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Abstract. We define branching systems for finitely aligned higher-rank graphs.
From these, we construct concrete representations of higher-rank graph C*-algebras on
Hilbert spaces. We prove a generalized Cuntz–Krieger uniqueness theorem for periodic
single-vertex 2-graphs. We use this result to give a sufficient condition under which
representations of periodic single-vertex 2-graph C*-algebras arising from branching
systems are faithful.
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1. Introduction. Higher-rank graphs, or k-graphs, are combinatorial objects that
generalize directed graphs. In [23], Kumijian and Pask introduced higher-rank graph
C*-algebras for row-finite higher-rank graphs without sources, as generalizations
of graph algebras and the higher-rank Cuntz–Krieger algebras constructed by
Robertson and Steger [28]. Since then, driven by the fact that higher-rank graph
C*-algebras include a larger class than graph C*-algebras, while still can be studied
via combinatorial methods, intense research has been done in the subject, see
[4, 5, 7, 8, 21, 24, 26, 27, 32], for example.

Branching systems arise in disciplines such as random walk, symbolic dynamics
and scientific computing (see, for example, [9, 20, 30]). More recently, stimulated by
Bratteli–Jorgensen’s work connecting representations of the Cuntz algebra arising from
iterated function systems with wavelets (see [2,3]), a large number of papers have studied
representations of graph algebras from branching systems (see [6,12–19], etc). Farsi et
al. have studied connections of representations of finite higher-rank graphs C*-algebras
arising from semibranching function systems with wavelets, Kubo–Martin–Schwinger
(KMS) states (see [10, 11]).
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It is our intention to connect the theory of higher-rank graph C*-algebras with
the branching system theory. Notice that when developing the theory of higher-
rank graphs, some additional hypotheses are usually assumed, such as finiteness, row
finiteness, local convexity or finite alignment. Of these, finite alignment is the most
general one, and we try to study the branching system theory of higher-rank graphs in
this generality as much as we can. As the paper goes on, to obtain interesting results,
we reduce the generality to row-finite higher-rank graphs without sources. Eventually,
we restrict to single-vertex 2-graphs, which have been studied in depth by Davidson
and Yang (see [7]).

The structure of the paper is as follows. Section 2 is devoted to recalling the
material on higher-rank graph C*-algebras. In Section 3, we define branching systems
for finitely aligned higher-rank graphs. Using the space of boundary paths of a higher-
rank graph, we build a branching system associated to any finitely aligned higher-rank
graph. We then show how branching systems induce representations of higher-rank
graph C*-algebras, which generalizes results in [15]. In Section 4, we look into some
examples of higher-rank graphs and build branching systems on � for these graphs,
which include higher-rank graphs that are not row-finite. It is usually not easy to
decide if a representation of a higher-rank graph C*-algebra is faithful. Therefore, in
Section 5, we focus on studying periodic single-vertex 2-graphs, and we aim to provide a
sufficient condition for representations induced from branching systems to be faithful.
To do so, we first extend the general Cuntz–Krieger uniqueness theorem proved by
Brown et al.in [4, Theorem 7.10], in the same spirit of Szymański’s result for graph
algebras (see [31, Theorem 1.2]) and the author’s result for ultragraph algebras (see
[12, Theorem 7.4]). We finish the section by building branching systems for periodic
single-vertex 2-graphs such that the induced representations are faithful.

2. Preliminaries. Throughout this paper, the notation � stands for the set of all
nonnegative integers; the notation �+ stands for the set of all positive integers; and all
measure spaces are assumed to be σ -finite.

In this section, we recall the definition of k-graph C*-algebras from [23, 26, 27].

DEFINITION 2.1 ([23, Definition 1.1]). Let k ∈ �+. A small category � is called
a k-graph if there exists a functor d : � → �k satisfying the factorization property,
that is, for μ ∈ �, n, m ∈ �k with d(μ) = n + m, there exists unique ν, α ∈ � such that
d(ν) = n, d(α) = m, s(ν) = r(α), μ = να. The functor d is called the degree map of �.

Let (�1, d1), (�2, d2) be two k-graphs. A functor f : �1 → �2 is called a morphism
if d2 ◦ f = d1.

Throughout this paper, all k-graphs are assumed to be countable.

EXAMPLE 2.2 ([27, p. 211]). Let k ∈ �+ and let n ∈ (� ∪ {∞})k. Define
�k,n := {(p, q) ∈ �k × �k : p ≤ q ≤ n}. For (p, q), (q, m) ∈ �k,n, define (p, q) · (q, m) :=
(p, m); r(p, q) := (p, p); s(p, q) := (q, q); and d(p, q) := q − p. Then, (�k,n, d) is a k-
graph.

NOTATION 2.3 ([27, p. 211]). Let k ∈ �+, let � be a k-graph. Denote by

X� :=
⋃

n∈(�∪{∞})k

{x : �k,n → � : x is a graph morphism}.
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Fix a graph morphism x : �k,n → � for some n ∈ (� ∪ {∞})k. For μ ∈ � with
s(μ) = x(0, 0), denote by μx : �k,d(μ)+n → � the unique graph morphism such
that (μx)(0, d(μ)) = μ, (μx)(d(μ), m) = x(0, m − d(μ)) for all d(μ) ≤ m ≤ n. For
�k 	 m ≤ n, denote by σ m(x) : �k,n−m → � the unique graph morphism such that
σ m(x)(0, l) = x(m, m + l) for all �k 	 l ≤ n − m. Moreover, for A ⊂ �, B ⊂ X�,
denote by AB := {μx : μ ∈ A, x ∈ B, s(μ) = x(0, 0)}.

The following lemma might be well-known, however we could not find any
reference to it.

LEMMA 2.4. Let k ∈ �+, let � be a k-graph, let μ ∈ �, and let B ⊂ X�. Then,
σ d(μ) : μB → s(μ)B is a bijection.

Proof. It is straightforward to see. Indeed σ d(μ)(μx) = x for all μx ∈ μB and the
inverse map of σ d(μ) is to attach μ to the elements of B.

DEFINITION 2.5 ([27, Definition 2.8]). Let k ∈ �+ and let � be a k-graph. Define

�≤∞ :=
⋃

n∈(�∪{∞})k

{x : �k,n → � is a graph morphism : ∃�k 	 nx ≤ n, s.t.

∀m ∈ �k with nx ≤ m ≤ n, we have mi = ni =⇒ x(0, m)�ei = ∅}.
�≤∞ is called the boundary path space of �. The range and degree maps may be
extended to boundary paths x : �k,n → � by setting r(x) := x(0, 0) and d(x) = n.

NOTATION 2.6. Let k ∈ �+. Denote by e1, . . . , ek the standard basis of �k. For i ≥ 1,
denote by

ei :=

⎧⎪⎨
⎪⎩

e1 if i = 1, k + 1, 2k + 1, 3k + 1 . . . ;

· · ·
ek if i = k, k + k, 2k + k, 3k + k, . . . .

For n, m ∈ �k, denote by |n| := n1 + · · · + nk; n ∨ m := (max{ni, mi})k
i=1; and n ∧ m :=

(min{ni, mi})k
i=1. Furthermore, for z ∈ �k, denote by zn := zn1

1 . . . znk
k .

NOTATION 2.7 ([27, Definitions 2.2, 2.4]). Let k ∈ �+ and let � be a k-
graph. For n ∈ �k, denote by �n := d−1(n). For A, B ⊂ �, define AB := {μν :
μ ∈ A, ν ∈ B, s(μ) = r(ν)}. For μ, ν ∈ �, define �min(μ, ν) := {(α, β) ∈ � × � : μα =
νβ, d(μα) = d(μ) ∨ d(ν)}. For v ∈ �0, a subset E of v� is said to be exhaustive for v

if, for any μ ∈ v�, there exists ν ∈ E such that �min(μ, ν) �= ∅.

DEFINITION 2.8 ([27, Definition 2.2]). Let k ∈ �+. A k-graph � is said to be finitely
aligned if, for any μ, ν ∈ �, we have that �min(μ, ν) is a finite set.

DEFINITION 2.9 ([27, Definition 2.5]). Let k ∈ �+ and let � be a finitely aligned
k-graph. A Cuntz–Krieger �-family in a C*-algebra B is a family of partial isometries
{Sμ}μ∈� satisfying

(1) {Sv}v∈�0 is a family of mutually orthogonal projections;
(2) Sμν = SμSν if s(μ) = r(ν);
(3) S∗

μSν = ∑
(α,β)∈�min(μ,ν) SαS∗

β for all μ, ν ∈ �; and
(4)

∏
μ∈E(Sv − SμS∗

μ) = 0 for all v ∈ �0, for all finite exhaustive set E ⊂ v�.
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The C*-algebra generated by a universal Cuntz–Krieger �-family, denoted by {sμ}μ∈�,
is called the k-graph C*-algebra of � and is denoted by C∗(�).

