size-aware preemptive LCFS queue is
E[Ti] = (1 − ρ)−1 ∑n

j=i �j [17], which then yields (7).
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With preemptive LCFS, all customers in the system have received some amount of service
(Poisson arrivals). Therefore, a convenient state description in this case for a time-aware
system is ((k1, a1, s1), . . . , (kn, an, sn)), where the triple (ki, ai, si) denotes the ith customer’s
class, holding cost, and amount of service received, respectively. For a number-aware system,
the corresponding state information is z = ((k1, a1), . . . , (kn, an)). Let Yi again denote the
remaining service time of customer i, and let Xk denote the initial service time of a class-k
customer. Then we have the following general result.

Proposition 2. The value function for a multiclass preemptive M/G/1-LCFS queue with
arbitrary customer specific holding costs is given by

vz − v0 = 1

1 − ρ

n∑
i=1

(
E[Yi]

i∑
j=1

aj

)
. (8)

Proof. The result follows immediately from (7) by conditioning on the service times.

Corollary 3. For unit holding costs, aj = 1, the value function of a multiclass preemptive
M/G/1-LCFS queue reduces to

vz − v0 = 1

1 − ρ

n∑
i=1

i E[Yi]. (9)

4.1. Remaining service time

For the time-aware case, the customers’service time distributions and the amounts of service
they have received are known, and, thus, the moments of the remaining service times are
determined according to Lemma 4. For the number-aware case, we have the following result.

Lemma 7. For the remaining service time Yi of a class-ki customer i in a preemptive M/G/1-
LCFS queue at a random time instance, it holds that

E[Yp
i ] = E[Xp+1

ki
]

(p + 1) E[Xki
] , (10)

where X = Xki
denotes the initial service time of the class-ki customer, independent of the

current number of customers.

Proof. The result is well known and holds for an arbitrary symmetric queue [20], such as the
preemptive LCFS and PS queues. Alternatively, an elementary result from the renewal theory
for residual/excess life(time) states that the pth moment of the conditional remaining service
time Y of a class-k customer n currently receiving service, e.g. in a preemptive LCFS queue at
a random time instance, is given by [22], [31]

E[Yp] = E[Xp+1
k ]

(p + 1) E[Xk] . (11)

As the service of the customers waiting in a preemptive LCFS queue has been interrupted at a
random time instance, the same random observer property also holds for them.

We note that (11) also gives the remaining service time for an M/G/1-FCFS queue under
the condition that the server is busy. However, the number of customers waiting under FCFS
provides additional information about Y , yielding Lemma 3. For LCFS, (5) still holds and (5)
or (10), depending on the available information (time or number aware), can be substituted
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into (8) or (9), yielding compact expressions for the particular value functions. Next we again
consider the important special case of a system with unit holding cost.

4.2. Single class and sojourn time

Consider next the case of a single class, Xi ∼ X, with unit holding costs (i.e. sojourn time).
A sufficient state description for a time-aware system is z = (s1, . . . , sn), where si denotes the
amount of service customer i has received and n is the number of customers present. For a
number-aware system, the state description is simply z = (n). Result (9) gives the following
corollary.

Corollary 4. (Time-aware preemptive M/G/1-LCFS with unit holding cost.) The value
function for a single-class preemptive M/G/1-LCFS queue is given by

vz − v0 = 1

1 − ρ

n∑
i=1

i E[X − si | X > si]. (12)

Corollary 5. (Number-aware preemptive M/G/1-LCFS with unit holding cost.) It holds that

vn − v0 = n(n + 1) E[X2]
4(1 − ρ) E[X] . (13)

Remark 2. For X ∼ Exp(µ), the lack-of-memory property implies that E[X− si | X > si] =
1/µ, the number in queue n describes the state, and both (12) and (13) reduce again to vn−v0 =
n(n + 1)/2(µ − λ), in agreement with [1] and [6].

Finally, we note that the time-aware value functions of the preemptive M/G/1-LCFS queue
involve the mean and the conditional expectation of the service time X, while the value function
of a number-aware system depends on the first two moments of the service time.

5. Nonpreemptive LCFS queue

In a nonpreemptive LCFS queue, a customer receiving service will not be replaced by later
arrivals, and, hence, at most one customer has received service. That is, a new customer is
given the first waiting place in the queue if the system is nonempty; otherwise, the service starts
immediately. The size-aware value function is again available from [17] and given as follows.

