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Abstract. We discuss the dispersive properties of low-frequency electromagnetic
(EM) perturbations in the magnetized core of self-gravitating white dwarf stars
with ultra-relativistic degenerate electrons. For our purposes, we derive a dispersion
relation by using the hydrodynamic equations for the ions under the action of EM
and self-gravitating forces, and the inertialess electrons under the action of EM
forces and the gradient of the ultra-relativistic pressure. The dispersion relation
admits stability of a white dwarf star against a class of EM perturbations whose
wavelengths are shorter than 15000 km.

White dwarf stars [1], aptly named due to their very low luminosities yet high
surface emissivities, are compact bodies with radii �10−2R� and masses typically
�M�. Consequently, their average bulk densities are quite high (∼1030 cm−3. At such
high densities, the background electrons are degenerate and follow the Fermi–Dirac
statistics since the inter-electron distance is of the order of the de Broglie thermal
wavelength or even comparable with the Compton length. In such a situation, the
electrons are crowded very close together and the combination of the Pauli exclusion
principle (viz. two electrons cannot occupy the same energy state) and Heisenberg’s
uncertainty principle dictate that the position and momentum of of electrons cannot
be precisely determined simultaneously, viz. the product of the uncertainties of the
position and momentum (∆x∆p) is greater than �/2, where � is the Planck constant
divided by 2π. An electron has a continuous motion around the position it occupies.
This motion exerts pressure on the surrounding medium, exactly as the thermal
agitation of the molecules of a gas exerts its pressure. This pressure is called the
pressure of electron degeneracy. The electron pressure P (the momentum transfer
per unit area), when electrons are ultra-relativistic, are given by Refs [2, 3]

P =
1

4
(3π2)1/3�cne ≈ 3

4
�cn4/3

e , (1)

where c is the speed of light in vacuum.
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In his classic paper, Chandrasekhar [3] considered the gravitation equilibrium of
dense stars with ultra-relativistic degenerate electrons, and demonstrated that the
internal outward pressure that counterbalances the inward pull of its own gravitation
is not the normal thermal pressure of a hot gas, such as in our own sun, but rather
that provided by a degenerate relativistic electron gas. The ultra-relativistic electron

pressure P , which is proportional to n
4/3
e , allowed Chandrasekhar to discover the

critical Chandrasekhar limit, Mc, for the mass of such white dwarfs. This mass,
which has since been called the Chandrasekhar mass, has been revised upwards
from its empirical estimate of 0.91–1.44 M� [4, 5].

The most accurate mass determination of white dwarf stars, using binary orbit
solutions, give values �M� (e.g. the mass of the most well-known white dwarf stars,
Sirius B, the faint companion of the bright main sequence star, Sirius A, is estimated
to be (∼1 M�), whereas its radius is estimated to be about 0.007 R�, e.g. see Ref. [6].
Incidentally, the above dimensions show that the average bulk density of Sirius
B ≈ 4.4 × 106 g cm−3. As the average electron number density is given by

ne =
X

mH

+
2Y

4mH

+
Z

〈A〉mH

〈A〉
2

=
(1 + X)ρ

2mH

, (2)

where X, Y and Z are the mass fractions of H , He and the heavy atoms of average
atomic mass 〈A〉, and where it has been assumed that each of those constitute
〈A〉/2 electrons, when fully ionized. Furthermore, ρ is the mass density, while the
estimated composition of the white dwarf stars may vary, as inferred from their
spectra, many seem to be dominated by He. If, following Chandrasekhar [5], we
assume that the composition is fully He [6, 7], then X = 0, and using (2) we obtain
ne ≈ 1.3 × 1030 cm−3.

Following on his earlier work, Chandrasekhar [8] discussed the dynamical stability
of white dwarfs, wherein he showed that, while general relativistic effects begin to
play a role for the more massive white dwarf stars close to Chandrasekhar limit,
this mass limit is decreased somewhat to ∼1.42M�, due to the onset of dynamical
instability for masses about this value [9].

