NOTATION

A few preliminary words are necessary in respect to the following scheme of notation.

In the first place the notation should be uniform, that is to say, when a definite point connected with the triangle is under consideration it should always be denoted by the same letter, and not by one letter at one time and by another letter at another. But the converse practice of never using a letter which has denoted one special point to denote any other point need not be carried out, and indeed cannot be, unless the number of properties investigated be very small, or unless recourse be had to letters ornamented with an intolerable number of suffixes or accents. To illustrate by an example. When the circumcentre of a triangle $A B C$ has to be mentioned, it is invariably called O, but in cases where the circumcentre does not come into consideration at all, there is no adequate reason why O should not be used to denote some other point such as the point of concurrency of three angular transversals.

In the second place capital letters, loaded or not as the case may be with an accent or a suffix or even with both, should denere points, and small letters should denote lines. I am aware that such a rule is not adhered to in some of the best geometrical treatises, for instance those of Chasles who constantly uses both capitals and small letters to denote points. The extremely prevalent, though not universal, practice of denoting the radius of the circumcircle by . \mathbf{R} shows that one deviation at least must be made from the rule if accordance with general usage is to be secured. For the distances between the incentre, the excentres, and the vertices of a triangle Greek letters have been employed. This was found to be unavoidable, if conciseness was to be aimed at. These Greek letters are the notation adopted by the discoverers of not a few of the properties* connected with the incentre, etc., and I could not invent a better.

In the third place the notation should conform as far as may be to that actually in use among geometers. I have had this consideration continually before me, and it has caused me a world of trouble. For the notation has been changed, rechanged, and changed again; and though I dare not hope that the compromise which has been

[^0]come to will commend itself to everybody as the best in the circumstances, yet if it were needful I could support with a considerable weight of authority drawn from one country or another, the designation of every important point to which objection might be taken.

POINTS.

A, B, C, = vertices of the fundamental triangle.
When the sides of triangle ABC are spoken of, they are understood to be taken in the order BC, CA, AB.

$A^{\prime}, B^{\prime}, C^{\prime}$	$=$
$A_{\infty}, B_{\infty}, C_{\infty} \quad=$	harmonic ponints of the sides $B C, C A, A B$.
	$B C, C A, A B$.

A_{1}, B_{1}, C_{1} = vertices of some triangle related to $A B C$, for example, anticomplementary, inscribed or circumscribed.
$\mathrm{D}, \mathrm{E}, \mathrm{F}=$ points of contact of sides with incircle.
$=$ points of intersection of sides with transversal.
$=$ points of intersection of sides with angular transversals.
$=$ projections of a point on the sides.
$\left.\begin{array}{l}D_{1}, E_{1}, F_{1} \\ D_{2}, E_{2}, F_{2} \\ D_{3}, E_{3}, F_{3}\end{array}\right\} \quad=$ points of contact of sides with $\left\{\begin{array}{l}1 \text { st excircle. } \\ \text { 2nd excircle. } \\ \text { 3rd excircle. }\end{array}\right.$
$\mathrm{D}^{\prime}, \mathrm{E}^{\prime}, \mathrm{F}^{\prime} \quad=$ harmonic conjugates of $\mathrm{D}, \mathrm{E}, \mathrm{F}$ for $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.
$=$ those points in $A^{\prime} B^{\prime} \mathbf{C}^{\prime}$ which correspond to D, E, F in ABC.
Similarly for $D_{1}^{\prime}, E_{1}^{\prime}, F_{1}^{\prime}$, etc.
$G, G_{a}, G_{b}, G_{c}=$ centroids of ABC, HCB, CHA, BAH.
$G_{0}, G_{1}, G_{2}, G_{3} \quad=$ centroids of $I_{1} I_{2} I_{3}, I_{3} I_{2}, I_{3} I I_{1}, I_{2} I_{1} I$.