REMARK 2.10. By [27, Proposition 2.12], each sμ is nonzero.

THEOREM 2.11 ([27, Theorem C.1]). Let k ∈ �+, let � be a finitely aligned k-graph,
and let {Sμ : μ ∈ ( ⋃k

i=1 �ei
) ∪ �0} be a family of partial isometries in a C*-algebra B

satisfying

(1) {Sv}v∈�0 is a family of mutually orthogonal projections;
(2) SμSν = SαSβ if μ, ν, α, β ∈ ( ⋃k

i=1 �ei
) ∪ �0, μν = αβ;

(3) S∗
μSν = ∑

(α,β)∈�min(μ,ν) SαS∗
β for all μ, ν ∈ (⋃k

i=1 �ei
) ∪ �0; and

(4)
∏

μ∈E(Sv − SμS∗
μ) = 0 for all v ∈ �0, for all finite exhaustive set E ⊂ v

( ⋃k
i=1 �ei

)
.

Then, there exists a unique Cuntz–Krieger �-family {Tμ}μ∈� in B such that Tμ = Sμ for
all μ ∈ ( ⋃k

i=1 �ei
) ∪ �0.

DEFINITION 2.12 ([23, Definition 1.4]). Let k ∈ �+, let � be a k-graph. Then, �

is said to be row-finite if |v�n| < ∞ for all v ∈ �0, n ∈ �k. � is said to have no sources
if v�n �= ∅ for all v ∈ �0, n ∈ �k.

PROPOSITION 2.13 ([27, Proposition B.1]). Let k ∈ �+ and let � be a row-finite
k-graph without sources. Then, a family of partial isometries {Sμ}μ∈� in a C*-algebra B
is a Cuntz–Krieger �-family if and only if

(1) {Sv}v∈�0 is a family of mutually orthogonal projections;
(2) Sμν = SμSν if s(μ) = r(ν);
(3) S∗

μSμ = Ss(μ) for all μ ∈ �; and
(4) Sv = ∑

μ∈v�n SμS∗
μ for all v ∈ �0, n ∈ �k.

REMARK 2.14. Conditions (1)–(4) of Proposition 2.13 are exactly the definition of
a Cuntz–Krieger family for row-finite without sources k-graphs, as given originally by
Kumjian and Pask in [23].

The following proposition is a special case of [27, Theorem C.1].

PROPOSITION 2.15. Let k ∈ �+, let � be a row-finite k-graph without sources, and let
{Sμ : μ ∈ ( ⋃k

i=1 �ei
) ∪ �0} be a family of partial isometries in a C*-algebra B satisfying

(1) {Sv}v∈�0 is a family of mutually orthogonal projections;
(2) SμSν = SαSβ if μ, ν, α, β ∈ ( ⋃k

i=1 �ei
) ∪ �0, μν = αβ;

(3) S∗
μSμ = Ss(μ) for all μ ∈ ( ⋃k

i=1 �ei
) ∪ �0; and

(4) Sv = ∑
μ∈v�ei SμS∗

μ for all v ∈ �0, i = 1, . . . , k.
Then, there exists a unique Cuntz–Krieger �-family {Tμ}μ∈� in B such that Tμ = Sμ for
all μ ∈ ( ⋃k

i=1 �ei
) ∪ �0.

Proof. First of all, we prove the uniqueness. Let {Tμ}μ∈�, {T ′
μ}μ∈� be Cuntz–

Krieger �-families in B such that Tμ = T ′
μ = Sμ for all μ ∈ ( ⋃k

i=1 �ei
) ∪ �0. For

μ ∈ � \ �0, by the factorization property of �, we can write μ in the form of
μ1 · · · μn, where μ1, . . . , μn ∈ ⋃k

i=1 �ei . So, by the assumption and by Condition (2) of
Definition 2.9, Tμ = Tμ1 · · · Tμn = T ′

μ1 · · · T ′
μn = T ′

μ.

Next, we prove the existence. For μ ∈ (⋃k
i=1 �ei

) ∪ �0, define Tμ := Sμ. For μ ∈
� \ ((⋃k

i=1 �ei
) ∪ �0

)
, by the factorization property of �, we can write μ in the form
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of μ1 · · · μn, where μ1, . . . , μn ∈ ⋃k
i=1 �ei . Define Tμ := Sμ1 · · · Sμn (the factorization

property of � and Condition (2) imply this is well-defined).
For μ ∈ ⋃k

i=1 �ei , by Condition 3, TμTs(μ) = Tμ. By Condition (4), Tr(μ)Tμ =
Tμ. So, for μ ∈ �, we have TμTs(μ) = Tμ, Tr(μ)Tμ = Tμ, T∗

μTμ = Ts(μ), hence Tμ is
a partial isometry. For v ∈ �0, n ∈ �k, we show that Tv = ∑

μ∈v�n TμT∗
μ. We prove

by the induction on |n|. The equality holds for |n| = 0, 1 by Condition (4). Suppose
the equality holds for |n| = N ≥ 1. When |n| = N + 1, write n = p + q such that |p| =
N, |q| = 1. Then, by the induction assumption and by Condition (4), we have

Tv =
∑

α∈v�p

TαT∗
α =

∑
α∈v�p

∑
β∈s(α)�q

TαβT∗
αβ =

∑
μ∈v�n

TμT∗
μ.

So, {Tμ}μ∈� satisfies Conditions (1)–(4) of Proposition 2.13. Hence, by Proposition 2.13
{Tμ}μ∈� is a Cuntz–Krieger �-family.

NOTATION 2.16 ([23, Section 3]). Let k ∈ �+, let � be a row-finite k-graph without
sources. Then, there exists a gauge action, which is a strongly continuous group
homomorphism γ : �k → Aut(C∗(�)) such that αz(sμ) = zd(μ)sμ for all z ∈ �k, μ ∈ �.
The fixed point algebra is the algebra C∗(�)γ = span{sμs∗

ν : d(μ) = d(ν)}. The gauge
action yields a faithful expectation 	 from C∗(�) onto C∗(�)γ such that 	(sμs∗

ν) =
δ0,d(μ)−d(ν)sμs∗

ν for all μ, ν ∈ �.

DEFINITION 2.17 ([23, Definition 4.3]). Let k ∈ �+ and let � be a row-finite k-
graph without sources. Denote by �∞ the set of infinite paths, which consists of all
graph morphisms from �k,(∞,...,∞) to �. Then, � is said to be aperiodic if, for any
v ∈ �0, there exists x ∈ v�∞ such that σ n(x) �= σ m(x) for all n �= m ∈ �k.

The following theorem is the Cuntz–Krieger uniqueness theorem for row-finite
higher-rank graphs without sources.

THEOREM 2.18 ([23, Theorem 4.6]). Let k ∈ �+, let � be a row-finite k-graph
without sources, and let π : C∗(�) → B be a homomorphism. Suppose that � is
aperiodic. Then, π is injective if and only if π (sv) �= 0 for all v ∈ �0.

DEFINITION 2.19 ([4]). Let k ∈ �+ and let � be a row-finite k-graph without
sources. A pair (μ, ν) ∈ � × � is called a cycline pair if s(μ) = s(ν) and μx = νx for
all x ∈ s(μ)�∞. The C*-subalgebra M := C∗({sμs∗

ν : (μ, ν) is a cycline pair }) is called
the cycline subalgebra of C∗(�). Moreover, the C*-subalgebra D := C∗({sμs∗

μ : μ ∈ �})
is called the diagonal of C∗(�).

NOTATION 2.20 ([5, p. 2581]). Let k ∈ �+, let � be a row-finite k-graph without
sources. Define the set of periodicity of � by Per(�) := {d(μ) − d(ν) : (μ, ν) is
a cycline pair }. By [32, Theorem 4.6] � is aperiodic if and only if Per(�) = {0}.

The following theorem is the general Cuntz–Krieger uniqueness theorem for row-
finite higher-rank graphs without sources.

THEOREM 2.21 ([4, Theorem 7.10]). Let k ∈ �+, let � be a row-finite k-graph
without sources, and let π : C∗(�) → B be a homomorphism. Then, π is injective if and
only if π is injective on M.

3. Branching systems of higher-rank graphs. In this section, we introduce the
notion of branching systems of higher-rank graphs. The branching system definition
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will invoke the Radon–Nikodym derivative, and we refer the reader to [29] for
background on this material.

Notice that when studying the branching systems of higher-rank graphs, we always
consider those graphs satisfying certain hypotheses, like finiteness, row finiteness, local
convexity or finite alignment. Of these assumptions finite alignment is the most general
one, and we develop the theory of branching systems for higher-rank graphs in this
generality as much as we can.