In this paper, we confine ourselves to the stability of core of self-gravitating
[10, 11] white dwarf stars (M � M�) with ultra-relativistic degenerate electrons
and non-degenerate ions, but not subject to general relativistic effects discussed by
Chandrasekhar [8]. We, however, take into account of the massive magnetic fields
of such cores. There is a range of the magnetization of white dwarf stars, with the
observed surface magnetic field ranging from as low as a few kilogauss to as high
as 300 megagauss [6].

We model the core of the white dwarf star as a dense uniform, self-gravitating,
magnetized electron–ion plasma, with ultra-relativistic degenerate electrons and non-
degenerate ions. Here we do not deal with the global oscillations of the configuration,
but rather with the dynamics of a novel class of waves, which are almost equally
affected by electromagnetic (EM) and gravitational forces, resulting from density
and magnetic field perturbations which may be self-excited or which may result
from gravitational perturbations such as from a binary companion. We note that
unlike the much smaller and much denser neutron stars, white dwarf stars are not
known to be fast rotators. In fact, observations indicate that most white dwarfs
rotate slowly, if at all [7]. So we do not need to consider the effect of rotation in
our analysis. We do, however, consider the effects of magnetization, as discussed
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earlier. Of course, the morphology of the magnetic field within white dwarf cores
is unknown. Therefore, in our present analysis, the magnetic field and the plasma
number density are assumed to be uniform.

The dynamics of low-frequency (in comparison with the electron gyrofrequency),
low phase velocity (in comparison with the speed of light in vacuum) electromagnetic
disturbances in the core of a self-gravitating dense white dwarf electron–ion plasma
is governed by the continuity equation:

∂nj

∂t
+ ∇ · (njuj) = 0, (3)

the inertialess electron momentum equation:

0 = −nee

(
E +

1

c
ue × B

)
− 3

4
�c∇n4/3

e , (4)

the ion momentum equation:

mini
dui
dt

= nie

(
E +

1

c
ui × B

)
− mini∇φg, (5)

Ampère’s law

∂B

∂t
= −c∇ × E, (6)

Faraday’s law:

∇ × B =
4πJ

c
≡ 4πe

c
(niui − neue) (7)

and Poisson’s equation for the gravitational potential φg:

∇2φg = 4πGnimi, (8)

together with the quasi-neutrality approximation ne = ni = n. Here we have denoted
d/dt = (∂/∂t) + ui · ∇, and J is the plasma current density.

In (1)–(8), we have denoted the number density of the plasma species j (j equals
e for the electrons and i for the ions) by nj , the fluid velocity by uj , the electric and
magnetic fields by E and B, respectively. Also, e is the magnitude of the electron
charge, mi is the ion mass and G is the gravitational constant. The electron inertial

force in (4) has been neglected by assuming that ∂2n1/∂t
2 � λCn

1/3
0 c2∇2n1, where

n1 = (n − n0) � n0, n0 is the unperturbed electron number density, λC (= �/mec) is
the Compton length and me is the electron mass.

By using (4) we can eliminate the electric field from (5) obtaining

min
dui
dt

=
(∇ × B) × B

4π
− 3

4
�c∇n4/3 − min∇φg, (9)

where we have used (7) to eliminate J. Furthermore, the combination of (5) and (6)
yields

∂B

∂t
= ∇ × (ui × B) − cmi

e
∇ ×

(
dui
dt

)
. (10)

Equations (8)–(10) and

∂n

∂t
+ ∇ · (nui) = 0 (11)
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are the governing nonlinear ‘gravito-magnetohydrodynamic (G-MHD)’ equations
for the low-frequency (in comparison with the electron gyrofrequency) EM waves
in a self-gravitating dense plasma with ultra-relativistic degenerate electrons. Our
G-MHD equations can be used for investigating the properties of linear EM waves
and nonlinear EM wave phenomena (three-dimensional EM wave turbulence and
associated turbulent spectra, formation of EM wave structures, etc.)

