BIDUALS OF BANACH SPACES WITH BASES

by STEVEN F. BELLENOT

(Received 17 January, 1984)

R. C. James [2] (or see p. 7ff of [3]) gave a useful representation of the bidual of any space with a shrinking basis. This note gives a representation of the bidual of any space with a basis.

Our notation follows that of [3], where undefined terms can be found. Let $\{e_n\}$ be a basic sequence with coefficient functionals $\{f_n\}$. We will assume $\{e_n\}$ is bimonotone; that is $\left\|\sum_{n=1}^{M} a_n e_n\right\| \le \left\|\sum_{n=1}^{\infty} a_n e_n\right\|$. The space $\{e_n\}^{\text{LIM}}$ is the set of scalar sequences $\{a_n\}$ so that $\left\|\{a_n\}\right\| = \sup \left\|\sum_{n=1}^{N} a_n e_n\right\| < \infty$. We will abuse notation and equate such $\{a_n\}$ with the formal sum $\sum_{n=1}^{\infty} a_n e_n$. We have $[e_n]^*$ is $\{f_n\}^{\text{LIM}}$. The basic sequence $\{e_n\}$ is boundedly complete if $\{e_n\}^{\text{LIM}} = [e_n]$. The basic sequence $\{e_n\}$ is shrinking if $\{f_n\}$ is boundedly complete. James's result mentioned above is that for shrinking $\{e_n\}$, we have $[e_n]^{**} = \{e_n\}^{\text{LIM}}$. A basic sequence $\{e_n\}$ is wild if there is $\{a_n\} \in \{e_n\}^{\text{LIM}}$ and $\{b_n\} \in \{f_n\}^{\text{LIM}}$ so that $\{e_n\}^{\text{LIM}} = [e_n]^{\text{LIM}}$.

 $\begin{cases} \sum_{n=1}^{N} a_n b_n \\ N \end{cases}_N \text{ does not converge. Define } Z(e_n) \text{ to be the space } \{e_n\}^{\text{LIM}} / [e_n] \text{ and let } Z^*(e_n) \text{ be } \phi^*(Z(e_n)^*), \text{ where } \phi \text{ is the induced quotient map.} \end{cases}$

If \mathcal{U} is a free ultrafilter on N (i.e. $\bigcap \mathcal{U} = \emptyset$) and $\{a_n\}$ is a bounded scalar sequence, then $\lim_{\mathcal{U}} a_n = L$ means that $\{n \in N : |a_n - L| < \varepsilon\} \in \mathcal{U}$ for all $\varepsilon > 0$. Note that this limit must exist and there is a subsequence $\{n(i)\}$ such that $a_{n(i)} \to L$. Conversely, if $a_{n(i)} \to L$, then there is a free ultrafilter \mathcal{U} such that $\lim_{n \to \infty} a_n = L$. Note that by using an ultrafilter instead of a subsequence we get convergence for all bounded $\{a_n\}$. Define $\sum_{\mathcal{U}} a_n$ to be $\lim_{\mathcal{U}} \sum_{i=1}^{n} a_i$.

THEOREM. Let \mathcal{U} be a free ultrafilter on N. Define $T_{\mathcal{U}} : \{e_n\}^{\text{LIM}} \to [e_n]^{**} = (\{f_n\}^{\text{LIM}})^*$ by $\langle T_{\mathcal{U}}\{a_n\}, \{b_n\}\rangle = \sum_{\mathcal{Q}} a_n b_n$. Let $P_{\mathcal{U}} : [e_n]^{**} \to [e_n]^{**}$ be defined by $P_{\mathcal{U}}x^{**} = T_{\mathcal{U}}\{x^{**}(f_n)\}$. Then $T_{\mathcal{U}}$ is an isometry, $\|P_{\mathcal{U}}\| = \|I - P_{\mathcal{U}}\| = 1$ and $[e_n]^{**} = T_{\mathcal{U}}(\{e_n\}^{\text{LIM}}) \oplus Z^*(f_n)$.

Proof. Since $\left|\sum_{1}^{N} a_{n}b_{n}\right| \leq \left|\sum_{1}^{N} a_{n}e_{n}\right|$. $\left|\sum_{1}^{N} b_{n}f_{n}\right| \leq \left|\left|\left\{a_{n}\right\}\right|\right|$. $\left|\left\{b_{n}\right\}\right|\right|$, $\sum_{q_{u}} a_{n}b_{n}$ is well-defined. Thus $T_{q_{u}}\{a_{n}\}$ is a linear functional on $\{f_{n}\}^{\text{LIM}}$ and $\left|\left|T_{q_{u}}\{a_{n}\}\right|\right| \leq \left|\left|\left\{a_{n}\right\}\right|\right|$. Actually the norms are equal since if $b_{n} = 0$ for $n \geq N$, then $\sum_{q_{u}} a_{n}b_{n} = \sum_{1}^{N} a_{n}b_{n}$ and since $\{e_{n}\}^{\text{LIM}}$ is normed by $[f_{n}]$.