3.1. Finitely aligned case.

DEFINITION 3.1. Let k ∈ �+, let � be a finitely aligned k-graph, let (X, η) be a
measure space and let {Rμ, Dv}μ∈⋃k

i=1 �ei ,v∈�0 be a family of measurable subsets of X .
Suppose that

(1) Rμ ∩ Rν
η−a.e.= ∅ if μ �= ν ∈ �ei for some 1 ≤ i ≤ k;

(2) Dv ∩ Dw
η−a.e.= ∅ if v �= w ∈ �0;

(3) Rμ

η−a.e.⊆ Dr(μ) for all μ ∈ ⋃k
i=1 �ei ;

(4) for each μ ∈ ⋃k
i=1 �ei , there exist two measurable maps fμ : Ds(μ) → Rμ and f −1

μ :

Rμ → Ds(μ) such that fμ ◦ f −1
μ

η−a.e.= idRμ
, f −1

μ ◦ fμ
η−a.e.= idDs(μ) , the pushforward

measure η ◦ fμ, of f −1
μ in Ds(μ), is absolutely continuous with respect to η in Ds(μ),

and the pushforward measure η ◦ f −1
μ , of fμ in Rμ, is absolutely continuous with

respect to η in Rμ. Denote the Radon–Nikodym derivative d(η ◦ fμ)/dη by 	fμ and
the Radon–Nikodym derivative d(η ◦ f −1

μ )/dη by 	f −1
μ

;

(5) for μ, ν, α, β ∈ ⋃k
i=1 �ei with μν = αβ, we have fμ ◦ fν

η−a.e.= fα ◦ fβ ;
(6) for μ, ν ∈ ⋃k

i=1 �ei with r(μ) = r(ν) and d(μ) �= d(ν), we have fμ(Ds(μ) \⋃
(α,β)∈�min(μ,ν) Rα) ∩ fν(Ds(ν) \ ⋃

(α,β)∈�min(μ,ν) Rβ))
η−a.e.= ∅; and

(7) for any v ∈ �0, and for any finite exhaustive set E ⊂ ⋃k
i=1 v�ei for v, we have⋃

μ∈E Rμ
η−a.e.= Dv.

We call {Dv, Rμ, fμ}
μ∈⋃k

i=1 �ei ,v∈�0 a �-branching system on (X, η).

REMARK 3.2. Informally, we can think of the maps fμ as ‘representing’ the partial
isometries Sμ, so that the subsets Ds(μ) ‘represent’ the initial projection of Sμ and the
subsets Rμ ‘represent’ the final projection of Sμ. With this in mind, the conditions we
impose on the definition of a branching system become intuitive, except Condition 6
that we feel deserves further explaining. We will keep a rather informal tone in this
remark in order to explain the intuition behind this condition. Notice that we need
to rephrase Condition 3 of Theorem 2.11 as one of our conditions on a branching
system. Reading it directly, we would like that f −1

μ fν |Rβ
= fαf −1

β , for all β such that
(α, β) ∈ �min(μ, ν) (notice that since for fixed μ, ν there exists j ∈ �k such that if
(α, β) ∈ �min(μ, ν), then β ∈ �j, we have that the {Rβ : (α, β) ∈ �min(μ, ν)} forms a
collection of a.e. disjoint sets). But if (α, β) ∈ �min(μ, ν), then μα = νβ and hence
fμfα = fνfβ (by Condition 5), so that fα = f −1

μ fνfβ and f −1
μ fν |Rβ

= fαf −1
β is satisfied.

Notice that we also desire that on Ds(ν) \ ⋃
(α,β)∈�min(μ,ν) Rβ the equality f −1

μ fν |Rβ
=

fαf −1
β not necessarily hold. This is the reason we require Condition 6.

In the following theorem, we build a branching system associated to any finitely
aligned higher-rank graph using the space of boundary paths of a higher-rank graph.
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THEOREM 3.3. Let k ∈ �+ and let � be a finitely aligned k-graph. Then, there exists
a �-branching system.

Proof. Let X := �≤∞, and let η be the counting measure on X . For v ∈ �0,
define Dv := v�≤∞. For μ ∈ ⋃k

i=1 �ei , define Rμ := μ�≤∞. By [27, Lemma 2.11],
Dv, Rμ are nonempty. It is straightforward to see that {Rμ, Dv}μ∈⋃k

i=1 �ei ,v∈�0 satisfies
Conditions (1)–(3) of Definition 3.1.

For μ ∈ ⋃k
i=1 �ei , Lemma 2.4 yields a bijection σ d(μ) : Rμ → Ds(μ). Denote by

fμ := (σ d(μ))−1. Since η is the counting measure on X , it is straightforward to see that
the pushforward measure η ◦ fμ, of f −1

μ in Ds(μ), is absolutely continuous with respect to
η in Ds(μ), and the pushforward measure η ◦ f −1

μ , of fμ in Rμ, is absolutely continuous
with respect to η in Rμ. So, Condition (4) of Definition 3.1 holds.

Fix μ, ν, α, β ∈ ⋃k
i=1 �ei with μν = αβ. Then, for x ∈ Ds(ν) = Ds(β), we have

fμ ◦ fν(x) = fμ(νx) = μ(νx) = α(βx) = fα(βx) = fα ◦ fβ(x).

So, Condition (5) of Definition 3.1 holds.
Fix μ, ν ∈ ⋃k

i=1 �ei with r(μ) = r(ν) and d(μ) �= d(ν). Suppose that there exist
x ∈ Ds(μ) \ ⋃

(α,β)∈�min(μ,ν) Rα and y ∈ Ds(ν) \ ⋃
(α,β)∈�min(μ,ν) Rβ such that fμ(x) = fν(y).

Let z := μx = νy. Then, there exists n ≥ d(μ) ∨ d(ν) such that z : �k,n → � is a graph
morphism. So, z(0, d(μ) ∨ d(ν)) = z(0, d(μ))z(d(μ), d(μ) ∨ d(ν)) = μα0 for some α0 ∈
�d(ν); and z(0, d(μ) ∨ d(ν)) = z(0, d(ν))z(d(ν), d(μ) ∨ d(ν)) = νβ0 for some β0 ∈ �d(μ).
Hence, (α0, β0) ∈ �min(μ, ν) and z = μ · α0 · σ d(μ)∨d(ν)(z) = ν · β0 · σ d(μ)∨d(ν)(z). By [27,
Lemma 2.10], x ∈ Rα0 , y ∈ Rβ0 , which is a contradiction. Therefore, Condition (6) of
Definition 3.1 holds.

Fix v ∈ �0, and fix a finite exhaustive set E ⊂ ⋃k
i=1 v�ei for v. It is straightforward

to see that
⋃

μ∈E Rμ ⊂ Dv. We prove the reverse inclusion. Fix a graph morphism
x : �k,n → � in Dv (notice that n �= 0). Suppose that x /∈ ⋃

μ∈E Rμ, for a contradiction.
By the definition of Dv, there exists �k 	 nx ≤ n such that whenever nx ≤ m ≤ n, mi =
ni, we have x(0, m)�ei = ∅. Since E is exhaustive, there exists μ1 ∈ E such that
�min(μ1, x(0, nx)) �= ∅. Take an arbitrary (α, β) ∈ �min(μ1, x(0, nx)). Then, d(β) =
d(μ1). So, nx + d(μ1) ≤ n. Since x /∈ ⋃

μ∈E Rμ and E is exhaustive, there exists
μ2 ∈ E \ {μ} such that �min(μ2, x(0, nx + d(μ1))) �= ∅. Then, nx + d(μ1) + d(μ2) ≤ n.
Inductively, we deduce that nx + ∑

μ∈E d(μ) ≤ n. Then, we are not able to find any
path in μ ∈ E such that �min(μ, x(0, nx + ∑

μ∈E d(μ))) because x /∈ ⋃
μ∈E Rμ. Hence,

we get a contradiction and therefore Condition (7) of Definition 3.1 holds. �
Before we show that a branching system induces a representation of C∗(�) on

L2(X), we need the following lemma.

LEMMA 3.4. Let k ∈ �+, let � be a finitely aligned k-graph, and let {Rμ, Dv, fμ :
μ ∈ ⋃k

i=1 �ei , v ∈ �0} be a �-branching system on a measure space (X, η). Fix μ, ν ∈⋃k
i=1 �ei with s(μ) = r(ν). Then, η ◦ fμ ◦ fν, η ◦ fν, η are measures on Ds(ν). Furthermore,

we have that η ◦ fμ ◦ fν is absolutely continuous with respect to η ◦ fν , and η ◦ fν is
absolutely continuous with respect to η. Hence,

d(η ◦ fμ ◦ fν)/d(η) = (	fμ ◦ fν) · 	fν .

Proof. It is straightforward to see that η ◦ fμ ◦ fν is absolutely continuous with
respect to η ◦ fν , and η ◦ fν is absolutely continuous with respect to η by Condition 4
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of Definition 3.1. By the chain rule, we have

d(η ◦ fμ ◦ fν)/d(η) = d(η ◦ fμ ◦ fν)/d(η ◦ fν) · 	fν .

