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Abstract

In this work, we shall be concerned with the following forced Rayleigh type equation:

x ′′(t)+ f (x ′(t))+ g(t, x(t)))= e(t).

Under certain assumptions, some criteria for guaranteeing the existence, uniqueness and asymptotic
stability (in the Lyapunov sense) of periodic solutions of this equation are presented by applying the
Manásevich–Mawhin continuation theorem, Floquet theory, Lyapunov stability theory and some analysis
techniques. Moreover, an example is provided to demonstrate the applications of our results.
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1. Introduction

In this note we consider the existence, uniqueness and asymptotic stability of periodic
solutions of the following forced Rayleigh type equation:

x ′′(t)+ f (x ′(t))+ g(t, x(t))= e(t), (1.1)

where f ∈ C2(R, R), e ∈ C(R, R), g ∈ C1(R2, R), e(t) and g(t, x) are T-periodic
functions in t with T > 0, and f (0)= 0.

It is well known that the British mathematical physicist Lord Rayleigh (John
William Strutt, 1842–1919), a Nobel Prize Laureate in Physics in 1904, introduced
an equation of the form

x ′′(t)+ f (x ′(t))+ ax(t)= 0 (1.2)

to model the oscillations of a clarinet reed; for details, see [16]. One of the most
difficult problems connected with the study of the Rayleigh equation (1.2) is whether
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it can support limit cycles. Limit cycles are very important in science. They model
systems that exhibit self-sustained oscillations. In other words, these systems oscillate
even in the absence of external periodic forcing.

During the past several years, many authors have studied the self-sustained
oscillations in acoustics. Fletcher [3] showed that there exist particular ranges of
acoustic impedance for the inlet and outlet ducts to the valve within which self-
sustained valve oscillation is possible. Keith and Rand [6], Shimizu and Morioka [15]
and Shimizu [14] investigated the existence conditions for limit cycles of the Rayleigh
equation, that is, conditions under which auto-oscillations occur. The question of
periodic solutions was also studied for different generalizations of the Rayleigh
equation, for example (1.1). In [4], Gaines and Mawhin introduced some continuation
theorems and applied them in discussing the existence of solutions of certain ordinary
differential equations. In particular, a specific example was provided in [4, p. 99] on
how T -periodic solutions could be obtained by means of these theorems for (1.1) with
e(t)= 0. In the course of derivations, it was realized that once a priori bounds for the
T -periodic solutions of the homotopic equations is known, then standard procedures
will allow these theorems to imply the existence of T -periodic solutions to the original
equation. Applying these approaches, the authors of [8–10, 17, 18] continued to
discuss the Rayleigh equation and obtained many new results on the existence of
T -periodic solutions of (1.1), and generalized some results in [4]. Other authors
researched the stability of periodic solutions of the Duffing type equations

x ′′(t)+ bx ′(t)+ g(t, x(t))= 0 (1.3)

and
x ′′(t)+ bx ′(t)+ g(t, x(t))= e(t). (1.4)

In [13], Ortega studied the stability of periodic solutions of (1.3) and obtained some
stability results by topological index. Then Lazer and McKenna [7] obtained stability
results by converting (1.3) to a fixed-point problem. Recently, Chen and Li [1] studied
the rate of decay of stable periodic solutions of (1.4) and determined a sharp rate of
exponential decay for a solution that is near to the unique periodic solution. However,
to our knowledge, there are much fewer results on the stability of periodic solutions
of (1.1). Hence it is essential to continue to study periodic solutions of (1.1) in this
case.

The main purpose of this paper is to establish some sufficient conditions
for guaranteeing the existence, uniqueness and asymptotic stability of T -periodic
solutions of (1.1), by applying the Manásevich–Mawhin continuation theorem, Floquet
theory, Lyapunov stability theory and some analysis techniques.

The following notation will be used throughout the rest of this paper.

|x |∞ = max
t∈[0,T ]

|x(t)|, |x ′|∞ = max
t∈[0,T ]

|x ′(t)|, |x |k =

(∫ T

0
|x(t)|k dt

)1/k

.

Set
C1

T := {x ∈ C1(R, R) | x(t + T )= x(t)}
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and
CT := {x ∈ C(R, R) : x(t + T )= x(t)},

which are two Banach spaces with the norms

‖x‖C1
T
=max{|x |∞, |x ′|∞}, ‖x‖CT = |x |∞.

Our main theorem is as follows.