Lemma 8. (Size-aware nonpreemptive M/G/1-LCFS.) The size-aware relative value of state
(�1, . . . , �n) with respect to the sojourn time in an M/G/1 queue with a nonpreemptive LCFS
discipline is given by

v(�1,...,�n) − v0 = 1

1 − ρ

n∑
i=1

(i − ρ)�i + λ

2(1 − ρ)

n∑
i=1

�2
i , (14)

where task �n is served first and task �1 is served last, ρ = λ E[X] with λ denoting the Poisson
arrival rate, and E[X] is the mean service size.

Similarly, the corresponding value function can also be deduced for arbitrary holding costs.

Lemma 9. (Size-aware nonpreemptive M/G/1-LCFS with arbitrary holding costs.) It holds
that

v(�1,...,�n) − v0 = 1

1 − ρ

n∑
i=1

(
�i

( i∑
j=1

aj − ρai

))
+ λ E[A]

2(1 − ρ)

n∑
i=1

�2
i ,
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where E[A] again denotes the mean holding cost of a customer (assumed to be i.i.d.) and the
ai denote the known holding costs of the present n customers.

Let Y1, . . . , Yn denote the remaining service times of the n customers present in state z.
A convenient state description for a time-aware system is z = ((k1, a1), . . . , (kn, an), s), where
n denotes the number in the system, ki denotes the class of customer i, ai denotes the holding
cost of customer i, and s is the amount of service (if any) customer n has received. For a
number-aware system, z = ((k1, a1), . . . , (kn, an)). For an empty system, we write z := 0.
Thus, for customer i, i = 1, . . . , n − 1, currently waiting in the queue, the remaining service
time is the original, Yi ∼ Xki

, and Yn denotes the remaining service time of the customer
currently receiving service. The mean and the second moment of Yn depend on the available
information, i.e. whether the system is number or time aware (or something else).

Proposition 3. The value function for a multiclass nonpreemptive M/G/1-LCFS queue with
arbitrary holding costs is given by

vz − v0 = 1

1 − ρ

n∑
i=1

(
E[Yi]

( i∑
j=1

aj − ρai

))
+ λ E[A]

2(1 − ρ)

( n∑
i=1

E[Y 2
i ]

)
. (15)

Proof. Equation (15) is obtained from (14) by conditioning on the (remaining) service times.

Corollary 6. For unit holding costs, the value function of a multiclass nonpreemptive M/G/1-
LCFS queue is given by

vz − v0 = 1

1 − ρ

n∑
i=1

(i − ρ) E[Yi] + λ

2(1 − ρ)

( n∑
i=1

E[Y 2
i ]

)
.

5.1. Remaining service time

The remaining service time in the time-aware case is again given by Lemma 4. For the
number-aware system, the queueing order has no bearing on the remaining service time of the
customer currently receiving service, and, hence, Lemma 3 also holds in this case.

5.2. Single class and sojourn time

The queueing discipline has no bearing on the value function in a single-class nonpreemptive
system as all customers waiting in the queue are statistically equivalent and incur costs in the
same manner. Thus, the results already given for the single-class FCFS queue in Section 3.2
also hold for the nonpreemptive LCFS. In fact, those results are valid for the general class of
all nonpreemptive queueing disciplines.

6. Dispatching problem

Let us next consider dispatching problems, which are a prime application of single-server
queues’ value functions. In a basic dispatching problem, all customers arrive to a dispatcher
which assigns them to one of the available servers upon arrival. The dispatching decision is
irrevocable. The customers in each queue are served according to a given queueing discipline.
In this paper we consider FCFS and LCFS disciplines.

The well-known dispatching policies that we consider in the numerical examples are as
follows.

(i) Join the shortest queue (JSQ), which assigns a customer to the queue with the least
number of customers. The ties are broken in favour of a queue with a ‘smaller id’.
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(ii) Bernoulli splitting policies (RND) assign customers randomly using some probability
distribution. RND-ρ uses a probability distribution that balances the load.

(iii) Size-interval-task-assignment (SITA) policies assign customers based on the service
requirement, which is thus assumed to be available. SITA-e uses such service time
intervals that balance the load across the servers.