We show that d(η ◦ fμ ◦ fν)/d(η ◦ fν) = 	fμ ◦ fν . For any measurable set E ⊂ Ds(ν), we
have

η ◦ fμ ◦ fν(E) =
∫

(d(η ◦ fμ ◦ fν)/d(η ◦ fν)) · χE d(η ◦ fν).

Let F := fν(E). Then,

η ◦ fμ ◦ fν(E) = η ◦ fμ(F)

=
∫

	fμχF dη

=
∫

(	fμ · χF ) ◦ fν d(η ◦ fν)

=
∫

(	fμ ◦ fν) · χE d(η ◦ fν).

So, d(η ◦ fμ ◦ fν)/d(η ◦ fν) = 	fμ ◦ fν and we are done. �
Next, we show that branching systems induce representations of higher-rank graph

C*-algebras, which is a generalization of [15, Theorem 2.2] (see also [10, 25]).

THEOREM 3.5. Let k ∈ �+, let � be a finitely aligned k-graph, and let
{Dv, Rμ, fμ}

μ∈⋃k
i=1 �ei ,v∈�0 be a �-branching system on a measure space (X, η). Then,

there exists a unique representation π : C∗(�) → B(L2(X, η)) such that π (sμ)(φ) =
χRμ

	
1/2
f −1
μ

(φ ◦ f −1
μ ) and π (sv)(φ) = χDv

φ, for all μ ∈ ⋃k
i=1 �ei , v ∈ �0 and φ ∈ L2(X, η).

Proof. For μ ∈ ⋃k
i=1 �ei , and for φ ∈ L2(X, η), we have

∫
Rμ

|	1/2
f −1
μ

(φ ◦ f −1
μ )|2 dη =

∫
Rμ

|φ ◦ f −1
μ |2 d(η ◦ f −1

μ ) =
∫

Ds(μ)

|φ|2 dη < ∞.

Define Sμ : L2(X, η) → L2(X, η) by Sμ(φ) := 	
1/2
f −1
μ

(φ ◦ f −1
μ ). It is straightforward to

see that Sμ ∈ B(L2(X, η)). For φ1, φ2 ∈ L2(X, η), we have

〈φ1, Sμ(φ2)〉 =
∫

Rμ

φ1 · 	
1/2
f −1
μ

· φ2 ◦ f −1
μ dη

=
∫

Rμ

(	−1/2
fμ

◦ f −1
μ ) · φ1 · φ2 ◦ f −1

μ dη

=
∫

Ds(μ)

	
−1/2
fμ

· (φ1 ◦ fμ) · φ2 d(η ◦ fμ)

=
∫

Ds(μ)

	fμ · 	
−1/2
fμ

· (φ1 ◦ fμ) · φ2) dη

=
∫

Ds(μ)

	
1/2
fμ

· (φ1 ◦ fμ) · φ2 dη.
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So, S∗
μ(φ) = χDs(μ) · 	

1/2
fμ

· (φ ◦ fμ) for all φ ∈ L2(X, η).

Notice that, for μ ∈ ⋃k
i=1 �ei and φ ∈ L2(X, η), we have SμS∗

μ(φ)
η−a.e.= χRμ

φ. So,
Sμ is a partial isometry.

For v ∈ �0, define Sv : L2(X, η) → L2(X, η) by Sv(φ) := χDv
φ.

We will show that the family {Sμ, Sv}μ∈⋃k
i=1 �ei ,v∈�0 satisfy the conditions of

Theorem 2.11.
Condition (1) of Theorem 2.11 follows from Condition (2) of Definition 3.1.

Condition (2) of Theorem 2.11 follows from Condition (5) of Definition 3.1 and
Lemma 3.4.

Next, we check Condition (3) of Theorem 2.11.
Fix μ, ν ∈ ⋃k

i=1 �ei .
Case 1. μ = ν. Then, �min(μ, ν) = {(s(μ), s(μ))}. Since S∗

μSν = S∗
μSμ = Ss(μ),

Condition (3) of Theorem 2.11 holds.
Case 2. μ �= ν, d(μ) = d(ν) = ei for some 1 ≤ i ≤ k. Then, �min(μ, ν) = ∅. By

Condition (1) of Definition 3.1, we have S∗
μSν = 0. So, Condition (3) of Theorem 2.11

holds.
Case 3. d(μ) �= d(ν). Then, d(μ) = ei, d(ν) = ej, for some 1 ≤ i �= j ≤ k. For

(α, β) ∈ �min(μ, ν), we have SμSα = SνSβ because we just verified Condition (2) of
Theorem 2.11. Then, SαS∗

β = S∗
μSμSαS∗

β = S∗
μSνSβS∗

β . So,

∑
(α,β)∈�min(μ,ν)

SαS∗
β =

∑
(α,β)∈�min(μ,ν)

S∗
μSνSβS∗

β.

We claim that
∑

(α,β)∈�min(μ,ν) S∗
μSνSβS∗

β = S∗
μSν . Fix φ ∈ L2(X, η). Then,

∑
(α,β)∈�min(μ,ν)

S∗
μSνSβS∗

βφ =
∑

(α,β)∈�min(μ,ν)

S∗
μSν(χRβ

φ)

= S∗
μSν(χ⋃

(α,β)∈�min(μ,ν) Rβ
· φ)

(By Condition (1) of Definition 3.1

and by the finite alignment of �)

= 	
1/2
fμ

· (	1/2
f −1
ν

◦ fμ) · (φ ◦ f −1
ν ◦ fμ)·

(χ⋃
(α,β)∈�min(μ,ν) Rβ

◦ f −1
ν ◦ fμ)

= 	
1/2
fμ

· (	1/2
f −1
ν

◦ fμ) · (φ ◦ f −1
ν ◦ fμ)

= S∗
μSνφ (By Condition 6 of Definition 3.1).

So, we finish proving the claim, and hence Condition (3) of Theorem 2.11 holds.
Finally, we check Condition (4) of Theorem 2.11. Fix v ∈ �0, fix a finite

exhaustive set E ⊂ ⋃k
i=1 v�ei , and fix φ ∈ L2(X, η). It is straightforward to see that∏

μ∈E(Sv − SμS∗
μ)(φ) = ∏

μ∈E(χDv
− χRμ

)φ. So, by Condition (7) of Definition 3.1, we
have

∏
μ∈E(χDv

− χRμ
)φ = 0. Hence, Condition (4) of Theorem 2.11 holds. Therefore,

by Theorem 2.11 there exists a unique Cuntz–Krieger �-family {Tμ}μ∈� in B(L2(X, η))
such that Tμ = Sμ for all μ ∈ (⋃k

i=1 �ei
) ∪ �0. By the universal property of C∗(�),

there exists a unique representation π : C∗(�) → B(L2(X, η)) such that π (sμ) = Tμ

for all μ ∈ �. �
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3.2. Row-finite without sources case. In this subsection, we simplify the definition
of branching systems for row-finite k-graphs without sources.

DEFINITION 3.6. Let k ∈ �+, let � be a row-finite k-graph without sources, let
(X, η) be a measure space and let {Rμ, Dv}μ∈⋃k

i=1 �ei ,v∈�0 be a family of measurable
subsets of X . Suppose that

(1) Rμ ∩ Rν
η−a.e.= ∅ if μ �= ν ∈ �ei for some 1 ≤ i ≤ k;

(2) Dv ∩ Dw
η−a.e.= ∅ if v �= w ∈ �0;

(3) for each μ ∈ ⋃k
i=1 �ei , there exist two measurable maps fμ : Ds(μ) → Rμ and f −1

μ :

Rμ → Ds(μ) such that fμ ◦ f −1
μ

η−a.e.= idRμ
, f −1

μ ◦ fμ
η−a.e.= idDs(μ) , the pushforward

measure η ◦ fμ, of f −1
μ in Ds(μ), is absolutely continuous with respect to η in Ds(μ),

and the pushforward measure η ◦ f −1
μ , of fμ in Rμ, is absolutely continuous with

respect to η in Rμ. Denote the Radon–Nikodym derivative d(η ◦ fμ)/dη by 	fμ ,
and the Radon–Nikodym derivative d(η ◦ f −1

μ )/dη by 	f −1
μ

;

(4) for μ, ν, α, β ∈ ⋃k
i=1 �ei with μν = αβ, we have fμ ◦ fν

η−a.e.= fα ◦ fβ ;

(5) for v ∈ �0, and for 1 ≤ i ≤ k, we have
⋃

μ∈v�ei Rμ
η−a.e.= Dv.

We call {Dv, Rμ, fμ}
μ∈⋃k

i=1 �ei ,v∈�0 a �-branching system on (X, η).

Next, we show that, for row-finite without sources k-graphs, the above definition
coincides with Definition 3.1.

