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Abstract

Let g ≥ 2 be a fixed integer. Let N denote the set of all nonnegative integers and let A be a subset of N.
Write r2(A, n) = ]{(a1, a2) ∈ A2 : a1 + a2 = n}. We construct a thin, strongly minimal, asymptotic g-adic
basis A of order two such that the set of n with r2(A, n) = 2 has density one.
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1. Introduction

Let N denote the set of all nonnegative integers and let A be a subset of N. Write
A(x) = ]{n ∈ A : n ≤ x}. For h ≥ 2, let

rh(A, n) = ]{(a1, a2, . . . , ah) ∈ Ah : a1 + a2 + · · · + ah = n}.

Let W be a nonempty subset of N. Denote by F ∗(W) the set of all finite, nonempty
subsets of W. For any integer g ≥ 2, let Ag(W) be the set of all numbers of the form∑

f∈F a f g f , where F ∈ F ∗(W) and 1 ≤ a f ≤ g − 1. The set A is called an asymptotic
basis of order h if rh(A, n) ≥ 1 for all sufficiently large integers n. In particular, A is
a basis of order h if rh(A, n) ≥ 1 for all n ≥ 0. An asymptotic basis A of order h is
minimal if no proper subset of A is an asymptotic basis of order h. This means that,
for any a ∈ A, the set Ea = hA\h(A\{a}) is infinite. An asymptotic basis A of order h
is called strongly minimal if, for every a ∈ A, there exists a constant c = c(a) > 0 such
that Ea(x) > c(A(x))h−1 for all x sufficiently large. An asymptotic basis A of order h is
called thin if there is a constant c > 0 such that A(x) < cx1/h for all x sufficiently large.

In 1955, Stöhr [10] introduced the concept of minimal asymptotic bases. In 1956,
Härtter [4] proved that minimal asymptotic bases of order h exist for all h ≥ 2.
Nathanson [7] constructed a minimal asymptotic basis of order two and an asymptotic
basis of order two no subset of which is minimal. In 2011, Chen and Chen [2] resolved
some questions on minimal asymptotic bases posed by Nathanson [8]. For related
problems concerning minimal asymptotic bases, see [5, 6, 9, 10]. In 2012, Chen [1]
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proved that there is a basis A of order two such that the set of n with r2(A, n) = 2
has density one. In 2013, Yang [12] extended Chen’s theorem to a basis of order h.
Recently, the second author of this paper [11] developed Yang’s method of proof to
establish a more general result.

To our surprise, the structure of the minimal asymptotic basis given by
Nathanson [7] is similar to the structure of the basis given by Chen [1]. Motivated
by this observation, we obtain the following result.

Theorem 1.1. For i = 0,1, let Wi = {n ∈ N | n ≡ i (mod 2)}. Then Ag = Ag(W0) ∪ Ag(W1)
is a thin, strongly minimal, asymptotic g-adic basis of order two and the set of n with
r2(Ag, n) = 2 has density one.

Remark 1.2. Using [6, Lemma 2] and the same idea as in the proof of [2, Theorem 4],
we can extend [2, Theorem 4] to all g ≥ 2 as follows. Let h ≥ 2 and let t be the least
integer with t > max{1, log h/ log g}. Let N = W0 ∪ · · · ∪Wh−1 be a partition such that
each set Wi is infinite and contains t consecutive integers for i = 0, 1, . . . , h − 1. Then
Ag = Ag(W0) ∪ · · · ∪ Ag(Wh−1) is a minimal asymptotic g-adic basis of order h.

2. Proofs

Lemma 2.1 [6, Lemma 1]. Let g ≥ 2 be any integer.

(a) If W1 and W2 are disjoint subsets of N, then Ag(W1) ∩ Ag(W2) = ∅.
(b) If W ⊆ N and W(x) = θx + O(1) for some θ ∈ (0, 1], then there exist positive

constants c1 and c2 such that c1xθ < Ag(W)(x) < c2xθ for all x sufficiently large.
(c) Let N = W0 ∪ · · · ∪ Wh−1, where Wi , ∅ for i = 0, 1, . . . , h − 1. Then Ag =

Ag(W0) ∪ · · · ∪ Ag(Wh−1) is an asymptotic basis of order h.

Lemma 2.2 [3, Theorem 143]. Almost all positive integers, when expressed in any
scale, contain a given possible sequence of digits.

