ON MINIMAL ASYMPTOTIC g-ADIC BASES DENGRONG LING and MIN TANG ${ }^{\boxtimes}$

(Received 21 January 2015; accepted 31 May 2015; first published online 5 August 2015)

Abstract

Let $g \geq 2$ be a fixed integer. Let \mathbb{N} denote the set of all nonnegative integers and let A be a subset of \mathbb{N}. Write $r_{2}(A, n)=\sharp\left\{\left(a_{1}, a_{2}\right) \in A^{2}: a_{1}+a_{2}=n\right\}$. We construct a thin, strongly minimal, asymptotic g-adic basis A of order two such that the set of n with $r_{2}(A, n)=2$ has density one.

2010 Mathematics subject classification: primary 11B13.
Keywords and phrases: thin basis, minimal asymptotic g-adic basis.

1. Introduction

Let \mathbb{N} denote the set of all nonnegative integers and let A be a subset of \mathbb{N}. Write $A(x)=\sharp\{n \in A: n \leq x\}$. For $h \geq 2$, let

$$
r_{h}(A, n)=\sharp\left\{\left(a_{1}, a_{2}, \ldots, a_{h}\right) \in A^{h}: a_{1}+a_{2}+\cdots+a_{h}=n\right\} .
$$

Let W be a nonempty subset of \mathbb{N}. Denote by $\mathcal{F}^{*}(W)$ the set of all finite, nonempty subsets of W. For any integer $g \geq 2$, let $A_{g}(W)$ be the set of all numbers of the form $\sum_{f \in F} a_{f} g^{f}$, where $F \in \mathcal{F}^{*}(W)$ and $1 \leq a_{f} \leq g-1$. The set A is called an asymptotic basis of order h if $r_{h}(A, n) \geq 1$ for all sufficiently large integers n. In particular, A is a basis of order h if $r_{h}(A, n) \geq 1$ for all $n \geq 0$. An asymptotic basis A of order h is minimal if no proper subset of A is an asymptotic basis of order h. This means that, for any $a \in A$, the set $E_{a}=h A \backslash h(A \backslash\{a\})$ is infinite. An asymptotic basis A of order h is called strongly minimal if, for every $a \in A$, there exists a constant $c=c(a)>0$ such that $E_{a}(x)>c(A(x))^{h-1}$ for all x sufficiently large. An asymptotic basis A of order h is called thin if there is a constant $c>0$ such that $A(x)<c x^{1 / h}$ for all x sufficiently large.

In 1955, Stöhr [10] introduced the concept of minimal asymptotic bases. In 1956, Härtter [4] proved that minimal asymptotic bases of order h exist for all $h \geq 2$. Nathanson [7] constructed a minimal asymptotic basis of order two and an asymptotic basis of order two no subset of which is minimal. In 2011, Chen and Chen [2] resolved some questions on minimal asymptotic bases posed by Nathanson [8]. For related problems concerning minimal asymptotic bases, see [5, 6, 9, 10]. In 2012, Chen [1]

[^0]proved that there is a basis A of order two such that the set of n with $r_{2}(A, n)=2$ has density one. In 2013, Yang [12] extended Chen's theorem to a basis of order h. Recently, the second author of this paper [11] developed Yang's method of proof to establish a more general result.

To our surprise, the structure of the minimal asymptotic basis given by Nathanson [7] is similar to the structure of the basis given by Chen [1]. Motivated by this observation, we obtain the following result.

Theorem 1.1. For $i=0,1$, let $W_{i}=\{n \in \mathbb{N} \mid n \equiv i(\bmod 2)\}$. Then $A_{g}=A_{g}\left(W_{0}\right) \cup A_{g}\left(W_{1}\right)$ is a thin, strongly minimal, asymptotic g-adic basis of order two and the set of n with $r_{2}\left(A_{g}, n\right)=2$ has density one.