PROPOSITION 3.7. Let k ∈ �+, let � be a row-finite k-graph without sources, and
let (X, η) be a measure space. Suppose that {Dv, Rμ, fμ} is a �-branching system in
the sense of Definition 3.1. Then, {Dv, Rμ, fμ} is a �-branching system in the sense of
Definition 3.6. Conversely suppose that {Dv, Rμ, fμ} is a �-branching system in the sense
of Definition 3.6. Then, {Dv, Rμ, fμ} is a �-branching system in the sense of Definition 3.1.

Proof. Firstly suppose that {Dv, Rμ, fμ} is a �-branching system in the sense
of Definition 3.1. Then, it is straightforward to see that Conditions (1)–(4) of
Definition 3.6 hold. For v ∈ �0, and for 1 ≤ i ≤ k, v�ei is a finite exhaustive set for v

(see [27, Lemma B.2]). Then, Condition (7) of Definition 3.1 implies Condition (5) of
Definition 3.6. So, {Dv, Rμ, fμ} is a �-branching system in the sense of Definition 3.6.

Conversely suppose that {Dv, Rμ, fμ} is a �-branching system in the sense
of Definition 3.6. Then, it is straightforward to see that Conditions (1)–(5)
of Definition 3.1 hold. For μ, ν ∈ ⋃k

i=1 �ei with r(μ) = r(ν), d(μ) �= d(ν), for
α ∈ s(μ)�d(ν) with μα = ν ′β, ν �= ν ′, d(ν) = d(ν ′), Condition (4) of Definition 3.6
implies that fμ(Rα) = fμ ◦ fα(Ds(α)) = fν ′ ◦ fβ(Ds(β)) ⊂ Rν ′ . So, fμ(Rα) ∩ fν(Ds(ν)) = ∅.
So, Condition 6 of Definition 3.1 holds. For v ∈ �0, for a finite exhaustive set
E ⊂ ⋃k

i=1 v�ei for v, suppose that η(Dv \ ⋃
μ∈E Rμ) �= 0, for a contradiction. Since �

is row-finite without sources, there exists μ ∈ v�e1+···+ek such that η((Dv \ ⋃
μ∈E Rμ) ∩

fμ(Ds(μ))) �= 0. Since E is exhaustive and E ⊂ ⋃k
i=1 v�ei , there exist α ∈ E with

d(α) < d(μ) and β ∈ � such that μ = αβ. By Condition (4) of Definition 3.6, we
have fμ(Ds(μ)) = fα ◦ fβ(Ds(β)) ⊂ fα(Ds(α)) = Rα, which implies that (Dv \ ⋃

μ∈E Rμ) ∩
fμ(Ds(μ)) = ∅. So, η((Dv \ ⋃

μ∈E Rμ) ∩ fμ(Ds(μ))) = 0. However, this contradicts with
η((Dv \ ⋃

μ∈E Rμ) ∩ fμ(Ds(μ))) �= 0. Hence, Condition (7) of Definition 3.1 holds.
Therefore, {Dv, Rμ, fμ} is a �-branching system in the sense of Definition 3.1. �
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REMARK 3.8. Proposition 3.7 yields that for branching systems of row-finite k-
graphs without sources, Definition 3.1 is equivalent to Definition 3.6, and Definition 3.6
has an easier formulation than Definition 3.1. Therefore, from now on, whenever
we consider branching systems of row-finite k-graphs without sources, we will not
distinguish which definition we refer to.

NOTATION 3.9. Let k ∈ �+, let � be a row-finite k-graph without sources, let
{Dv, Rμ, fμ}

μ∈⋃k
i=1 �ei ,v∈�0 be a �-branching system on (X, η), and let π : C∗(�) →

B(L2(X, η)) be the representation obtained from Theorem 3.5. For n ≥ 1, μ = μ1 · · ·μn,
where μ1, . . . , μn ∈ ⋃k

i=1 �ei , denote by fμ := fμ1 ◦ · · · ◦ fμn (fμ is well-defined due
to Condition (4) of Definition 3.6); denote by 	fμ the Radon–Nikodym derivative
d(η ◦ fμ)/dη; and denote by 	f −1

μ
the Radon–Nikodym derivative d(η ◦ f −1

μ )/dη. It is

straightforward to verify that π (sμ)(φ) = χRμ
	

1/2
f −1
μ

(φ ◦ f −1
μ ), π (sμ)∗(φ) = χDs(μ)	

1/2
fμ

(φ ◦
fμ), π (s∗

μsμ)(φ) = χDs(μ)φ and π (sμs∗
μ)(φ) = χfμ(Ds(μ))φ, for all φ ∈ L2(X, η).

3.3. Semibranching function systems. Farsi et al. in [10] defined �-semibranching
function systems for a finite k-graph without sources � (being finite means that |�n| <

∞ for all n ∈ �k). In this subsection, we find connections between �-semibranching
function systems and �-branching systems.

The following definition is inspired by [10, Definitions 3.1, 3.2].

DEFINITION 3.10. Let � be a finite k-graph without sources, let (X, η) be a measure
space, let {Dμ,Rμ}

μ∈
(⋃k

i=1 �ei
)
∪�0 be a family of measurable subsets of X . Suppose that

(1) for each μ ∈ (⋃k
i=1 �ei

) ∪ �0, there exist two measurable maps τμ : Dμ → Rμ and

τ−1
μ : Rμ → Dμ such that τμ ◦ τ−1

μ

η−a.e.= idRμ
, τ−1

μ ◦ τμ
η−a.e.= idDμ

, the pushforward
measure η ◦ τμ, of τ−1

μ in Dμ, is absolutely continuous with respect to η in Dμ,
and the pushforward measure η ◦ τ−1

μ , of τμ in Rμ, is absolutely continuous with
respect to η in Rμ;

(2) for n ∈ {0, e1, . . . , ek}, X
η−a.e.= ⋃

μ∈�n Rμ;

(3) for n ∈ {0, e1, . . . , ek}, for μ �= ν ∈ �n,Rμ ∩ Rν
η−a.e.= ∅;

(4) for v ∈ �0, τv
η−a.e.= id, η(Dv) > 0;

(5) for μ ∈ ⋃k
i=1 �ei , we have Rμ

η−a.e.⊂ Dr(μ),Dμ = Ds(μ);
(6) for n ∈ {0, e1, . . . , ek}, define a measurable map τ n : X → X by τ n|Rμ

:= τ−1
μ for

all μ ∈ �n. Then, τ n ◦ τm = τm ◦ τ n for all n, m ∈ {0, e1, . . . , ek}.
We call {Rμ,Dμ, τμ, τ n : μ ∈ ( ⋃k

i=1 �ei
) ∪ �0, n ∈ {0, e1, . . . , ek}} a partial �-

semibranching function system on (X, η).

REMARK 3.11. Let � be a finite k-graph without sources. For μ = μ1 · · ·μn ∈ � \
�0 where μ1, . . . , μn ∈ ⋃k

i=1 �ei , define Dμ := Ds(μ), define τμ := τμ1 ◦ · · · ◦ τμn , and
define Rμ := τμ(Dμ). For n = (n1, . . . , nk) ∈ �k \ {0}, define τ n := n1τ

e1 ◦ · · · ◦ nkτ
ek .

Then, {Rμ,Dμ, τμ, τ n : μ ∈ �, n ∈ �k} is in fact a �-semibranching function system on
(X, η) as introduced by Farsi et al. in [10].

PROPOSITION 3.12. Let � be a finite k-graph without sources, let (X, η) be a measure
space, and let {Dv, Rμ, fμ}

μ∈⋃k
i=1 �ei ,v∈�0 be a �-branching system on (X, η). Suppose

that η(Dv) > 0 for all v ∈ �0, and that X = ⋃
v∈�0 Dv. For v ∈ �0, define Dv = Rv :=
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Dv, define τv : Dv → Rv to be the identity map. For μ ∈ ⋃k
i=1 �ei , define Dμ := Ds(μ),

define Rμ := Rμ, and define τμ := fμ. For n ∈ {0, e1, . . . , ek}, define a measurable map
τ n : X → X by τ n|Rμ

:= τ−1
μ for all μ ∈ �n. Then, {Rμ,Dμ, τμ, τ n : μ ∈ ( ⋃k

i=1 �ei
) ∪

�0, n ∈ {0, e1, . . . , ek}} is a partial �-semibranching function system on (X, η).

Proof. It is straightforward to see. �
PROPOSITION 3.13. Let � be a finite k-graph without sources, let (X, η) be a measure

space, and let {Rμ,Dμ, τμ, τ n : μ ∈ ( ⋃k
i=1 �ei

) ∪ �0, n ∈ {0, e1, . . . , ek}} be a partial �-
semibranching function system on (X, η). For v ∈ �0, define Dv := Dv. For μ ∈ ⋃k

i=1 �ei ,
define Rμ := Rμ, and define fμ := τμ. Then, {Dv, Rμ, fμ}

μ∈⋃k
i=1 �ei ,v∈�0 is a �-branching

system on (X, η).