[^1]| $\frac{\Gamma}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}}$ | $=$ point of concurrency of $\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$.
 $=$ points of concurrency of $\mathrm{AD}_{1}, \mathrm{BE}_{1}, \mathrm{CF}_{1}$, and so on.
 These four points are frequently called the Gergonne points of ABC. |
| :---: | :---: |
| H | $=$ orthocentre of ABC. |
| I | = incentre of ABC . |
| I_{1}, I_{2}, I_{3} | $=1 \mathrm{st}$, 2nd, 3rd excentres of ABC . |
| J | $=$ incentre of $A_{1} B_{1} C_{1}$, the triangle anticomplementary to ABC . |
| $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ | $=1 \mathrm{st}, 2 \mathrm{nd}, 3 \mathrm{rd}$ excentres of $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$.
 These four points are frequently called the Nagel points of ABC. |
| K | = insymmedian point of ABC (Lemoine's point). |
| $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{5}$ | $=1 \mathrm{st}$, 2nd, 3rd exsymmedian points of ABC. |
| L, M, N | $=$ feet of internal angular bisectors of ABC.
 $=$ projections of the symmedian point on the sides of ABC . |
| $\mathrm{L}^{\prime}, \mathrm{M}^{\prime}, \mathrm{N}^{\prime}$ | $=$ feet of external angular bisectors of ABC. |
| $\mathrm{L}_{1}, \mathrm{M}_{1}, \mathrm{~N}_{1}$ | $=$ projections of the first exsymmedian point on the sides of ABC .
 Similarly for $\mathrm{L}_{2}, \mathrm{M}_{2}, \mathrm{~N}_{2}$, etc. |
| O | $\begin{aligned} & =\text { circumcentre of } A B C . \\ & =\text { point of intersection of three concurrent lines. } \end{aligned}$ |
| O^{\prime} | $=$ circumcentre of $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, or nine-point centre of $A B C$. |
| $\mathrm{O}_{a}, \mathrm{O}_{b}, \mathrm{O}_{c}$ | $=$ circumcentres of $\mathrm{HCB}, \mathrm{CHA}, \mathrm{BAH}$. |
| $\mathrm{O}_{0}, \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{2}$ | = circumcentres of $\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}, \mathrm{II}_{3} \mathrm{I}_{2}, \mathrm{I}_{3} \mathrm{II}_{1}, \mathrm{I}_{2} \mathrm{I}_{2} \mathrm{I}$. |
| $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ | $=$ circumcentres of $\Omega \mathrm{CA}, \Omega \mathrm{AB}, \Omega \mathrm{BC}$. |
| $\mathrm{O}_{1}{ }^{\prime}, \mathrm{O}_{2}{ }^{\prime}, \mathrm{O}_{3}{ }^{\prime}$ | $=$ circumcentres of $\Omega^{\prime} \mathrm{CA}, \Omega^{\prime} \mathrm{AB}, \Omega^{\prime} \mathrm{BC}$. |
| $0, \mathrm{O}^{\prime}$ | $=$ pairs of isogonal points with respect to $A B C$. |

$\left.\begin{array}{l} \mathrm{P}, \mathrm{Q} \\ \mathrm{P}, \mathrm{P}^{\prime} \\ \mathrm{Q}, \mathrm{Q}^{\prime} \end{array}\right\}$	$=$ pairs of special points.
R, S, T	```\(=\) points where the perpendiculars of a triangle meet the circumcircle. \(=\) feet of the insymmedians. \(=\) projections of \(\Omega\) on \(\mathrm{BC}, \mathrm{CA}, \mathrm{AB}\).```
$\mathrm{R}^{\prime}, \mathrm{S}^{\prime}, \mathrm{T}^{\prime}$	$=$ feet of the exsymmedians. $=$ projections of Ω^{\prime} on BC, CA, AB.
T, $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$	$=$ points of contact of the nine-point circle with the incircle and the excircles. $=$ centres of the four Taylor circles.
$\mathrm{U}, \mathrm{U}^{\prime}$	=ends of that diameter of the circumcircle which is perpendicular to $B C . U$ is on the opposite side of BO from A . Similarly for V, V^{\prime} and W, W^{\prime}.
$\mathrm{U}, \mathrm{v}, \mathrm{W}$	$=$ points in which concurrent lines from A, B, C meet the circumcircle ABC. $=$ mid points of $\mathrm{AH}, \mathrm{BH}, \mathrm{CH}$.
X, Y, Z	$=$ feet of the perpendiculars from A, B, C.
$\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}$	$=$ harmonic conjugates of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ for $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$. $=$ mid points of YZ, ZX, XY.
Ω, Ω^{\prime}	$=$ Brocard points of $\triangle B C$.

Regarding the notation which may be adopted for many other important points connected with the triangle, such as the isogonic and isodynamic centres, the centres of Brocard's circle and Lemoine's first circle (triplicate ratio), Steiner's point, Tarry's point, and so on, no suggestion is offered for the present. Those who wish to see the notations which have been employed may be referred to Mr De Longchamps' Journal de Mathématiques Elémentaires and to Mathesis.