THEOREM 1.1. Assume that there exist constants C1 ≥ 0, C2 ≥ 0 and D1 ≥ 0 such
that:
(H1) (g(t, u)− g(t, v))(u − v) > 0, for all t, u, v ∈ R with u 6= v;
(H2) | f (t, u)− f (t, v)| ≤ C1|u − v|, for all t, u, v ∈ R;
(H3) |g(t, u)− g(t, v)| ≤ C2|u − v|, for all t, u, v ∈ R;
(H4) (C1/2π)T + (C2/4π)T 2 < 1;
(H5) x(g(t, x)− e(t)) > 0, for all |x | ≥ D1 and t ∈ R;
(H6)

∫ T
0 [g

′
x (t, x)− 1

4 ( f ′(y))2] dt > 0 and f ′(y) > 0, for x ∈ I1 and y ∈ I2;
(H7) {

g′x (t, x)−
1
2

f ′′(y)[e(t)− f (y)− g(t, x)] −
1
4
( f ′(y))2

}
<

1

T 2 ,

for t ∈ R, x ∈ I1 and y ∈ I2; where

G = max
t∈[0,T ]

|g(t, 0)|, M0 =
(G + |e|∞ + C2 D1)

√
T

1− (C1/2π)T − (C2/4π)T 2 ,

M1 = D1 +

√

T 3

4π
M0, M2 =

1
2

√
T M0,

I1 = [−M1, M1] and I2 = [−M2, M2].

Then (1.1) has a unique T -periodic solution which is asymptotically stable.

In Section 2 we introduce some lemmas which will help us to obtain the main
theorem, the proof of which is given in Section 3. The paper concludes with an
illustrative example is provided to demonstrate the application of our results.

2. Lemmas

In this section, we shall introduce some lemmas which will help us to obtain our
main theorem. First, let us recall the Manásevich–Mawhin continuation theorem,
which is useful in obtaining the existence of T -periodic solutions of (1.1).

For the periodic boundary value problem

(ϕp(x
′(t)))′ = h(t, x, x ′), x(0)= x(T ), x ′(0)= x ′(T ), (2.1)

where p > 1, ϕp : R→ R, ϕp(s)= |s|p−2s is a one-dimensional p-Laplacian, and
h ∈ C(R3, R) is T -periodic in the first variable, we have the following result.
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LEMMA 2.1. [11] Let � be an open bounded set in C1
T . Suppose the following

conditions hold:

(i) for each λ ∈(0,1) the problem

(ϕp(x
′(t)))′ = λh(t, x, x ′), x(0)= x(T ), x ′(0)= x ′(T )

has no solution on ∂�;
(ii) the equation

F(a) :=
1
T

∫ T

0
h(t, a, 0) dt = 0

has no solution on ∂� ∩ R;
(iii) the Brouwer degree of F is

deg(F, � ∩ R, 0) 6= 0.

Then the periodic boundary value problem (2.1) has at least one T -periodic solution
on �.

REMARK 2.2. In particular, if p = 2, (2.1) reduces to the following periodic boundary
value problem:

x ′′(t)= h(t, x, x ′), x(0)= x(T ), x ′(0)= x ′(T ), (2.2)

which implies that the above Lemma 2.1 can be used to investigate the existence of
T -periodic solutions of (1.1).

Next, two lemmas will be introduced to help us in obtaining the uniqueness of
T -periodic solutions of (1.1).

LEMMA 2.3. If x ∈ C2(R, R) with x(t + T )= x(t), then

|x ′|22 ≤

(
T

2π

)2

|x ′′|22.

PROOF. Lemma 2.3 is a direct consequence of the Wirtinger inequality; see [5, 12] for
its proof. 2

LEMMA 2.4. Suppose (H1)–(H4) hold. Then (1.1) has at most one T-periodic solution.