(iv) Least-work-left (LWL) policies assign a customer to the queue with the least amount of
outstanding work (backlog). LWL− considers the backlog before the assignment, and
LWL+ afterwards.

(v) The myopic policy assigns a new customer to the queue that minimizes the costs under the
assumption that no additional customers arrive. Under FCFS, it is equivalent to LWL+.

Policy iteration. A dispatching policy is considered to be state independent if a decision
is independent of the state of the queues; otherwise, it is state dependent. The analysis of a
complete system is difficult in general. However, when a dispatching policy is state independent,
the arrival process to each queue remains Poisson and the queues can be analyzed independently.
In particular, we obtain the value function of the complete system as a sum of the queue specific
value functions,

vz = vz1 + · · · + vzm.

This enables the FPI of the Markov decision process framework. In FPI, the idea is to improve
a given basic policy for which the value function is available. For each decision, one deviates
from the default action of the basic policy if the expected cost with some other action is smaller,
thereby decreasing the expected cumulative cost globally in the infinite time horizon. The
expected cost of choosing queue i, referred to as the admittance cost, is

wi := vzi⊕x − vzi
,

where x denotes the information regarding the new customer, zi denotes the information of
the current state of queue i, and zi ⊕ x is the resulting state with the new customer added to
queue i. The value functions are determined by some basic policy. Hence, wi represents the
mean additional cost if a given new customer is assigned to queue i.

This general approach can be traced back to Norman [29], and has since been applied in
numerous papers (see the prior work in Section 1.1).

Server specific service times. We consider a heterogeneous system comprising m queues
having service rates ci . The total capacity of the system is ctot = ∑m

i=1 ci . Otherwise, the
servers are assumed to have no special traits, i.e. the service time of a customer with size x in
queue i is simply x/ci . In passing, we note that the present framework also lends itself to cases
where some servers can process certain customers more efficiently than others. Moreover, the
holding costs could be server specific.

6.1. FCFS servers

Consider first a system of parallel FCFS queues. For a single queue (ci = c), the admittance
cost is

w = λ E[A]
2c2(1 − ρ)

(E[X2] + 2 E[X] E[U ]) + a

c
(E[X] + E[U ]),

where λ, E[A], and ρ denote the arrival rate, the mean holding cost, and the offered load for
a given queue according to a state-independent basic policy, respectively, and c denotes the
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service rate, U denotes the amount of unfinished work, U = Y1 + · · ·+Yn, and (X, a) denotes
the service requirement and holding cost of the new customer, so that U/c corresponds to the
current backlog in time, and X/c corresponds to the service time of the new customer. Note
that here X refers to the ‘size’, not to the service time as in the previous sections. The first term
corresponds to the expected extra cost future arrivals incur because of a new customer, and the
latter term corresponds to the cost a given new customer incurs.

Single class and unit holding cost. With unit holding cost, A = a = 1 and the objective is
to minimize the mean sojourn time. In this case, the admittance cost reduces to

w = λ

2c2(1 − ρ)
(E[X2] + 2 E[X] E[U ]) + 1

c
(E[X] + E[U ]).

Special care must be taken when applying the single-queue FCFS results. As mentioned, the
number-aware result is valid for a single M/G/1-queue, and, thus, can be utilized to compute
the relative value of a state-independent policy. However, if the earlier decisions were not taken
according to the basic policy, then the remaining service times, or even the initial distribution
of customers entering a given queue, may be different. For time-aware cases, the knowledge
of the service received is sufficient to avoid such problems. Similarly, in size-aware cases, the
current state is exactly known and it does not matter how one has ended up there. Therefore,
in this section we consider (i) time-aware FPI-RND-ρ, (ii) size-aware FPI-RND-ρ, and (iii)
size-aware FPI-SITA-e. These, and the chosen reference policies, are summarized in Table 1.