If $x^{**} \in [e_n]^{**}$ and $a_n = x^{**}(f_n)$, then $\left\|\sum_{i=1}^n a_i e_i\right\|$ is equal to the norm of x^{**} restricted to

Glasgow Math. J. 26 (1985) 101-103.

$$\begin{split} & [f_i]_1^n \text{ which is } \leqslant \|x^{**}\| \text{. Hence } P_{\mathfrak{A}} \text{ is a norm one projection onto } T_{\mathfrak{A}}(\{e_n\}^{\text{LIM}}) \text{ with kernel} \\ & [f_n]^\perp = Z^*(f_n). \text{ Suppose that } z^* \in Z^*(f_n) \text{ with } \|z^*\| = 1 \text{ and } \{a_n\} \in \{e_n\}^{\text{LIM}}; \text{ let } x^{**} = \\ & T_{\mathfrak{A}}\{a_n\} + z^*. \text{ Let } z \in Z(f_n) \text{ so that } \|z\| = 1 \text{ and } z^*(z) > 1 - \varepsilon. \text{ Pick } \{b_n\} \in \{f_n\}^{\text{LIM}}; \text{ so that } \\ & \|\sum b_n f_n\| < 1 + \varepsilon \text{ and } \phi(\sum b_n f_n) = z. \text{ Choose } N \text{ so that } \left\|\sum_{i=1}^N a_n b_n - \sum_{\mathfrak{A}} a_n b_n\right\| < \varepsilon \text{ and thus } \\ & \left|\langle T_{\mathfrak{A}}\{a_n\}, \sum_{N+1}^\infty b_n f_n\rangle\right| < \varepsilon. \text{ Now } \phi\left(\sum_{N+1}^\infty b_n f_n\right) = z \text{ and the bimonotoneness condition implies } \\ & \left\|\sum_{N+1}^\infty b_n f_n\right\| < 1 + \varepsilon. \text{ Hence } \|x^{**}\| > (1 - 2\varepsilon)/(1 + \varepsilon) \text{ and } \|I - P_{\mathfrak{A}}\| = 1. \end{split}$$

REMARKS. 1. Note that in general $\{e_n\}^{\text{LIM}}$ is just a quotient of $[e_n]^{**}$, and since there are wild bases (see below) something like this ultrafilter sum is needed.

2. This is similar to embedding $[e_n]^{**}$ in the nonstandard hull of $[e_n]$ and is where the author obtained the original proof.

3. If $\mathcal{U}(\alpha)$, $\alpha \in \Gamma$, are different ultrafilters so that $\sum_{\mathcal{U}(\alpha)} a_n b_n$, $\alpha \in \Gamma$, are all distinct for some fixed $\{a_n\} \in \{e_n\}^{\text{LIM}}$ and $\{b_n\} \in \{f_n\}^{\text{LIM}}$, then for non-negative scalars t_{α} with $\sum_{\alpha} t_{\alpha} = 1$ we have $\left\|\sum_{\alpha} t_{\alpha} T_{\mathcal{U}(\alpha)} \{a_n\}\right\| = \|\{a_n\}\|$.

4. The Theorem immediately generalizes to spaces with a Schauder decomposition [3, p. 47ff] with all but finitely many of the factors being reflexive, but not infinitely many [1].

5. In light of [3, p. 26] or [1], $Z^*(f_n)$ could be almost anything. No representation theorem can say much about this space.

EXAMPLE. We now exhibit a space with a wild basis. Let X be a Banach space with a bimonotone basis $\{e_n\}$. Let $\{b_n\}$ be a bounded sequence and let F be the "formal" function $\sum b_n f_n$. Let $\|.\|_X$ be the norm on X and define

$$\left\|\sum a_n e_n\right\|_F = \max\left\{\left\|\sum a_n e_n\right\|_X, \sup\left\{\left|\sum_N a_n b_n\right|: N \leq M\right\}\right\}.$$

Let $Y = \{x \in X : ||x||_F < \infty\}$ and note that $\{e_n\}$ is a bimonotone basis for Y and that F is a continuous linear functional on Y. Thus X = Y if and only if $F \in \{f_n\}^{LIM}$.

If X is c_0 and $b_n = (-1)^n$, then the resulting space Y still has $\sum e_n \in \{e_n\}^{\text{LIM}}$. Hence the basis $\{e_n\}$ is wild in Y. Let the set of even integers belong to \mathcal{U} and the set of odd integers belong to \mathcal{U}' . Then $(T_{\mathcal{U}} + T_{\mathcal{U}'})/2$ is an isometry of $\{e_n\}^{\text{LIM}}$ into Y^{**} which is not $T_{\mathcal{V}}$ for any ultrafilter \mathcal{V} .

If instead we choose b_n to be the sequence $1, -1, 2^{-1}, 2^{-1}, -2^{-1}, -2^{-1}, 2^{-2}, 2^{-2}, 2^{-2}, 2^{-2}, 2^{-2}, -2^{-2}, -2^{-2}, -2^{-2}, -2^{-2}, \dots$ then there are uncountably many ultrafilters $\mathcal{U}(\alpha)$ so that $T_{\mathcal{U}(\alpha)}(\sum e_n) \neq T_{\mathcal{U}(\beta)}(\sum e_n)$, for $\alpha \neq \beta$.

If $f \notin \{f_n\}^{\text{LIM}}$, then the space Y always has a subspace isomorphic to c_0 . However, since being a wild basis is self-dual, this isn't true of all wild bases.

REFERENCES

1. S. F. Bellenot, The J-sum of Banach spaces, J. Functional Analysis 48 (1982), 95-106.

2. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527.

3. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I Sequence Spaces (Springer Verlag, 1977).

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE THE FLORIDA STATE UNIVERSITY TALLAHASSEE FLORIDA 32303 U.S.A.