Proof. It is straightforward to see. �

4. Examples of �-branching systems on � with the Lebesgue measure. In this
section, we will present many examples of branching systems on �. As we mentioned
before, due to the large combinatorial possibilities permitted by the factorization
property on a coloured graph, we are not able to provide a general construction of
branching systems on �. Instead, in the examples, we provide an algorithmic way to
build branching systems on �, covering many examples of k-graphs in the literature.

EXAMPLE 4.1. Let � be the following 2-coloured graph, where �0 = {v}, �e1 =
{f1, f2 : n ∈ �} and �e2 = {e}. This is an example in [11, Section 4].

>

f2
>

f1

<

e�

There are two 2-graphs �2 and �3 associated to the 2-coloured graph �. The
factorization rules for �2 are given by

f1e = e f1 and f2e = e f2,

and the factorization rules for �3 are given by

f1e = e f2 and f2e = e f1.

We will define a �2-branching system and a �3-branching system in the sense of
Definition 3.6 on [0, 1] with the Lebesgue measure.

Define Dv = Re := [0, 1], define Rf1 := [0, 1
2 ] and define Rf2 = [ 1

2 , 1].
For �2, let fe be the identity map, let ff1 ,ff2 be any bijective differentiable

maps from Dv onto Rf1 , Rf2 , respectively. It is straightforward to check that
{Dv, Re, Rf1 , Rf2 , fe, ff1 , ff2} is a �2-branching system in the sense of Definition 3.6.

For �3, define fe(x) := x + 1
2 if x ∈ [0, 1

2 ]; define fe(x) := x − 1
2 if x ∈ [ 1

2 , 1];
define ff1 (x) := 1

2 x; define ff2 (x) := 1
2 x + 3

4 if x ∈ [0, 1
2 ]; and define ff2 (x) := 1

2 x + 1
4 if
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x ∈ [ 1
2 , 1]. It is straightforward to check that {Dv, Re, Rf1 , Rf2 , fe, ff1 , ff2} is a �3-

branching system in the sense of Definition 3.6. �

EXAMPLE 4.2. Consider � as the following 2-coloured graph, where �0 = {v},
�e1 = {gn : n ∈ �+} and �e2 = {e}.

�

>

g2
>

g1· · ·

<

e

There are uncountably many possible factorizations in the above graph, each giving
a different 2-graph. For each of these 2-graphs, we build a branching system below.

Fix a factorization and let d : � → �2 be the degree map. Notice that d(gie) =
e1 + e2 = e2 + e1, and by the factorization property, there is a unique gj such that
gie = egj. So, we get a map h : �+ → �+ such that gie = egh(i). Moreover, note that h
is injective, because if we suppose that h(i) = h(j), then gie = egh(i) = egh(j) = gje and
then, again by the factorization property, we get gi = gj. The map h is also surjective,
since if j ∈ �+ then, by the factorization property, there exist a unique i such that
gie = egj.

Our goal is to define a �-branching system on the interval (0, 1] with the Lebesgue
measure. Define Dv = (0, 1] = Re and Rgi = ( 1

i+1 , 1
i ], for each i ∈ �+. Now we need to

define the bijective maps {fgi}i∈�+ and fe.
First of all, for each i ∈ �+, define the set Bi := {hn(i) : n ∈ �}. There are two

possible configurations for the Bi: if hn(i) = hm(i), for some n, m ∈ �, then Bi =
{i, h(i), h2(i), . . . , hk(i)}, where the elements hs(i) are pairwise distinct and hk+1(i) = i;
if hn(i) �= hm(i) for each m, n, then Bi = {. . . , h−2(i), h−1(i), i, h(i), h2(i), . . .}.

It is not hard to see that for i �= j, Bi = Bj or Bi ∩ Bj = ∅. So, by choosing an
appropriate set F ⊆ �+, we get that �+ is the disjoint union �+ = �i∈F Bi.

Now we define the bijective map fe : Dv → Re. First, we define this map on each
set Rgi . Fix an i ∈ F . Suppose first that Bi = {i, h(i), . . . , hk(i)}, and hk+1(i) = i. Define,
for each n ∈ {1, . . . , k + 1}, the increasing linear maps fe : Rghn(i) → Rghn−1(i)

, and piece

them together to obtain the map fe :
⋃k

n=0 Rghn(i) → ⋃k
n=0 Rghn(i) . It follows by definition

that f k+1
e is the identity map. For Bi = {. . . , h−2(i), h−1(i), i, h(i), h2(i), . . .} define fe :

Rghn(i) → Rghn−1(i)
as being the increasing linear diffeomorphism, for each n ∈ �. So,

we get a bijective measurable map fe : Dv → Re, with the property that, for each i ∈
�+, fe(Rgh(i) ) = Rgi and, moreover, if hk+1(i) = i, for some k ∈ �, then fe :

k⋃
n=0

Rghn(i) →
k⋃

n=0
Rghn(i) is such that f k+1

e is the identity map (restricted to this set).

It remains to define the maps fgi : Dv → Rgi for each i ∈ �+.
Let i ∈ F . If Bi = {i, h(i), h2(i), . . . , hk(i)} with hk+1(i) = i, define fgi : Dv → Rgi

as being the increasing linear diffeomorphism, and define inductively fghn(i) = f −1
e ◦

fghn−1(i)
◦ fe for n ∈ {1, . . . , k}. Notice that, then the equality fefghn(i) = fghn−1(i)

fe holds for
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each n ∈ {1, . . . , k}. To see that the equality fefghk+1(i)
= fghk(i)

fe also holds, note that

fghk(i)
fe = f −1

e fghk−1(i)
f 2
e = f −2

e fghk−2(i)
f 3
e = · · · = f −k

e fgi f
k+1
e

= f −k−1
e fefgi f

k+1
e = fefgi = fefghk+1(i)

,

since f k+1
e is the identity map and hk+1(i) = i.

If Bi = {hn(i) : n ∈ �}, with hn(i) �= hm(i) for each n, m, let fgi : Dv → Rgi be the
increasing linear diffeomorphism and define inductively fghn(i) = f −1

e ◦ fghn−1(i)
◦ fe and

fgh−n(i)
= fe ◦ fgh−n+1(i)

◦ f −1
e for n ≥ 1.

It is easy to see that Conditions (1)–(6) of Definition 3.1 are satisfied. Condition (7)
also holds, because each exhaustive finite set E ⊆ v�e1 ∪ v�e2 must contain e, Re = Dv

and any other Rgi ⊂ Dv. �

REMARK 4.3. To simplify notation, and when no confusion arises, from now on
we will denote the map fe associated to an edge e just by e.

EXAMPLE 4.4. We next turn our attention to the 2-graphs given in [26, p. 102].
Recall the 2-coloured graph, where f and h have degree (0, 1) ∈ �2 and k, e and g have
degree (1, 0):

�

u
�

v

<g

>
k
>e

>
f

<
h

There are two possible factorizations. One is kf = hk, ef = he and gh = fg. For
this 2-graph a branching system is obtained similarly to what we did in Example 4.1,
defining the maps associated to the loops in the graph as the identity. We will focus in
the second possible factorization, that is

he = kf, hk = ef and gh = fg.

Let Du = [0, 1] and Dv = [1, 2]. Notice that the sets {g}, {f }, {h}, {e, k} are
exhaustive, hence Rg = Rf = [0, 1] and Rh = [1, 2] = Re ∪ Rk. Let Re = [1, 3

2 ] and
Rk = [ 3

2 , 2]. From the factorization, we obtain the information on how to break up
the definition of the function h. Let h|[1, 3

2 ] → [ 3
2 , 2] be defined by h(x) = x + 1

2 and

h|[ 3
2 ,2] → [1, 3

2 ] be defined by h(x) = x − 1
2 (notice that h2 = id). Let g : [1, 2] → [0, 1]

be defined by g(x) = x − 1, e : [0, 1] → [1, 3
2 ] be defined by e(x) = 1

2 x + 1 and define
the remaining functions via the factorization, that is, f := ghg−1 and k := h−1e f =
he f = he f −1 (notice that f 2 = id). �

EXAMPLE 4.5. Let � be the 2-graph whose 1-skeleton is given below, and where
the edges gi have degree (0, 1) and the edges ei have degree (1, 0).
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�

v1

�v2

e1

�

������
g4

������
g1

e3

�

�

�

v3

�

�

g5

g2

v5

e4

�

v4

v6
v5 �

g3
�

� �

�

e5

�
g6

v7 v8

�

e2

Notice that the sets {e1, e2}, {g1, g2, g3}, {e1, g3} and {e2, g1, g2} are exhaustive for
v1 and {g4, g5} is exhaustive for v2. So, take Dvi = [i − 1, i], Re1 = [0, 1

2 ], Re2 = [ 1
2 , 1],

Rg3 = [ 1
2 , 1], Rg2 = [ 1

4 , 1
2 ], Rg1 = [0, 1

4 ], Rg4 = [1, 3
2 ] and Rg5 = [ 3

2 , 2]. Let fe1 |Rg4
be the

affine map onto Rg1 and fe1 |Rg5
be the affine map onto Rg2 . Define fg4 and fe3 as affine

maps and let fg1 := fe1 fg4 f −1
e3

. Analogously one define the reminder maps and sets. �

EXAMPLE 4.6. Next, we construct a branching system for the 2-graph �2

given in [27, Example A.2]. We reproduce a picture of the 1-skeleton below.