PROOF. Suppose that x1(t) and x2(t) are two T-periodic solutions of (1.1). Then

[x1(t)− x2(t)]
′′
+ [ f (x ′1(t))− f (x ′2(t))] + [g(t, x1(t)− g(t, x2(t)] = 0. (2.3)

Setting Z(t)= x1(t)− x2(t), we obtain, from (2.3), that

Z ′′(t)+ [ f (x ′1(t))− f (x ′2(t))] + [g(t, x1(t)− g(t, x2(t)] = 0. (2.4)
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Since Z(t)= x1(t)− x2(t) is a continuous T -periodic function in R, there exist
two constants tmax, tmin ∈ R such that

Z(tmax)= max
t∈[0,T ]

Z(t)=max
t∈R

Z(t), Z(tmin)= min
t∈[0,T ]

Z(t)=min
t∈R

Z(t). (2.5)

It follows that

Z ′(tmax)= x ′1(tmax)− x ′2(tmax)= 0, Z ′′(tmax)≤ 0 (2.6)

and
Z ′(tmin)= x ′1(tmin)− x ′2(tmin)= 0, Z ′′(tmin)≥ 0. (2.7)

Then, by (2.4)–(2.7),

g(tmax, x1(tmax))− g(tmax, x2(tmax)) = −Z ′′(tmax)− [ f (x
′

1(tmax))− f (x ′2(tmax))]

= −Z ′′(tmax)≥ 0 (2.8)

and

g(tmin, x1(tmin))− g(tmin, x2(tmin)) = −Z ′′(tmin)− [ f (x
′

1(tmin))− f (x ′2(tmin))]

= −Z ′′(tmin)≤ 0. (2.9)

From (2.8) and (2.9), we know that there exists a constant t0 ∈ R such that

g(t0, x1(t0))− g(t0, x2(t0))= 0. (2.10)

Now set t0 = nT + t̃0, where t̃0 ∈ [0, T ] and n is an integer. Note that since
Z(t + T )= Z(t), we get, by (H1) and (2.10), that

Z(t̃0)= Z(t0)= x1(t0)− x2(t0)= 0. (2.11)

Hence, for any t ∈ [t̃0, t̃0 + T ], we obtain

|Z(t)| =

∣∣∣∣Z(t̃0)+ ∫ t

t̃0
Z ′(s) ds

∣∣∣∣≤ ∫ t

t̃0
|Z ′(s)| ds

and

|Z(t)| =

∣∣∣∣Z(t̃0 + T )+
∫ t

t̃0+T
Z ′(s) ds

∣∣∣∣= ∣∣∣∣− ∫ t̃0+T

t
Z ′(s) ds

∣∣∣∣≤ ∫ t̃0+T

t
|Z ′(s)| ds.

Now combining above two inequalities, we get

|Z(t)| ≤
1
2

∫ T

0
|Z ′(s)| ds.
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This, together with the Schwarz inequality, gives

|Z |∞ = max
t∈[t̃0,t̃0+T ]

|Z(t)| ≤
1
2

∫ T

0
|Z ′(s)| ds ≤

1
2
|1|2|Z ′|2 =

1
2

√
T |Z ′|2. (2.12)

Next, multiplying Z ′′(t) and (2.4) and integrating it from 0 to T , we obtain, by
Lemma 2.3, (H2), (H3), (2.12) and the Schwarz inequality, that

|Z ′′|22 = −
∫ T

0
[ f (x ′1(t))− f (x ′2(t))]Z

′′(t) dt

−

∫ T

0
[g(t, x1(t))− g(t, x2(t))]Z

′′(t) dt

≤

∫ T

0
| f (x ′1(t))− f (x ′2(t))||Z

′′(t)| dt

+

∫ T

0
|g(t, x1(t))− g(t, x2(t))||Z

′′(t)| dt

≤

∫ T

0
C1|x

′

1(t)− x ′2(t)||Z
′′(t)| dt +

∫ T

0
C2|x1(t)− x2(t)||Z

′′(t)| dt

≤

∫ T

0
C1|Z

′(t)||Z ′′(t)| dt +
∫ T

0
C2|Z(t)||Z

′′(t)| dt

≤ C1|Z
′
|2|Z

′′
|2 + C2

√
T |Z |∞|Z

′′
|2

≤

(
C1

2π
T +

C2

4π
T 2
)
|Z ′′|22. (2.13)

Since Z(t), Z ′(t) and Z ′′(t) are continuous T-periodic functions, we get, by
Lemma 2.3, (H4) and (2.12), that

Z(t)= Z ′(t)= Z ′′(t)= 0 for all t ∈ R,

which implies that x1(t)≡ x2(t) for all t ∈ R. Hence, (1.1) has at most one T-periodic
solution. This completes the proof. 2

Moreover, consider the homotopic equation of (1.1),

x ′′(t)+ λ f (x ′(t))+ λg(t, x(t))= λe(t), λ ∈ (0, 1). (2.14)

The following lemma will show that the set of all possible T -periodic solutions
of (2.14) are bounded in C1

T under some restrictive conditions. This result will help
us to obtain the existence of T -periodic solutions of (1.1) when applying the above
Manásevich–Mawhin continuation theorem.