Remark 1.2. Using [6, Lemma 2] and the same idea as in the proof of [2, Theorem 4], we can extend [2, Theorem 4] to all $g \geq 2$ as follows. Let $h \geq 2$ and let t be the least integer with $t>\max \{1, \log h / \log g\}$. Let $\mathbb{N}=W_{0} \cup \cdots \cup W_{h-1}$ be a partition such that each set W_{i} is infinite and contains t consecutive integers for $i=0,1, \ldots, h-1$. Then $A_{g}=A_{g}\left(W_{0}\right) \cup \cdots \cup A_{g}\left(W_{h-1}\right)$ is a minimal asymptotic g-adic basis of order h.

2. Proofs

Lemma 2.1 [6, Lemma 1]. Let $g \geq 2$ be any integer.
(a) If W_{1} and W_{2} are disjoint subsets of \mathbb{N}, then $A_{g}\left(W_{1}\right) \cap A_{g}\left(W_{2}\right)=\emptyset$.
(b) If $W \subseteq \mathbb{N}$ and $W(x)=\theta x+O(1)$ for some $\theta \in(0,1]$, then there exist positive constants c_{1} and c_{2} such that $c_{1} x^{\theta}<A_{g}(W)(x)<c_{2} x^{\theta}$ for all x sufficiently large.
(c) Let $\mathbb{N}=W_{0} \cup \cdots \cup W_{h-1}$, where $W_{i} \neq \emptyset$ for $i=0,1, \ldots, h-1$. Then $A_{g}=$ $A_{g}\left(W_{0}\right) \cup \cdots \cup A_{g}\left(W_{h-1}\right)$ is an asymptotic basis of order h.

Lemma 2.2 [3, Theorem 143]. Almost all positive integers, when expressed in any scale, contain a given possible sequence of digits.

Proof of Theorem 1.1. We shall show that the set A_{g} satisfies:
(i) $\quad A_{g}$ is a thin asymptotic basis of order two;
(ii) the set of n with $r_{2}\left(A_{g}, n\right)=2$ has density one;
(iii) A_{g} is a minimal asymptotic basis of order two;
(iv) A_{g} is strongly minimal.

Proof of (i). By Lemma 2.1(c), for a fixed $g \geq 2$, the set A_{g} is an asymptotic basis of order two. Since $W_{i}(x)=\frac{1}{2} x+O(1)$ for $i=0,1$, Lemma 2.1(b) implies that there is a constant $c>0$ such that $A_{g}\left(W_{i}\right)(x)<c x^{1 / 2}$ for all i and all x sufficiently large. Thus, $A_{g}(x)<2 c x^{1 / 2}$ for all x sufficiently large and A_{g} is a thin asymptotic basis of order two.
Proof of (ii). Define

$$
U=\{n \in \mathbb{N}: n \text { expressed in the scale } g \text { contains three consecutive digits } g-1\} .
$$

By Lemma 2.2, the set U has density one. We show that $r_{2}\left(A_{g}, n\right)=2$ for all $n \in U$.

For any nonnegative integers m and t, we write $m=\sum_{i \in X} \alpha_{i} g^{i}$, where α_{i} are integers with $0 \leq \alpha_{i} \leq g-1$ and X is a set of nonnegative integers, and define

$$
T(m, t)=\sum_{i \in X \cap[0, t]} \alpha_{i} g^{i} .
$$

Let $n=\sum_{i \in I} \beta_{i} g^{i} \in U$, where β_{i} are integers with $0 \leq \beta_{i} \leq g-1$, and let $n=a_{1}+a_{2}$, where $a_{1}, a_{2} \in A_{g}$. Then clearly

$$
\begin{equation*}
T(n, t) \leq T\left(a_{1}, t\right)+T\left(a_{2}, t\right) \tag{2.1}
\end{equation*}
$$

for all integers $t \geq 0$.
Suppose that $a_{s} \in A_{g}\left(W_{1}\right), s=1,2$. By the definition of U, there exists a positive integer i_{0} such that $\beta_{2 i_{0}-1}=\beta_{2 i_{0}}=g-1$. By (2.1),

$$
T\left(a_{1}, 2 i_{0}\right)+T\left(a_{2}, 2 i_{0}\right) \geq T\left(n, 2 i_{0}\right) \geq(g-1)\left(g^{2 i_{0}-1}+g^{2 i_{0}}\right)
$$