Numerical example. For the numerical results, we consider two systems: (i) a two-server
system having rates c1 = 1 and c2 = 0.5, and (ii) a three-server system having rates c1 = 1
and c2 = c3 = 0.25, so that the total capacity in both cases is 1.5. We consider three service
requirement distributions: uniform U(0.5, 1.5), exponential with mean 1, and a bounded Pareto
distribution with the complementary cumulative distribution function

P{X > x} = (a/x)α − (a/b)α

1 − (a/b)α
, 0 < a < b and a ≤ x ≤ b,

where a = 0.339 59, b = 1000, and α = 1.5, so that the mean is also about 1.
Simulation results are depicted in Figure 1. The state-independent RND-ρ and SITA-e are

suboptimal with light-tailed service times, but with heavy-tailed service times, SITA-e starts to
shine. LWL+ (myopic) shows remarkably good performance overall (and is easy to implement),
while the size-aware FPI policy based on SITA-e achieves the lowest mean sojourn time almost
everywhere.

Table 1: Sufficient state information for FCFS policies assuming a single class and unit holding cost.

Arrival Service time Number in Service Backlog New
rate λ distribution the system received U customer

RND-ρ
SITA-e

√
Size

JSQ
√

LWL− √
LWL+ / myopic

√
Size

Time-aware FPI-RND-ρ
√ √ √ √

Mean size
Size-aware FPI-RND-ρ

√
Mean

√
Size

Size-aware FPI-SITA-e
√

Mean
√

Size
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FIFO: uniform, U(0.5, 1.5)
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Figure 1: Simulation results with FCFS. Left: two servers with rates c1 = 1 and c2 = 0.5. Right: three
servers with rates c1 = 1 and c2 = c3 = 0.25.

6.2. Preemptive LCFS servers

The second example is basically the same, but here the queues follow the preemptive LCFS
discipline. For a single preemptive LCFS queue, the conditional mean sojourn time for a
customer with service time x is

E[T (x)] = x

1 − ρ
,

and, thus, RND-ρ and SITA-e, both balancing the load among the servers, achieve the same
performance with respect to the sojourn time. The admittance cost to a single LCFS queue is
given by Proposition 2 as

w = a1 + · · · + an + a

c(1 − ρ)
E[X],
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where E[X] in our case (no special traits) is a common constant to all queues. Consequently,
the (expected) size of the new customer has no bearing on the FPI decision.

Furthermore, the admittance cost depends solely on the number in the queue (together with
the individual holding cost rates), which is assumed to be known in all three cases (number,
time, and size aware), making the FPI policy for the preemptive LCFS robust in this sense.
With a load balancing policy (e.g. RND-ρ and SITA-e), the offered load to each queue is equal,
ρi = ρj . Therefore, the number-, time-, and size-aware FPI policies for an arbitrary load
balancing basic policy are given by

αz = argmin
i=1,...,m

a1 + · · · + ani
+ a

ci

,

which is the same decision that the myopic policy would make.
Single class and unit holding cost. For a single class, unit holding cost and an arbitrary load

balancing basic policy (e.g. RND-ρ and SITA-e), the above reduces to

αz = argmin
i=1,...,m

ni + 1

ci

.

In practice, it is beneficial to favour an empty queue in case of ties. If the basic policy were, e.g.
optimal Bernoulli split, then the faster queue i would have a higher load than a slower queue j ,
i.e. ρi > ρj , and for states where (ni + 1)/ci = (nj + 1)/cj , the FPI decision would choose
the slower queue j . Hence, we also resolve the ties in favour of a slower server in the case
of RND-ρ and SITA-e basic policies that balance the load. For identical servers, the above is
equivalent to JSQ.

Numerical example. Here we consider the same server settings and size distributions as
with FCFS. The chosen dispatching policies are given in Table 2. The simulation results are
depicted in Figure 2. The results are somewhat mixed in the two-server scenario. With uniform
service requirements, all state-dependent policies behave similarly. With heavy-tailed service
requirements, the performance of the LWL policies also drops significantly. The FPI-based
approach yields only a slightly better performance than JSQ and another variant of the myopic.

In the setting of three servers, the situation is somewhat more asymmetric as the secondary
servers are four times slower than the primary server. In this case, the FPI-based approach (i.e.
myopic) is a clear winner, even if the ties are resolved suboptimally by choosing a faster server.
JSQ has a steady performance with a maximum deviation of about 20% from FPI/myopic.

Note that a system with nonpreemptive LCFS queues in an otherwise similar setting is
effectively the same as a system with FCFS queues, and is thus omitted here.

Table 2: Sufficient state-information for LCFS policies assuming a single class and unit holding cost.