LEMMA 2.5. Suppose that (H2)–(H5) hold. Then the set of T -periodic solutions of
(2.14) are bounded in C1

T .
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PROOF. Let S ⊂ C1
T be the set of T -periodic solutions of (2.14). If S = ∅, the proof

is done. Suppose that S 6= ∅, and let x ∈ S. Then there exist two constants t, t ∈ R
such that

x(t)=max
t∈R

x(t) and x(t)=min
t∈R

x(t),

implying that

x ′(t)= 0, x ′′(t)≤ 0; x ′(t)= 0, x ′′(t)≥ 0. (2.15)

Note that since f (0)= 0, we obtain, by (2.14) and (2.15), that

g(t, x(t))− e(t)≥ 0 and g(t, x(t))− e(t)≤ 0,

which implies that there exists a constant t̂ ∈ R such that

g(t̂, x(t̂))− e(t̂)= 0. (2.16)

Subsequently, set t̂ = mT + t̂0, where t̂0 ∈ [0, T ] and m is an integer. Then we get, by
(H5) and (2.16), that

|x(t̂0)| = |x(t̂)| ≤ D1. (2.17)

Hence, for any t ∈ [t̂0, t̂0 + T ],

|x(t)| =

∣∣∣∣x(t̂0)+ ∫ t

t̂0
x ′(s) ds

∣∣∣∣≤ D1 +

∫ t

t̂0
|x ′(s)| ds

and

|x(t)| =

∣∣∣∣x(t̂0 + T )+
∫ t

t̂0+T
x ′(s) ds

∣∣∣∣≤ D1 +

∣∣∣∣− ∫ t̂0+T

t
x ′(s) ds

∣∣∣∣
≤ D1 +

∫ t̂0+T

t
|x ′(s)| ds.

Now combining above two inequalities, we get

|x(t)| ≤ D1 +
1
2

∫ T

0
|x ′(s)| ds.

This together with the Schwarz inequality gives

|x |∞ = max
t∈[t̂0,t̂0+T ]

|x(t)| ≤ D1 +
1
2

∫ T

0
|x ′(s)| ds

≤ D1 +
1
2
|1|2|x ′|2 = D1 +

1
2

√
T |x ′|2. (2.18)
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Note that, since f (0)= 0, we obtain, by Lemma 2.3, (H2), (H3), (2.14), (2.18) and
the Schwarz inequality, that

|x ′′|22 = −λ
∫ T

0
f (x ′(t))x ′′(t) dt − λ

∫ T

0
g(t, x(t))x ′′(t) dt + λ

∫ T

0
e(t)x ′′(t) dt

= −λ

∫ T

0
[ f (x ′(t))− f (0)]x ′′(t) dt

− λ

∫ T

0
[g(t, x(t))− g(t, 0)+ g(t, 0)]x ′′(t) dt + λ

∫ T

0
e(t)x ′′(t) dt

≤

∫ T

0
| f (x ′(t))− f (0)||x ′′(t)| dt +

∫ T

0
|g(t, x(t))− g(t, 0)||x ′′(t)| dt

+

∫ T

0
|g(t, 0)||x ′′(t)| dt +

∫ T

0
|e(t)||x ′′(t)|| dt

≤

∫ T

0
C1|x

′(t)||x ′′(t)| dt +
∫ T

0
C2|x(t)||x

′′(t)| dt

+ G
∫ T

0
|x ′′(t)| dt + |e|∞

∫ T

0
|x ′′(t)| dt

≤ C1|x
′
|2|x
′′
|
2
2 + C2

√
T |x |∞|x

′′
|2 + (G + |e|∞)|1|2|x ′′|2

≤
C1

2π
T |x ′′|22 + C2

√
T

(
D1 +

1
2

√
T |x ′|2

)
|x ′′|2 + (G + |e|∞)

√
T |x ′′|2

≤

(
C1

2π
T ++

C2

4π
T 2
)
|x ′′|22 + (G + |e|∞ + C2 D1)

√
T |x ′′|2, (2.19)

where G =maxt∈[0,T ] |g(t, 0)|. Now, by (H4) and (2.19),

|x ′′|2 ≤
(G + |e|∞ + C2 D1)