On the other hand, since $g \geq 2$ and $a_{s} \in A_{g}\left(W_{1}\right), s=1,2$,

$$
T\left(a_{1}, 2 i_{0}\right)+T\left(a_{2}, 2 i_{0}\right) \leq 2(g-1) \sum_{h=0}^{i_{0}-1} g^{2 h+1}<(g-1)\left(g^{2 i_{0}-1}+g^{2 i_{0}}\right),
$$

which is a contradiction.
Suppose that $a_{s} \in A_{g}\left(W_{0}\right), s=1,2$. By the definition of U, there exists a positive integer i_{0} such that $\beta_{2 i_{0}}=\beta_{2 i_{0}+1}=g-1$. By (2.1),

$$
T\left(a_{1}, 2 i_{0}+1\right)+T\left(a_{2}, 2 i_{0}+1\right) \geq T\left(n, 2 i_{0}+1\right) \geq(g-1)\left(g^{2 i_{0}}+g^{2 i_{0}+1}\right)
$$

On the other hand, by $g \geq 2$ and $a_{s} \in A_{g}\left(W_{0}\right), s=1,2$,

$$
T\left(a_{1}, 2 i_{0}+1\right)+T\left(a_{2}, 2 i_{0}+1\right) \leq 2(g-1) \sum_{h=0}^{i_{0}} g^{2 h}<(g-1)\left(g^{2 i_{0}}+g^{2 i_{0}+1}\right)
$$

which is a contradiction.
Thus, for any j with $0 \leq j \leq 1$, there exists an integer s_{j} with $1 \leq s_{j} \leq 2$ such that $a_{s_{j}} \in A_{g}\left(W_{j}\right)$. It is clear that s_{0}, s_{1} are distinct. Therefore, by the uniqueness of the representation in the scale g and the definition of A_{g}, we have $r_{2}\left(A_{g}, n\right)=2$.

Proof of (iii). We must show that for each $b \in A_{g}$, there are infinitely many numbers $m=b+b^{\prime}=b^{\prime}+b$ with no other representation as the sum of two elements of A_{g}.

Fix an integer $i \in\{0,1\}$ and suppose that $b \in A_{g}\left(W_{i}\right)$. Then

$$
b=a_{n} g^{2 n+i}+\sum_{s \in S} a_{s} g^{2 s+i}
$$

where S is a finite, possibly empty, set of integers greater than $n, 1 \leq a_{n} \leq g-1$ and $1 \leq a_{s} \leq g-1$ for all $s \in S$.

For any finite set T of integers greater than n, let

$$
\begin{align*}
m=a_{0} g^{i}+ & \sum_{s \in S} a_{s} g^{2 s+i}+(g-1) g^{1-i}+\sum_{t \in T} b_{t} g^{2 t+1-i} \quad \text { if } n=0, \tag{2.2}\\
m=a_{n} g^{2 n+i} & +\sum_{s \in S} a_{s} g^{2 s+i}+(g-1)\left(g^{(1-i)(2 n-1-i)}+g^{2 n+1-i}\right) \\
& +\sum_{t \in T} b_{t} g^{2 t+1-i} \quad \text { if } n>0, \tag{2.3}
\end{align*}
$$

where $1 \leq b_{t} \leq g-1$ for all $t \in T$.
By the uniqueness of the g-adic representation of m, no other partition of m as the sum of an element of $A_{g}\left(W_{0}\right)$ and an element of $A_{g}\left(W_{1}\right)$ is possible. Now we show that $m \notin 2 A_{g}\left(W_{i}\right)$ and $m \notin 2 A_{g}\left(W_{1-i}\right)$.