Proof of Theorem 1.1. We shall show that the set Ag satisfies:

(i) Ag is a thin asymptotic basis of order two;
(ii) the set of n with r2(Ag, n) = 2 has density one;
(iii) Ag is a minimal asymptotic basis of order two;
(iv) Ag is strongly minimal.

Proof of (i). By Lemma 2.1(c), for a fixed g ≥ 2, the set Ag is an asymptotic basis of
order two. Since Wi(x) = 1

2 x + O(1) for i = 0, 1, Lemma 2.1(b) implies that there is a
constant c > 0 such that Ag(Wi)(x) < cx1/2 for all i and all x sufficiently large. Thus,
Ag(x) < 2cx1/2 for all x sufficiently large and Ag is a thin asymptotic basis of order two.

Proof of (ii). Define

U = {n ∈ N : n expressed in the scale g contains three consecutive digits g − 1}.

By Lemma 2.2, the set U has density one. We show that r2(Ag, n) = 2 for all n ∈ U.
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For any nonnegative integers m and t, we write m =
∑

i∈X αigi, where αi are integers
with 0 ≤ αi ≤ g − 1 and X is a set of nonnegative integers, and define

T (m, t) =
∑

i∈X∩[0,t]

αigi.

Let n =
∑

i∈I βigi ∈ U, where βi are integers with 0 ≤ βi ≤ g − 1, and let n = a1 + a2,
where a1, a2 ∈ Ag. Then clearly

T (n, t) ≤ T (a1, t) + T (a2, t) (2.1)

for all integers t ≥ 0.
Suppose that as ∈ Ag(W1), s = 1, 2. By the definition of U, there exists a positive

integer i0 such that β2i0−1 = β2i0 = g − 1. By (2.1),

T (a1, 2i0) + T (a2, 2i0) ≥ T (n, 2i0) ≥ (g − 1)(g2i0−1 + g2i0 ).

On the other hand, since g ≥ 2 and as ∈ Ag(W1), s = 1, 2,

T (a1, 2i0) + T (a2, 2i0) ≤ 2(g − 1)
i0−1∑
h=0

g2h+1 < (g − 1)(g2i0−1 + g2i0 ),

which is a contradiction.
Suppose that as ∈ Ag(W0), s = 1, 2. By the definition of U, there exists a positive

integer i0 such that β2i0 = β2i0+1 = g − 1. By (2.1),

T (a1, 2i0 + 1) + T (a2, 2i0 + 1) ≥ T (n, 2i0 + 1) ≥ (g − 1)(g2i0 + g2i0+1).

On the other hand, by g ≥ 2 and as ∈ Ag(W0), s = 1, 2,

T (a1, 2i0 + 1) + T (a2, 2i0 + 1) ≤ 2(g − 1)
i0∑

h=0

g2h < (g − 1)(g2i0 + g2i0+1),

which is a contradiction.
Thus, for any j with 0 ≤ j ≤ 1, there exists an integer s j with 1 ≤ s j ≤ 2 such that

as j ∈ Ag(W j). It is clear that s0, s1 are distinct. Therefore, by the uniqueness of the
representation in the scale g and the definition of Ag, we have r2(Ag, n) = 2.

Proof of (iii). We must show that for each b ∈ Ag, there are infinitely many numbers
m = b + b′ = b′ + b with no other representation as the sum of two elements of Ag.

Fix an integer i ∈ {0, 1} and suppose that b ∈ Ag(Wi). Then

b = ang2n+i +
∑
s∈S

asg2s+i,

where S is a finite, possibly empty, set of integers greater than n, 1 ≤ an ≤ g − 1 and
1 ≤ as ≤ g − 1 for all s ∈ S .
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For any finite set T of integers greater than n, let

m = a0gi +
∑
s∈S

asg2s+i + (g − 1)g1−i +
∑
t∈T

btg2t+1−i if n = 0, (2.2)

m = ang2n+i +
∑
s∈S

asg2s+i + (g − 1)(g(1−i)(2n−1−i) + g2n+1−i)

+
∑
t∈T

btg2t+1−i if n > 0, (2.3)

where 1 ≤ bt ≤ g − 1 for all t ∈ T .
By the uniqueness of the g-adic representation of m, no other partition of m as the

sum of an element of Ag(W0) and an element of Ag(W1) is possible. Now we show that
m < 2Ag(Wi) and m < 2Ag(W1−i).