√
T

1− (C1/2π)T − (C2/4π)T 2 = M0. (2.20)

Since x(0)= x(T ), there exists a constant t̃ ∈ [0, T ] such that x ′(t̃)= 0. Then for any
t ∈ [t̃, t̃ + T ],

|x ′(t)| =

∣∣∣∣x ′(t̃)+ ∫ t

t̃
x ′′(s) ds

∣∣∣∣≤ ∫ t

t̃
|x ′′(s)| ds

and

|x ′(t)| =

∣∣∣∣x ′(t̃ + T )+
∫ t

t̃+T
x ′′(s) ds

∣∣∣∣≤ ∣∣∣∣− ∫ t̃+T

t
x ′′(s) ds

∣∣∣∣≤ ∫ t̃+T

t
|x ′′(s)| ds.

Now combining above two inequalities, we get, by the Schwarz inequality, that

|x ′(t)| ≤
1
2

∫ T

0
|x ′′(s)| ds ≤

1
2
|1|2|x ′′|2 =

1
2

√
T |x ′′|2,
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which, together with (2.20), implies that

|x ′|∞ = max
t∈[t̃,t̃+T ]

|x ′(t)| ≤ 1
2

√
T |x ′′|2 = 1

2

√
T M0 = M2. (2.21)

Moreover, according to Lemma 2.3, (2.18) and (2.20),

|x |∞ ≤ D1 +
1
2

√
T |x ′|2 ≤ D1 +

√

T 3

4π
|x ′′|2 ≤ D1 +

√

T 3

4π
M0 = M1. (2.22)

Let M =max{M1, M2}; then we know that

|x |∞ ≤ M and |x ′|∞ ≤ M.

This completes the proof. 2

REMARK 2.6. According to the proof of Lemma 2.5, we can easily conclude that,
if x(t) is a T -periodic solution of (1.1), then (2.21) and (2.22) also hold under the
conditions of Lemma 2.5.

Finally, for convenience of use, we recall a well-known principle of linearized
stability for periodic systems; for details, see for example [2, pp. 321–322]. Consider
the periodic boundary value problem{

x ′ = F(t, x),

x(0)= x(T ),
(2.23)

where F : [0, T ] × Rn
→ Rn is a continuous function that is T -periodic in t and has

continuous first-order partial derivative with respect to x . Let p0 be a T -periodic
solution of (2.23); then we associate the T -periodic solution p0 with the linearized
equation

y′ = F ′x (t, p0)y. (2.24)

The following theorem, which is due to Lyapunov (see [3, Theorem 2.1, p. 322]),
shows the connections between the asymptotic stability of the T -periodic solution p0
of (2.23) and the characteristic exponents of (2.24).

LEMMA 2.7. If the characteristic exponents associated with (2.24) all have negative
real parts, then the T -periodic solution p0 of (2.23) is asymptotically stable.

3. Proof of Theorem 1.1

Now we are in the position to present the proof of Theorem 1.1. The proof falls
naturally in two parts. We begin by considering a existence and uniqueness result,
before turning to asymptotic stability.

According to Remark 2.2, Lemma 2.1 can be used to obtaini the existence of
T -periodic solutions of (1.1). Set

h(t, x, x ′)= e(t)− f (x ′)− g(t, x). (3.1)
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Then (2.14) is equivalent to

x ′′(t)= λh(t, x(t), x ′(t)), λ ∈ (0, 1). (3.2)

By Lemma 2.5, there exists M3 > M such that, for any T -periodic solution x(t)
of (2.14) or (3.2),

|x |∞ < M3 and |x ′|∞ < M3. (3.3)

Let
�= {x ∈ C1

T : |x |∞ < M3, |x
′
|∞ < M3}.

Then we know that (3.2) has no solution on ∂� as λ ∈ (0, 1), so condition (i) of
Lemma 2.1 is satisfied.