Suppose that $m \in 2 A_{g}\left(W_{i}\right)$. Then there exist $m_{1}, m_{2} \in A_{g}\left(W_{i}\right)$ such that $m=m_{1}+m_{2}$. Let

$$
\begin{equation*}
m_{j}=\sum_{k \in K} c_{k}^{(j)} g^{2 k+i}, \quad j=1,2, \tag{2.4}
\end{equation*}
$$

where K is a set of nonnegative integers, $1 \leq c_{k}^{(j)} \leq g-1$ for all $k \in K$ and $c_{k}^{(j)}=0$ for all $k \notin K$.

Case 1: $i=1$. By (2.2) and (2.4), we have $m \equiv g-1(\bmod g)$ and $m_{1} \equiv m_{2} \equiv$ $0(\bmod g)$, which is impossible.
Case 2: $i=0$. If $n=0$, then, by (2.2) and (2.4), we have $m \equiv a_{0}+(g-1) g\left(\bmod g^{2}\right)$ and $m_{1}+m_{2} \equiv c_{0}^{(1)}+c_{0}^{(2)}\left(\bmod g^{2}\right)$. But

$$
0 \leq c_{0}^{(1)}+c_{0}^{(2)} \leq 2(g-1)<a_{0}+g(g-1)<g^{2},
$$

which is a contradiction. If $n>0$, then, by (2.3) and (2.4),

$$
m \equiv a_{n} g^{2 n}+(g-1) g^{2 n-1}+(g-1) g^{2 n+1}\left(\bmod g^{2 n+2}\right)
$$

and

$$
m_{1}+m_{2} \equiv \sum_{k=0}^{n}\left(c_{k}^{(1)}+c_{k}^{(2)}\right) g^{2 k}\left(\bmod g^{2 n+2}\right)
$$

Again,
$0 \leq \sum_{k=0}^{n}\left(c_{k}^{(1)}+c_{k}^{(2)}\right) g^{2 k} \leq(g-1) \sum_{k=0}^{n} g^{2 k+1}<a_{n} g^{2 n}+(g-1) g^{2 n-1}+(g-1) g^{2 n+1}<g^{2 n+2}$ is a contradiction.

Suppose that $m \in 2 A_{g}\left(W_{1-i}\right)$. Then there exist $m_{1}^{\prime}, m_{2}^{\prime} \in A_{g}\left(W_{1-i}\right)$ such that $m=$ $m_{1}^{\prime}+m_{2}^{\prime}$. Let

$$
\begin{equation*}
m_{j}^{\prime}=\sum_{h \in H} d_{h}^{(j)} g^{2 h+1-i}, \quad j=1,2, \tag{2.5}
\end{equation*}
$$

where H is a set of nonnegative integers, $1 \leq d_{h}^{(j)} \leq g-1$ for all $h \in H$ and $d_{h}^{(j)}=0$ for all $h \notin H$.

Case 1: $i=1$. If $n=0$, then, by (2.2) and (2.5), we have $m \equiv a_{0} g+g-1\left(\bmod g^{2}\right)$ and $m_{1}^{\prime}+m_{2}^{\prime} \equiv d_{0}^{(1)}+d_{0}^{(2)}\left(\bmod g^{2}\right)$. Thus,

$$
0 \leq d_{0}^{(1)}+d_{0}^{(2)}<a_{0} g+g-1<g^{2}
$$

which is a contradiction. If $n>0$, then, by (2.3) and (2.5),

$$
m \equiv a_{n} g^{2 n+1}+(g-1)+(g-1) g^{2 n}\left(\bmod g^{2 n+2}\right)
$$

and

$$
m_{1}^{\prime}+m_{2}^{\prime} \equiv \sum_{h=0}^{n}\left(d_{h}^{(1)}+d_{h}^{(2)}\right) g^{2 h}\left(\bmod g^{2 n+2}\right)
$$

and again

$$
0 \leq \sum_{h=0}^{n}\left(d_{h}^{(1)}+d_{h}^{(2)}\right) g^{2 h}<2 g^{2 n+1}-g^{2 n}<a_{n} g^{2 n+1}+(g-1)+(g-1) g^{2 n}<g^{2 n+2}
$$