Suppose that m ∈ 2Ag(Wi). Then there exist m1,m2 ∈ Ag(Wi) such that m = m1 + m2.
Let

m j =
∑
k∈K

c( j)
k g2k+i, j = 1, 2, (2.4)

where K is a set of nonnegative integers, 1 ≤ c( j)
k ≤ g − 1 for all k ∈ K and c( j)

k = 0 for
all k < K.

Case 1: i = 1. By (2.2) and (2.4), we have m ≡ g − 1 (mod g) and m1 ≡ m2 ≡

0 (mod g), which is impossible.

Case 2: i = 0. If n = 0, then, by (2.2) and (2.4), we have m ≡ a0 + (g − 1)g (mod g2)
and m1 + m2 ≡ c(1)

0 + c(2)
0 (mod g2). But

0 ≤ c(1)
0 + c(2)

0 ≤ 2(g − 1) < a0 + g(g − 1) < g2,

which is a contradiction. If n > 0, then, by (2.3) and (2.4),

m ≡ ang2n + (g − 1)g2n−1 + (g − 1)g2n+1 (mod g2n+2)

and

m1 + m2 ≡

n∑
k=0

(c(1)
k + c(2)

k )g2k (mod g2n+2).

Again,

0 ≤
n∑

k=0

(c(1)
k + c(2)

k )g2k ≤ (g − 1)
n∑

k=0

g2k+1 < ang2n + (g − 1)g2n−1 + (g − 1)g2n+1 < g2n+2

is a contradiction.
Suppose that m ∈ 2Ag(W1−i). Then there exist m′1,m

′
2 ∈ Ag(W1−i) such that m =

m′1 + m′2. Let
m′j =

∑
h∈H

d( j)
h g2h+1−i, j = 1, 2, (2.5)

where H is a set of nonnegative integers, 1 ≤ d( j)
h ≤ g − 1 for all h ∈ H and d( j)

h = 0 for
all h < H.
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Case 1: i = 1. If n = 0, then, by (2.2) and (2.5), we have m ≡ a0g + g − 1 (mod g2)
and m′1 + m′2 ≡ d(1)

0 + d(2)
0 (mod g2). Thus,

0 ≤ d(1)
0 + d(2)

0 < a0g + g − 1 < g2,

which is a contradiction. If n > 0, then, by (2.3) and (2.5),

m ≡ ang2n+1 + (g − 1) + (g − 1)g2n (mod g2n+2)

and

m′1 + m′2 ≡
n∑

h=0

(d(1)
h + d(2)

h )g2h (mod g2n+2)

and again

0 ≤
n∑

h=0

(d(1)
h + d(2)

h )g2h < 2g2n+1 − g2n < ang2n+1 + (g − 1) + (g − 1)g2n < g2n+2

is a contradiction.

Case 2: i = 0. If n = 0, then, by (2.2) and (2.5), we have m ≡ a0 (mod g) and
m′1 ≡ m′2 ≡ 0 (mod g), which is a contradiction. If n > 0, then, by (2.3) and (2.5),

m ≡ ang2n + (g − 1)g2n−1 (mod g2n+1)

and

m′1 + m′2 ≡
n−1∑
h=0

(d(1)
h + d(2)

h )g2h+1 (mod g2n+1).

But then

0 ≤
n−1∑
h=0

(d(1)
h + d(2)

h )g2h+1 < 2g2n − g2n−1 < ang2n + (g − 1)g2n−1 < g2n+1,

which is a contradiction.

Proof of (iv). Since Ag is thin, it suffices to prove that there is a constant c = c(b) > 0
such that Eb(x) > cx1/2 for all x sufficiently large. Choose an integer v such that v > n
and v > s for all s ∈ S . Let x > g2(v+1). Define w ≥ v by g2(w+1) ≤ x < g2(w+2). Let T be
any subset of {n + 1, n + 2, . . . ,w}. By (2.2) and (2.3), we know that there are

w−n∑
i=0

(
w − n

i

)
(g − 1)i = gw−n

choices of m. Moreover,

m ≤ (g − 1)
2w+1∑
i=0

gi = g2w+2 − 1 < x,

and so m is counted in Eb(x). Therefore, Eb(x) ≥ gw−n > cx1/2, where c = g−(n+2).
This completes the proof of Theorem 1.1. �
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