Service time Number in Backlog New
distribution the system U customer

RND-ρ
SITA-e

√
Size

JSQ
√

LWL− √
LWL+

√
Size

Myopic / FPI (equal load)
√
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Figure 2: Simulation results with preemptive LCFS. Left: two servers with rates c1 = 1 and c2 = 0.5.
Right: three servers with rates c1 = 1 and c2 = c3 = 0.25.

6.3. Multiclass FCFS servers with dedicated input

In our final example, we consider a more complicated two-server system, where, in addition
to flexible customers arriving at rate λ, both servers also receive a dedicated stream of inflexible
customers arriving at rates λ1 and λ2, respectively. The two servers are identical, c1 = c2 = 1.
However, service requirements in each arrival stream are assumed to obey exponential
distributions with means µ1, µ2, and µ, respectively. Due to the lack-of-memory property of
the exponential distribution, the time- and number-aware systems are equivalent. The system
is illustrated in Figure 3. The same setting has been considered in [3] in the context of ‘power-
of-two’, which again refers to the situation where, for each customer, the choice has to be made
between two randomly chosen servers [28].

One reasonable state-independent basic policy for the Figure 3 system balances the load
between the two servers. Let ρ1, ρ2, and ρ denote the corresponding offered loads, ρi = λi/µi

and ρ = λ/µ. If ρ1 < ρ2 + ρ < ρ1 + 2ρ then an exact load balancing can be achieved
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Basic policy: Bernoulli split
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Figure 3: Left: a multiclass system where servers receive dedicated streams and only for a certain
fraction of customers a server can be selected. Right: the feasible region for a random split probability
P{queue 1} = p1 assuming c1 = c2 = 1, ρ1 + ρ2 = 1, and ρ = 0.5. The dashed line corresponds to the

optimal random split probability.

by an appropriate Bernoulli split. Otherwise, the basic policy assigns the flexible customers
categorically to the server with a lower load. In either case, let p1 and p2 denote the fraction of
flexible customers assigned to server 1 and server 2, respectively, and let ρ∗

i denote the resulting
total load in server i, ρ∗

i = ρi + piρ.
Assuming a number-aware system (knowledge of the service received would provide no

additional information in this case) where one knows the class of each customer, the value
function for queue i is given by (4) and reads

vz − v0 = λi + piλ

1 − ρ∗
i

( ni∑
j=1

(
1

µi,j

)2

+
ni−1∑
j=1

ni∑
k=j+1

1

µi,j

1

µi,k

)
+

n∑
j=1

j
1

µi,j

.

Therefore, the admittance cost of a new customer at the dispatcher to queue i is

wi =
(

1

µ
+

ni∑
j=1

1

µi,j

)(
1 + λi + piλ

1 − ρ∗
i

1

µ

)
, (16)

where the first factor corresponds to the expected backlog in queue i when the new task has been
included. If the arriving tasks have the same mean, µi,j = µ, and λ1 = λ2, then wi = A(ni+1),
where A is some common constant. That is, FPI yields JSQ, which is the optimal policy in this
case. Next we will evaluate by means of simulations the FPI policy (16) in genuine multiclass
situations.

Assume first that all service requirements obey the same exponential distribution with unit
mean, µ1 = µ2 = µ = 1. Furthermore, ρ1 +ρ2 = 1 and ρ = 0.5, so that the total offered load
is 0.75 per server. The balance between the dedicated streams is varied so that 0 < ρ1 < 1.
The right diagram of Figure 3 illustrates the feasible region for the random split probability p1
and also the optimal value of p1. Only when 0.25 ≤ ρ1 ≤ 0.75 can the load between the two
servers be evenly distributed. In those cases, FPI yields JSQ when only the number in a queue
is available. In the size-aware case, the (remaining) service requirements are also available and
we obtain LWL. In symmetric settings, ρ1 = ρ2, it is irrelevant which queue JSQ chooses in
the case of a tie. However, if, for example, ρ1 > ρ2, then the intuition says that the expected
cost of choosing queue 1 is higher than with queue 2. This information can be conveyed to FPI
by biasing the random split probabilities a bit in the appropriate direction. The ‘linear’ choice
for p1 depicted in the right diagram of Figure 3 does exactly that.
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Figure 4: Simulation results with identical service requirement distributions. On the left, the dispatcher
is aware of the number of customers in each queue, and on the right, the remaining service requirements

are also available.
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Figure 5: Simulation results with 1/µ1 = 4 and 1/µ2 = 1/µ = 1, i.e. class-1 tasks have a four times
longer mean service requirement. On the left, the dispatcher is aware of the number of tasks and their

classes in each queue, and on the right, the (remaining) service requirements are also available.