LINES.

a, b, c	$=$ the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of ABC .
a, β, γ	$=\mathrm{AI}, \mathrm{BI}, \mathrm{CI}$.
$a_{1}, \beta_{1}, \gamma_{1}$	$=\mathrm{AI}_{3}, \mathrm{BI}_{1}, \mathrm{CI}_{2}$.
$a_{22} \beta_{2}, \gamma_{2}$	$=\mathrm{AI}_{2}, \mathrm{BI}_{2}, \mathrm{CI}_{2}$.
$\alpha_{3}, \beta_{3}, \gamma_{3}$	$=\mathrm{AI}_{3,} \mathrm{BI}_{3}, \mathrm{CI}_{3}$.
$\mathrm{a}_{1}-\alpha, \beta_{2}-\beta, \gamma_{3}-\gamma=\mathrm{I} \mathrm{I}_{1}, \mathrm{II}_{2}, \mathrm{II}_{3}$.	
$a_{2}+\alpha_{3}, \beta_{3}+\beta_{2}, \gamma_{2}+\gamma_{2}=I_{2} I_{3}, I_{3} \mathrm{I}_{1}, \mathrm{I}_{1} \mathrm{I}_{2}$.	
$d, \quad e, f$	$=$ the sides $\mathrm{EF}, \mathrm{FD}, \mathrm{DE}$ of DEF . Similarly for the sides of $\mathrm{D}_{1} \mathrm{E}_{\mathrm{k}} \mathrm{F}_{1}$, etc.
h_{1}, h_{8}, h_{8}	$=$ the perpendiculars $\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$.
$h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}$	$=$ the segments $\mathrm{AH}, \mathrm{BH} \mathrm{CH}$ of the perpendi culars.
$h_{1}{ }^{\prime \prime}, h_{2}{ }^{\prime \prime}, h_{3}{ }^{\prime \prime}$	$=$ the segments $\mathrm{HX}, \mathrm{HY}, \mathrm{HZ}$ of the perpendi culars.
k_{1}, k_{2}, k_{3}	$=$ the perpendiculars $O A^{\prime}, O B^{\prime}, O C^{\prime}$ from the circumcentre.
$l_{12}, l_{23} l_{3}$	$=$ the internal angular bisectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
$\lambda_{1}, \lambda_{2}, \lambda_{3}$	$=$ the extornal angular bisectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
m_{1}, m_{2}, m_{3}	$=$ the medians from $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
n_{1}, n_{2}, n_{3}	$=$ the insymmedians from $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
$\nu_{1}, \nu_{2}, \nu_{3}$	$=$ the exsymmedians from $\mathbf{A}, \mathbf{B}, \mathbf{C}$.
p_{1}, p_{2}, p_{3}	= perpendiculars from any point on $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.
r	$=$ radius of the incircle.
r_{1}, r_{2}, r_{3}	$=$ radii of the 1st, 2nd, 3rd excircles.

R	$=$ radius of the circumcircle.
$\mathrm{R}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	$\begin{aligned} & =\text { radii of the circumcircles of } \\ & \quad \Omega \mathrm{CA}, \Omega \mathrm{AB}, \Omega \mathrm{BC} . \end{aligned}$
$\mathbf{R}_{1}{ }^{\prime}, \mathbf{R}_{2}{ }^{\prime}, \mathbf{R}_{3}{ }^{\prime}$	$=$ radii of the circumcircles of $\Omega^{\prime} \mathrm{CA}, \Omega^{\prime} \mathrm{AB}, \Omega^{\prime} \mathrm{BC}$.
ρ	$=$ radius of the incircle of XYZ,
$\rho_{1}, \quad \rho_{2}, \rho_{3}$	$=$ radii of the 1 st, 2 nd, 3rd excircles of XYZ .
s	= semiperimeter of ABC .
s_{1}, s_{2}, s_{3}	$=s-a, s-b, s-c$.
x, y, z	= the sides YZ, ZX, XY of XYZ.

AREAS.

$\triangle, \triangle_{a}, \triangle_{b}, \triangle_{c}=\mathrm{ABC}, \mathrm{HCB}, \mathrm{CHA}, \mathrm{BAH}$.
$\triangle_{0}, \Delta_{1}, \Delta_{2}, \Delta_{3} \quad=I_{1} I_{2} I_{3}, I I_{3} I_{2}, I_{3} I I_{1}, I_{2} I_{1} I$.

[^0]: *The properties referred to are not contained in the section which is here printed.

[^1]: *Following the example of Mr W. J. Russell, I have used the word "for" instead of the phrase " with respect to."