On the other hand, since

F(a) :=
1
T

∫ T

0
h(t, a, 0) dt,

for any x ∈ ∂� ∩ R, x = M3 or x =−M3, and f (0)= 0, we obtain, by (H5), that

F(M3) =
1
T

∫ T

0
[e(t)− g(t, M3)] dt < 0,

F(−M3) =
1
T

∫ T

0
[e(t)− g(t,−M3)] dt > 0, (3.4)

which imply that condition (ii) of Lemma 2.1 is also satisfied. Moreover, define

H(x, µ)=−µx + (1− µ)
1
T

∫ T

0
[e(t)− g(t, x)] dt;

in view of (3.4), we obtain that

x H(x, µ) < 0 for all x ∈ ∂� ∩ R and µ ∈ [0, 1],

thus H(x, µ) is a homotopic transformation. From (3.4), together with the homotopic
invariance theorem,

deg(F, � ∩ R, 0) = deg
(

1
T

∫ T

0
[e(t)− g(t, x)] dt, � ∩ R, 0

)
= deg(−x, � ∩ R, 0) 6= 0.

This implies that condition (iii) of Lemma 2.1 is satisfied. Therefore, it follows from
Lemma 2.1 and Remark 2.2 that there exists a T -periodic solution of (1.1). The
uniqueness of T -periodic solutions of (1.1) is guaranteed by Lemma 2.4.

We now turn to asymptotic stability. Let x0(t) be the unique T -periodic solution
of (1.1). Then we know from Lemma 2.5 and Remark 2.6 that

|x0|∞ ≤ M1 and |x ′0|∞ ≤ M2. (3.5)
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Moreover, according to (2.23) and (2.24), it is easy to see that the linearized equation
of (1.1) is

y′′(t)+ f ′(x ′0(t))y
′(t)+ g′x (t, x0(t))y(t)= 0. (3.6)

In order to show that x0(t) is asymptotically stable, Lemma 2.7 will be applied.
First, we show that (3.6) does not have real Floquet (or characteristic) multipliers.

If not, then there is a real Floquet multiplier α and a nontrivial solution y(t) of (3.6)
such that y(t + T )= αy(t). Set y(t)= exp

(
−

1
2

∫ t
0 f ′(x ′0(s)) ds

)
u(t); then u(t) is a

non-trivial solution of the equation

u′′(t)+ [g′x (t, x0(t))− 1
2 f ′′(x ′0(t))x

′′

0 (t)−
1
4 ( f ′(x ′0(t)))

2
]u(t)= 0 (3.7)

with the Floquet multiplier β = α exp
( 1

2

∫ T
0 f ′(x ′0(s)) ds

)
(that is, u(t + T )= βu(t)).

Now we show that the following claim is true.

CLAIM. There exists a t0 ∈ [0, T ] such that

u(t0)= 0. (3.8)

Assume, by way of contradiction, that (3.8) does not hold. Then u(t) 6= 0 for all
t ∈ [0, T ]. Dividing (3.7) by u(t) and integrating it from 0 to T , we obtain, noticing
that

∫ T
0 f ′′(x ′0(t))x

′′

0 (t) dt = 0 and u′(0)/u(0)= u′(T )/u(T ), that∫ T

0

(
u′(t)

u(t)

)2

dt +
∫ T

0

[
g′x (t, x0(t))−

1
4
( f ′(x ′0(t)))

2
]

dt = 0, (3.9)

which together with (3.5) contradicts the condition (H6) that
∫ T

0 [g
′
x (t, x)−

1
4 ( f ′(y))2] dt > 0 for x ∈ I1 and y ∈ I2. This implies that (3.8) holds. Therefore we
know that this u(t) is a non-trivial solution of the Dirichlet boundary value problem

u′′(t)+ [g′x (t, x0(t))− 1
2 f ′′(x ′0(t))x

′′

0 (t)−
1
4 ( f ′(x ′0(t)))

2
]u(t)= 0,

u(t0 + T )= u(t0)= 0. (3.10)

Since x ′′0 (t)= e(t)− f (x ′0(t))− g(t, x0(t)), multiplying (3.10) by u(t) and
integrating it from t0 to t0 + T , then, by (3.5) and (H7),∫ t0+T

t0
u′(t)2 dt

=

∫ t0+T

t0

[
g′x (t, x0(t))−

1
2

f ′′(x ′0(t))x
′′

0 (t)−
1
4
( f ′(x ′0(t)))

2
]

u(t)2 dt

<
1

T 2

∫ t0+T

t0
u(t)2 dt. (3.11)

For convenience of use, we recall the Dirichlet–Poincaré inequality∫ b

a
| f (t)|2 dt ≤ (b − a)2

∫ b

a
| f ′(t)|2 dt where f ∈ C1 and f (a)= f (b)= 0.
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We immediately see that (3.11) contradicts the Dirichlet–Poincaré inequality.
Therefore, (3.6) does not have real Floquet multipliers.