�

v2

�v3

�
μ2

�

�

���������	

�







� �

�

�

h3

h4

λ3

λ4

��
�

���

d3d4

�

�
�

�
�

��

� �

� �

�
�

�

�
�
�

�

�

�

v4
λ2

c3

c4

α3 α4 μ3μ4

�

�
�
���

In this example, the edges hi, ci and λi have degree (1, 0) and edges αi, μi and di

have degree (0, 1).

To construct a branching system, first we need to enumerate the edges and vertices.
Respecting the labels already given in the example, we enumerate the red edges in v2�2

by μ2, μ3, . . ., the blue edges in v2�2 by λ2, λ3, . . ., the blue edges in s(μ2) by h3, h4, . . .,
the red edges in s(λ2) by α3, α4, . . ., for i �= 2, we denote the red edge whose range is
s(λi) by di and the blue edge whose range is s(μi) by ci.
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With the above labels, the factorization reads

μ2hn = λndn and λ2αi = μici.

As usual, to obtain a branching system, we define the sets associated to vertices
as intervals. In particular, let Dv2 = [0, 1] and Dv3 = [1, 2], where v3 = s(μ2). We will
focus on defining the branching system for these vertices (once this is done it is clear
how to extend it to the remaining vertices).

Notice that {λ2, μ2} is exhaustive. So, let Rμ2 = [0, 1
2 ] and Rλ2 = [ 1

2 , 1]. Also, let
Rhi+2 = [1 + 1

2i , 1 + 1
2i−1 ], i = 1, 2, . . . and let Rλ3 = [0, 1

4 ], Rλ4 = [ 1
4 , 1

4 + 1
8 ] and so on.

Define μ2|Rhn
as the affine map onto Rλn . Also, let hn and dn be affine bijective maps.

Following the factorization define, for n �= 2, λn := μ2hnd−1
n .

Proceeding analogously one defines μi(i �= 2), ci, αi, λ2 and so a branching system
is obtained. �

EXAMPLE 4.7. Next, we construct a branching system for the 2-graph �3 given in
[27, Example A.3]. Differently from [27], we will keep all the notations of our previous
example (A.2). This example is the same as the example before, with the addition of
two edges, called β3 (of degree (1, 0)) and α3 (of degree (0, 1)) in [27] (we will call α3 of
ν3, since in our setting α3 is already taken). Notice that this is a particularly interesting
example, since there is no finite exhaustive subset of v2� whose range projections are
orthogonal as mentioned in [27, Example A.3].

We reproduce a picture of the 1-skeleton below.

�

v2

�

v3

�
μ2

�

�

���������	

�







� �

�

�

h3

h4

λ3

λ4

��
�

���

d3d4

�

�
�

�
�

��

� �

� �

�
�

�

�
�
�

�

�

�

v4
λ2

c3

c4

α3 α4 μ3μ4

� �β3

ν3

�

�

�
�
���

The factorization is the same as before, with one more factorization property:

μ2hn = λndn , λ2αi = μici and μ2β3 = λ2ν3.

As before, we will describe the branching system mainly at v2. Notice that {λ2, μ2}
is an exhaustive set in v2. Furthermore, the new factorization property implies that
Rμ2 and Rλ2 can not be disjoint. Let Dv2 = [0, 1], Dv3 = [1, 2], where v3 = s(μ2), and
Dv4 = [2, 3], where v4 = s(λ2). Define

Rμ2 =
[

0,
3
4

]
and Rλ2 =

[
1
2
, 1

]
.
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Break Dv3 in infinitely many intervals of positive length, namely, {Rβ3 , Rhi+2 : i =
1, 2, . . .} and break Dv4 in infinitely many intervals of positive length, namely,
{Rν3 , Rαi+2 : i = 1, 2, . . .}. Now, break [ 3

4 , 1] in infinitely many intervals of positive
length, say Rμ3 , Rμ4 , . . . and break [0, 1

2 ] in infinitely many intervals of positive length,
say Rλ3 , Rλ4 , . . ..

Proceeding similarly to the previous example, we define μ2|Rhn
as the affine map

onto Rλn , n = 3, 4, . . . and μ2|Rβ3
as the affine map onto Rμ2 ∩ Rλ2 . We also let hn and dn

be affine bijective maps and following the factorization define, for n �= 2, λn := μ2hnd−1
n ,

λ2|Rν3
:= μ2β3ν

−1
3 , where β3 and ν3 are affine bijective. The remainder of the definition

of a branching systems follows analogously to above and the previous example. �

5. Faithful representations of periodic single-vertex 2-graphs C*-algebras via
branching systems. In this section, we exclusively study the branching systems of
periodic single-vertex 2-graphs and we intend to find a sufficient condition for
representations of periodic single-vertex 2-graph C*-algebras, induced from branching
systems, to be faithful.

First of all, we recall the work of Davidson and Yang on the periodicity of single-
vertex 2-graphs in [7] (they also studied the structure of single-vertex k-graph C*-
algebras in [8]).

THEOREM 5.1 ([7, Theorems 3.1, 3.4]). Let � be a single-vertex 2-graph. Suppose
that |�e1 |, |�e2 | ≥ 2. Then, the following are equivalent.

(1) � is periodic;
(2) Per(�) = �(a,−b) for some positive integers a, b;
(3) there exist positive integers p, q with |�e1 |p = |�e2 |q and a bijection h :

∏p
i=1 �e1 →∏q

i=1 �e2 such that for μ ∈ ∏p
i=1 �e1 , ν ∈ ∏q

i=1 �e2 , we have μν = h(μ)h−1(ν) (we
can identify

∏p
i=1 �e1 ,

∏q
i=1 �e2 with elements in �).

NOTATION 5.2. Let � be a periodic single-vertex 2-graph with |�e1 |, |�e2 | ≥ 2. Let
(a,−b) be the generator of Per(�), and let h :

∏a
i=1 �e1 → ∏b

i=1 �e2 obtained from
the above theorem. Then, for each μ ∈ ∏a

i=1 �e1 , (μ, h(μ)) is a cycline pair. By [7,
Lemma 5.3] there is a distinguished unitary W := ∑

μ∈∏a
i=1 �e1 sh(μ)s∗

μ in C∗(�).

LEMMA 5.3. Let � be a periodic single-vertex 2-graph with |�e1 |, |�e2 | ≥ 2. We
inherit the notation from Notation 5.2. Then, the spectrum of W contains the unit circle.

Proof. It is sufficient to show that C∗(W ) ∼= C(�), via a unital isomorphism
that identifies W with the identity function on �. By [22, Proposition 3.11] it
is sufficient to show that there exists an expectation 	 : C∗(W ) → � · 1C∗(�) such
that 	(W n) = 0 for all n ∈ � \ {0}, and that 	(1C∗(�)) = 1C∗(�). Let γ be the gauge
action on C∗(�). Then, γ induces a strongly continuous homomorphism from �2

to Aut(C∗(W )). Denote by ι : � → �2, the embedding z �→ (1, z). So, we obtain a
strongly continuous homomorphism γ ◦ ι : � → Aut(C∗(W )). Therefore, γ ◦ ι yields
the desired expectation 	 : C∗(W ) → � · 1C∗(�) and hence we are done. �

The following theorem is an extension of the general Cuntz–Krieger uniqueness
theorem of Brown–Nagy–Reznikoff (see Theorem 2.21).
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THEOREM 5.4. Let � be a periodic single-vertex 2-graph with |�e1 |, |�e2 | ≥ 2, let
A be a C*-algebra and let ϕ : C∗(�) → A be a homomorphism. We inherit the notation
from Notation 5.2. Then, ϕ is injective if and only if

(1) ϕ(1C∗(�)) �= 0;
(2) the spectrum of ϕ(W ) contains the unit circle.

Proof. First of all, suppose that ϕ is injective. It is straightforward to see that
Condition (1) holds. By Lemma 5.3, Condition (2) holds.

Conversely suppose that Conditions (1) and (2) hold. By Theorem 2.21, it is
sufficient to prove that ϕ is injective on M.

The faithful expectation 	 from Notation 2.16 restricts to a faithful expectation
from M onto D satisfying that for d ∈ D, n ∈ �, if n = 0, then 	(dW n) = d; and if
n �= 0, then 	(dW n) = 0.