is a contradiction.
Case 2: $i=0$. If $n=0$, then, by (2.2) and (2.5), we have $m \equiv a_{0}(\bmod g)$ and $m_{1}^{\prime} \equiv m_{2}^{\prime} \equiv 0(\bmod g)$, which is a contradiction. If $n>0$, then, by (2.3) and (2.5),

$$
m \equiv a_{n} g^{2 n}+(g-1) g^{2 n-1}\left(\bmod g^{2 n+1}\right)
$$

and

$$
m_{1}^{\prime}+m_{2}^{\prime} \equiv \sum_{h=0}^{n-1}\left(d_{h}^{(1)}+d_{h}^{(2)}\right) g^{2 h+1}\left(\bmod g^{2 n+1}\right)
$$

But then

$$
0 \leq \sum_{h=0}^{n-1}\left(d_{h}^{(1)}+d_{h}^{(2)}\right) g^{2 h+1}<2 g^{2 n}-g^{2 n-1}<a_{n} g^{2 n}+(g-1) g^{2 n-1}<g^{2 n+1}
$$

which is a contradiction.
Proof of (iv). Since A_{g} is thin, it suffices to prove that there is a constant $c=c(b)>0$ such that $E_{b}(x)>c x^{1 / 2}$ for all x sufficiently large. Choose an integer v such that $v>n$ and $v>s$ for all $s \in S$. Let $x>g^{2(v+1)}$. Define $w \geq v$ by $g^{2(w+1)} \leq x<g^{2(w+2)}$. Let T be any subset of $\{n+1, n+2, \ldots, w\}$. By (2.2) and (2.3), we know that there are

$$
\sum_{i=0}^{w-n}\binom{w-n}{i}(g-1)^{i}=g^{w-n}
$$

choices of m. Moreover,

$$
m \leq(g-1) \sum_{i=0}^{2 w+1} g^{i}=g^{2 w+2}-1<x
$$

and so m is counted in $E_{b}(x)$. Therefore, $E_{b}(x) \geq g^{w-n}>c x^{1 / 2}$, where $c=g^{-(n+2)}$.
This completes the proof of Theorem 1.1.

Acknowledgement

We sincerely thank the referee for his/her valuable comments.

References

[1] Y. G. Chen, 'On the Erdős-Turán conjecture', C. R. Math. Acad. Sci. Paris 350 (2012), 933-935.
[2] F. J. Chen and Y. G. Chen, 'On minimal asymptotic bases', European J. Combin. 32 (2011), 1329-1335.
[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th edn (Oxford University Press, Oxford, 1979).
[4] E. Härtter, 'Ein Beitrag zur Theorie der Minimalbasen', J. reine angew. Math. 196 (1956), 170-204.
[5] X. D. Jia, 'Minimal bases and g-adic representations of integers', in: Number Theory (New York, 1991-1995) (Springer, New York, 1996), 201-209.
[6] J. B. Lee, 'A construction of minimal asymptotic bases', Period. Math. Hungar. 26 (1993), 211-218.
[7] M. B. Nathanson, 'Minimal bases and maximal nonbases in additive number theory', J. Number Theory 6 (1974), 324-333.
[8] M. B. Nathanson, 'Minimal bases and powers of 2', Acta Arith. 49 (1988), 525-532.
[9] M. B. Nathanson, 'Cassels bases', in: Additive Number Theory (Springer, New York, 2010), 259-285.
[10] A. Stöhr, 'Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe II', J. reine angew. Math. 194 (1955), 111-140.
[11] M. Tang, 'On the Erdős-Turán conjecture', J. Number Theory 150 (2015), 74-80.
[12] Q. H. Yang, 'A generalization of Chen's theorem on the Erdős-Turán conjecture', Int. J. Number Theory 9 (2013), 1683-1686.

DENGRONG LING, School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, PR China e-mail: lingdengrong@163.com

MIN TANG, School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, PR China
e-mail: tmzzz2000@163.com

[^0]: This work was supported by the National Natural Science Foundation of China, Grant No. 11471017.
 (C) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