Next, we show that the characteristic exponents associated with (3.6) all have
negative real parts. In order to do this, let us consider a system equivalent to (3.6):

X ′(t)= A(t)X (t), (3.12)

where the vector function X (t)= (x(t), x ′(t))T and A(t) is the matrix function

A(t)=

[
0 1

−g′x (t, x0(t)) − f ′(x ′0(t))

]
.

Let α1 = eTµ1 and α2 = eTµ2 be the Floquet multipliers of (3.12) and µ1 and µ2 be
the characteristic exponents associated with α1 and α2. Then it follows from the above
discussion that α1 and α2 are a pair of complex conjugates. Applying Liouville’s
theorem (see [1, Problem 1, p. 285]),

α1α2 = e
∫ T

0 traceA(t) dt
= e

∫ T
0 − f ′(x ′0(t)) dt (3.13)

and

Re(µ1)= Re(µ2)=
1
2

Re(µ1 + µ2)=
1

2T
ln(α1α2)=

1
2T

∫ T

0
− f ′(x ′0(t)) dt.

(3.14)
By assumption (H6), which says that f ′(y) > 0 for y ∈ I2, (3.14) leads to Re(µ1)=

Re(µ2) < 0.
Finally, applying Lemma 2.7, we obtain that x0(t) is asymptotically stable. This

completes the proof of Theorem 1.1. 2

REMARK 3.1. If f (0) 6= 0, the problem of the existence, uniqueness and asymptotic
stability of T -periodic solutions to (1.1) can be converted into the equation

x ′′(t)+ f1(x
′(t))+ g(t, x(t))= e1(t), (3.15)

where f1(x ′(t))= f (x ′(t))− f (0), e1(t)= e(t)− f (0). As f1(0)= 0, (3.15) can be
studied by means of Theorem 1.1 in this paper.

4. An illustrative example

In this section, we apply the main results obtained in previous sections to an
example.

EXAMPLE 4.1. Consider the existence, uniqueness and asymptotic stability of 2π -
periodic solutions of the Rayleigh type equation

x ′′(t)+
1

π4 arctan x ′(t)+
1

π4 (cos2 t + 1)x(t)=
1

π3 sin t, (4.1)

where T = 2π . Here f (x ′)= (1/π4) arctan x ′, g(t, x)= (1/π4)(cos2 t + 1)x and
e(t)= (1/π3) sin t .
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PROOF. For convenience, let π = 3.1416. Set C1 = (1/π4), C2 = (2/π4) and
D1 = 2π . Then it is easy to check that conditions (H1)–(H5) of Theorem 1.1
are satisfied. Now we check that (H6) and (H7) also hold. According to
Theorem 1.1, we can compute that G = 0, M0 = 0.4376, M1 = 6.8317, M2 = 0.5485,
I1 = [−6.8317, 6.8317] and I2 = [−0.5485, 0.5485].

For x ∈ I1 and y ∈ I2,∫ 2π

0

[
g′x (t, x)−

1
4
( f ′(y))2

]
dt =

∫ 2π

0

[
1

π4 (cos2 t + 1)−
1

4π8(1+ y2)2

]
dt

≥

∫ 2π

0

[
1

π4 (cos2 t + 1)−
1

4π8

]
dt

=
3

π3 −
1

2π7 > 0

and

f ′(y)=
1

π4(1+ y2)
> 0,

which imply that (H6) holds.
On the other hand,

g′x (t, x)−
1
2

f ′′(y)[e(t)− f (y)− g(t, x)] −
1
4
( f ′(y))2

=
1

π4 (cos2 t + 1)+
y

π4(1+ y2)2

[
1

π3 sin t −
1

π4 arctan y −
1

π4 (cos2 t + 1)x
]

−
1

4π8(1+ y2)2

<
2

π4 +
1

2π4 ×

[
1

π3 +
1

π4 ×
π

2
+

2

π4 × 6.8317
]

≈ 0.0216<
1

T 2 =
1

4π2 ≈ 0.0253,

which implies that (H7) holds. Hence (4.1) has a unique 2π -periodic solution which
is asymptotically stable. 2

REMARK 4.2. It is easy to see that the results in [1, 4, 7–11, 13–18] and the references
therein cannot be applied to (4.1) in order to guarantee the existence, uniqueness and
asymptotic stability of 2π -periodic solutions, so our results are new and complement
the existing results.
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