Since ϕ(1C∗(�)) �= 0, [27, Theorem 3.1] gives that ϕ is injective on C∗(�)γ . Since
D ⊂ C∗(�)γ , ϕ is injective on D.

By Condition 2, there exists an expectation � : ϕ(C∗(W )) → ϕ(� · 1C∗(�)) such
that for n ∈ �, if n = 0, then �(ϕ(W n)) = ϕ(1C∗(�)); and if n �= 0, then �(ϕ(W n)) = 0.
As shown in the proof of [32, Theorem 6.2],M = span{sμs∗

μW n : μ ∈ �, n ∈ �} andM
is unital abelian, where M is the cycline subalgebra of C∗(�) given in Definition 2.19.
We aim to construct a linear map � : span{ϕ(sμs∗

μW n) : μ ∈ �, n ∈ �} → ϕ(D) such
that if n = 0, then �(ϕ(sμs∗

μW n)) = ϕ(sμs∗
μ); and if n �= 0, then �(ϕ(sμs∗

μW n)) = 0,
where D is the diagonal of C∗(�) given in Definition 2.19. In order to prove that
� is well-defined, we show that it is contractive. Fix distinct μ1, . . . , μL ∈ � with
d(μ1) = · · · = d(μL), for 1 ≤ i ≤ L, fix {zij}j∈� ⊂ � with at most finitely many nonzero.
Then, we compute that

∥∥∥
L∑

i=1

zi0ϕ(sμi s
∗
μi

)
∥∥∥ = max

1≤i≤L

∥∥∥zi0ϕ(sμi s
∗
μi

)
∥∥∥

≤ max
1≤i≤L

∥∥∥ϕ(sμi s
∗
μi

)
∑
j∈�

zijϕ(W j)
∥∥∥

(since � is an expectation on ϕ(C∗(W )))

=
∥∥∥

L∑
i=1

ϕ(sμi s
∗
μi

)
∑
j∈�

zijϕ(W j)
∥∥∥.

By Condition (4) of Proposition 2.13, every element in span{ϕ(sμs∗
μW n) : μ ∈ �, n ∈ �}

has the form
∑L

i=1 ϕ(sμi s
∗
μi

)
∑

j∈� zijϕ(W j). Hence, we obtain a linear idempotent map
� of norm 1 from ϕ(M) onto ϕ(D). By [1, II.6.10.2], � is an expectation. Finally, by
[22, Proposition 3.11], ϕ is injective on M. So, we are done. �

Now we present a sufficient condition for representations of periodic single-vertex
2-graphs induced from branching systems to be faithful.

THEOREM 5.5. Let � be a periodic single-vertex 2-graph with the vertex v and
|�e1 |, |�e2 | ≥ 2. We inherit the notation from Notation 5.2. Let {Dv, Rμ, fμ : μ ∈⋃k

i=1 �ei} be a �-branching system on a measure space (X, η) such that η(Dv) �= 0,
and let π : C∗(�) → B(L2(X, η)) be the representation induced from the �-branching
system. Suppose that for any finite subset F of � \ {0}, there exist μ ∈ ∏a

i=1 �e1 and a
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measurable subset E of fμ(Dv) such that η(E) �= 0 and (fμ ◦ f −1
h(μ))

n(E) ∩ E
η−a.e.= ∅ for all

n ∈ F . Then, π is faithful.

Proof. Since η(Dv) �= 0, we have that π (1C∗(�)) �= 0. By [4, Proposition 4.1],

we have π (sμs∗
μ) = π (sh(μ)s∗

h(μ)) for all μ ∈ ∏a
i=1 �e1 . So, fμ(Dv)

η−a.e.= fh(μ)(Dv) for

all μ ∈ ∏a
i=1 �e1 ; fμ(Dv) ∩ fν(Dv)

η−a.e.= ∅ for distinct μ, ν ∈ ∏a
i=1 �e1 ; and Dv

η−a.e.=⋃
μ∈∏a

i=1 �e1 fμ(Dv). By Theorem 5.4, in order to prove that π is injective, we only
need to show that the spectrum of π (W ) in C∗(π (W )) contains the unit circle. By [22,
Proposition 3.11], it suffices to construct an expectation 	 : C∗(π (W )) → � · π (1C∗(�))
such that 	(π (1C∗(�))) = π (1C∗(�)),	(π (W n)) = 0 for all n ∈ � \ {0}. Fix {zn}n∈� ⊂ �

with at most finitely many nonzero. Let F := {0 �= n ∈ � : zn �= 0}. By the assumption
of the theorem, there exist μ0 ∈ ∏a

i=1 �e1 and a measurable subset E of fμ0 (Dv) such

that η(E) �= 0 and (fμ0 ◦ f −1
h(μ0))

n(E) ∩ E
η−a.e.= ∅ for all n ∈ F . Take an arbitrary function

φ ∈ L2(X, η) with ‖φ‖ = 1 and supp(φ)
η−a.e.⊂ E. Then,

∥∥∥ ∑
n∈�

znπ (W n)
∥∥∥2

=
∥∥∥z0π (1C∗(�)) +

∑
n∈F

znπ (W n)
∥∥∥

≥
∥∥∥z0φχDv

+
∑
n∈F

znπ (W n)(φ)
∥∥∥2

=
∫

X

∣∣∣z0φχDv
+

∑
n∈F

znπ (W n)(φ)
∣∣∣2

dη

≥
∫

E

∣∣∣z0φ +
∑
n∈F

znπ (W n)(φ)
∣∣∣2

dη

=
∫

E

∣∣∣z0φ +
∑
n∈F

znπ (sh(μ0)s∗
μ0

)(φ)
∣∣∣2

dη

=
∫

E

∣∣∣z0φ

∣∣∣2
dμ

= |z0|2.

So, we get the required expectation 	 and hence π is injective. �
In the following, we modify the construction of the branching systems in

Theorem 3.3 and we obtain a branching system for each periodic single-vertex 2-graph
so that the associated representation is faithful.

EXAMPLE 5.6. Let � be a periodic single-vertex 2-graph with |�e1 |, |�e2 | ≥ 2.
Let X := [0, 1] × �∞. Define Dv := X . For e ∈ �e1 , define Re := [0, 1] × e�∞, define
Fe : Dv → Re by Fe(t, x) := (t2, ex) (see Lemma 2.4). For f ∈ �e2 , define Rf := [0, 1] ×
f �∞, define Ff : Dv → Rf by Ff (t, x) := (

√
t, f x). Then, {Dv, Rμ, Fμ}μ∈⋃2

i=1 �ei is a
�-branching system. By Theorem 5.5, the induced representation is faithful.

We finish this section by building a branching system on �2 for a periodic single-
vertex 2-graph such that the associated representation is faithful.

EXAMPLE 5.7. Consider the flip C*-algebra from the 2-coloured graph of [7,
Example 4.3],
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>

f2
>

f1

<

e2
<

e1�
v

with the factorization rule eifj = fiej, for i, j ∈ {1, 2}. For this 2-graph, here called �,
we obtain a �-branching system on the measure space ([0, 1] × [−1, 1], η) in the sense
of Theorem 5.5, where η is the Lebesgue measure in �2.

PROPOSITION 5.8. Let � be the 2-graph as above. Let Dv = [0, 1] × [−1, 1], Re1 =
Rf1 = [0, 1] × [0, 1], and Re2 = Rf2 = [0, 1] × [−1, 0]. Define the maps fe1 , ff1 : Dv → Re1

by fe1 ((x, y)) = (x2,
y
2 + 1

2 ) and ff1 ((x, y)) = (
√

x,
y
2 + 1

2 ), and the maps fe2 , ff2 : Dv → Rf2

by fe2 ((x, y)) = (x2,
y
2 − 1

2 ) and ff2 ((x, y)) = (
√

x,
y
2 − 1

2 ). Then, the representation of
C∗(�) arising from this �-branching system is faithful.

Proof. It is easy to see that all the conditions of Definition 3.1 are satisfied.
Let π : C∗(�) → B(L2([0, 1] × [−1, 1], η))be the *-homomorphism induced by this �-
branching system. Note that each cycline pair is of the form (ei, fi). So, to apply
Theorem 5.5, it is enough to show that, for each finite set F ⊆ � \ {0}, there exists a

subset E ⊆ fe1 (Dv) with η(E) �= 0 and (fe1 ◦ f −1
f1

)k(E) ∩ E
η−a.e.= ∅ for each k ∈ F . Note

that (fe1 ◦ f −1
f1

)(x, y) = (x4, y).

Let E = [ 1
4 , 1

2 ] × [0, 1]. Then, (fe1 ◦ f −1
f1

)k(E) ∩ E
η−a.e.= ∅ for each k ∈ � \ {0}, and

hence by Theorem 5.5, π is faithful. �
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16. D. Gonçalves and D. Royer, On the representations of Leavitt path algebras, J. Algebra
333 (2011), 258–272.
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