In the following, we consider the linear propagation of low-frequency (in compar-
ison with the ion gyrofrequency) EM waves with the density perturbation n1 and the
compressional magnetic field Bz(�B0), where B0 is the strength of the homogeneous
magnetic field that is aligned along the z-axis in a Cartesian coordinate system.
Accordingly, we linearize (8)–(11) by supposing that n = n0 +n1 and B = (B0 +Bz)ẑ,
where ẑ is the unit vector along the z-axis, and combine the resultant equation to
obtain for ω � ωci: (

∂2

∂t2
− C2

�A∇2

)
∇2n1 − Ω2

J∇2
⊥n1 = 0, (12)

where we have neglected the sheared magnetic field perturbation and the ion
dynamics parallel to ẑ, and used the frozen-in-field relation Bz = B0n1/n0. We
have denoted ωci = eB0/mic, ΩJ = (4πGn0mi)

1/2 and C�A = (C2
A + C2

� )
1/2, where

CA = B0/(4πn0mi)
1/2 is the Alfvén speed and C� = c(�n1/3

0 /mic)
1/2 is the ion

oscillation frequency associated with the combined action of the ion inertial force
and the ultra-relativistic degenerate electron pressure gradient.

Assuming that n1 is proportional to exp(−iωt + ik · r), where ω and k are the
frequency and the wave number, respectively, from Fourier transform (12) to obtain

ω =

(
k2

⊥C
2
�A − Ω2

J

k2
⊥
k2

)1/2

, (13)

where k = (k2
⊥ + k2

z )
1/2 and k⊥ (kz) is the component of the wave vector k across

(along) the external magnetic field direction. Equation (13) admits instability if the
wavelength of the obliquely (against ẑ) propagating EM perturbation

λ > 2πC�A/ΩJ, (14)

where λ = 2π/k.
In order to have some appreciation of our result, we take some typical parameters

that are representative of the core of a white dwarf star, and estimate the wavelength
of the EM perturbations in our instability, viz. n0 = 1.3 × 1030 cm−3, B0 = 3 × 108 G.
By using the physical constants � = 1.05 × 10−27 erg s−1, G = 6.67 × 10−8 dyn
cm−2 g−2, mi = 4 × 1.67 × 10−24 g and c = 3 × 1010 cm s−1, we obtain ΩJ ∼ 2 s−1,
CA = 1.1 × 105 cm s−1 and C� ≈ 5 × 108 cm s−1. It then turns out that a self-
gravitating white dwarf star will remain stable against EM perturbations, since the
wavelength of the EM perturbations, deduced from (14) turns out to be of the order
of 1.57 × 104 Km, which is larger than the radius of a white dwarf core.

To summarize, we have considered the propagation of the low-frequency EM
waves in a self-gravitating magnetized plasma in the core of white dwarf stars in
which ultra-relativistic electrons are degenerate. Accounting for the EM and self-
gravitating forces, and using the ultra-relativistic pressure law for the degenerate
electrons, we have derived a set of nonlinear equations for EM by using the two
fluid equations, the Poisson equation for the gravitational potential, Ampère’s law
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and Faraday’s law. In the linear regime, we have derived a wave equation which
yields a dispersion relation. The latter admits stability of a white dwarf star because
the wavelength of the EM perturbations in our G-MHD system is larger than the
radius of the star for typical plasma parameters that are representative of the core
of a dense white dwarf star. In the present analysis, we have confined ourselves to
the core of a white dwarf star where, it can be shown, using a ‘polytrope’ model, that
more than 90% of the mass resides. For mathematical simplicity, we have assumed
this core to be of uniform density and carry a uniform magnetic field. In reality,
the density throughout a white dwarf star varies with radius. This leads to the
electrons to be relativistically degenerate in the core, while being non-relativistically
degenerate in an outer mantle and non-degenerate in a thin outer atmosphere.
There would be corresponding variations of the magnetic field as well. We propose
to address, this admittedly, more involved, problem in a future paper. Yet, even with
this analysis of a simplified model, we have been able to obtain interesting insights
into the propagation of low-frequency (in comparison with the ion gyrofrequency)
EM waves within the core of such stars.
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