The simulation results are depicted in Figure 4. On the x-axis is the load offered directly
to queue 1, ρ1 = λ1/µ1, and on the y-axis the sojourn time performance against JSQ,
E[T ]/ E[TJSQ]. The FPI-lin and FPI-opt policies are the FPI policies obtained for the linear
and the optimal basic policies; see the right diagram of Figure 3.

Note that if ρ1 = ρ2 = 0, i.e. all customers are flexible and subject to a dispatching decision,
then both JSQ and LWL are the optimal policies in the corresponding settings. The JSQ and
LWL curves labelled with ‘no server restrictions’ correspond to such relaxed scenarios with
ρ = 1.5 and, thus, serve as lower bounds. We can observe that when the dedicated streams
are approximately equal, ρ1 ≈ ρ2, the difference to the relaxed scenario is reasonably small.
Even though the server system itself is symmetric in the sense that the dedicated arrival streams
can be interchanged, the complete system, e.g. with JSQ, is not due to the fact that it chooses
queue 1 in the case of ties. This explains the lack of symmetry with respect to ρ1 = 0.5 in
Figure 4.

When the dedicated arrival rates are highly nonuniform, the FPI policies achieve the highest
gains. As explained earlier, when FPI is applied to the optimal Bernoulli split and 0.25 ≤ ρ1 ≤
0.75, we obtain JSQ and LWL depending on the information available to the dispatcher. In
contrast, the ‘linear’ basic policy consistently yields a better FPI policy, as expected.

In Figure 5 we present the simulation results in the same setting except that tasks arriving
directly to queue 1 have a mean service requirement of 4. One can observe that in both
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number-aware and size-aware cases an FPI-based approach yields a slightly higher improvement
than in the previous case. Only one FPI-based policy, FPI-opt in the number-aware case, is
worse than JSQ with some values of ρ1.

6.4. Higher moments

In our setting, the remaining service times are random variables. Hence, a decision which
is optimal on average can still turn out to be wrong once the actual service times are realized.
This raises the natural question of whether one can have some control over the uncertainties
different decisions involve. It turns out that the same approach also lends itself to results in
this direction.

Let the random variable Ci denote the actual additional costs for choosing queue i, where the
random component is due to the uncertainty about the current state (remaining service times),
while the effect of future arrivals has already been included in the expectations. Choosing the
queue with the smallest mean E[Ci] gives the optimal decision in the long term. However, one
can also easily obtain an arbitrary moment E[Cp

i ], and, thus, e.g. the variance for the expected
increase in the costs.

To elaborate on this, consider a single-class M/G/1-FCFS queue with unit holding cost,
so that

C = (2hX + 1)U + hX2 + X,

where h = λ/(2(1 − ρ)), the random variable X is the service time of the new customer, and
U is the backlog, U = X1 + · · · + Xn + Y . Thus, e.g. V[C] can be easily computed. For
preemptive M/G/1-LCFS, the situation is even simpler, and we obtain

C = n + 1

1 − ρ
X.

Hence, the cost obeys the same distribution as the service time of the new customer, and, e.g.
E[C] = (n + 1)/(1 − ρ) E[X] and V[C] = (n + 1)2/(1 − ρ)2V[X].

7. Conclusions

In this paper we have given value functions for the M/G/1 queue with FCFS and LCFS
disciplines with arbitrary holding costs. The state description is assumed to comprise the number
in the queue and some additional information regarding the remaining service times. The
obtained results are compact closed-form expressions, and have similarities with the Pollaczek–
Khinchine mean value formula. These results generalize several earlier results, and enable
efficient dispatching rules for a broad range of dispatching problems, where arriving customers
are assigned to parallel queues so as to minimize the mean cost rate. In particular, the results
enable one to develop dispatching policies for multiclass scenarios and for cases with different
types of additional information regarding the remaining service times.
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