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Abstract

The class <j>+(X, Y) of semi-Fredholm transformations consists of those transformations T: X — Y
for which a(T) = dimker T < oo and for which T( X) is closed. It forms an open subset of ':B( X. Y)
closed under perturbation by compact transformations and is a particularly important class of
transformation since T is Fredholm if and only if TG(j>+(X, Y) and 7" e <J>+ (Y'. A"). The
realization that elements of <f>+ (X, Y) have very simple nonstandard characterizations lead the author
to consider the possibility of finding an analogous open class of transformation which is closed under
perturbation by weakly compact transformations. Consequently this paper investigates two related
classes which contain 4>+ (X, Y). The first such class coincides with the class of Tauberian transforma-
tions whilst the second consists of those transformations which have Tauberian extensions on the
nonstandard hulls. The Tauberian transformations are closed under perturbation by weakly compact
transformations but in general are not open. The "super" Tauberian transformations are closed under
perturbation by super weakly compact transformations and in fact form an open subset of "fi( X. Y).

1980 Mathematics subject classification (Amer. Math. Soc): 47 A 53.

1. Preliminaries

In the following we assume for definiteness that all spaces are real infinite
dimensional Banach spaces and that they are embedded in a set theoretical
structure 911 of which *91t is an S,-saturated enlargement. If X is such a Banach
space the nonstandard hull X of X with respect to * •311 is constructed by factoring
the infinitesimal elements of *X from the finite elements of *X. The original space
X is embedded in X and X is a Banach space under the norm || p\\ = standard
part * 11 p 11. Here p G finite * X and p denotes the equivalence class determined by
p. We refer the reader to Luxemburg [8] for a proof of the latter result and for a
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complete discussion of the nonstandard hull construction. If we have two spaces
X and Y we let 9>(X, Y) denote the space of bounded linear transformations from
X into Y equipped with the supremum norm. Our work depends on the fact that
an element S G finite *%(X, Y) defines an element S 6 S ( l , Y) by the equation
S(p) = (S(p)j. Finally we let X' denote the dual space of X; Xs the closed ball
of radius 8; A the closure of A; %(X,Y) the space of compact transformations
from Xinto Y and SUS%(X, Y) the space of weakly compact transformations from
X into Y.

2. Semi-Fredholm transformations

Our first result provides a basic characterization of elements of </>+ (A\ Y) and
motivates much of what follows.

THEOREM 1. Let X and Y be Banach spaces and suppose T G %(X, Y). Then the
following conditions are equivalent:

(i)TG<t>+(X,Y);
(ii) f maps X\X into Y\Y, that is, T maps finite non near-standard points of * X

into non near-standard points of*Y;
(iii) T does not possess a singular sequence, that is, a bounded sequence {xn} of X

with no convergent subsequence such that Txn -> 0 as n -> oo;
(iv) ker t C X;
(v) a(f) = dim(ker f) < oo.

PROOF. We establish the chain of implications (i) => (ii) => (iii) => (iv) => (v) => (i).
(i) implies (ii). Suppose Tp — y where p G fin *X and y G Y. Then y ELT(X)

and so, by assumption, there is a point x G X such that Tx = y. We then have
T{p) = y = f(x) so that;? — x G ker f. But if ker T = span {A:,, X2 xn) and
T has closed range then ker T = span{jc,, x2,... ,xn) by an earlier result of ours;
see [11, Theorem 3]. Consequently/? = H a,x, + • • • +anxn where ak G R for
k = 1,... ,n which implies/? is near-standard.

(ii) implies (iii). Suppose T possesses a singular sequence {xn}. Then for any
w G *N \ N 7 ^ = 0 whilst x^ is finite and non near-standard.

(iii) implies (iv). Suppose ker f £ X. Then there exists a non near-standard
point p of norm 1 such that Tp ~ 0. As X is complete the non near-standard
assumption on p implies there is a (standard) e > 0 such that || p — x \\ > e
whenever x G X. This allows us to construct a singular sequence {xn} for T, the
sequence being defined recursively in the following way. Choose x, arbitrarily
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with norm 1 and then, having chosen xu... ,xk_u choose xk to satisfy the
sentence

"3X(||JC|| = 1 & I U - x , | | >e , / = \,...,k- 1 & 117*11 < |

Such a point xk exists since p satisfies the sentence in *X.
(iv) implies (v). Suppose a(f)— oo. Then since ker f C X it follows that

a(T) = oo. Consequently there is a finite non-standard point p G ker*T, con-
tradicting the initial assumption that ker T C X.

(v) implies (i). Since ker T C ker t it follows that a{T) < oo. It again follows by
[11, Theorem 3] that T(X) is closed provided we can show f(X) is. Choose a
basis {*,,... ,Xj) for ker Tand extend to obtain a basis {i , , . . . ,x;,pu... ,pk} for
ker f . Let *X = sp{*xu.. .,*Xj} ® sp{pu... ,pk} ® Q = K ® P ® Q, choosing
Q so that the projections are finite. Then X = K © P © Q, f(X)= f(Q) and f
restricted to <2 is 1 : 1. Suppose f(Q) is not closed. Then for all (standard) 8 > 0
there is a point g G Q with H4II = 1 such that H7X<jr)|| < 8. Thus the set
{8 G *R|<5 > 0 & 3<? G £>(ll<7ll = 1 & 117̂ 11 < 8)} is an internal subset of *R
containing all the positive standard real numbers. Consequently it contains a
positive infinitesimal and so Q contains a nonzero element in ker f. This is a
contradiction.

COROLLARY. Let T G <f>+ (X, Y) and K G %(X, Y). Then T + K G <}>+ (X, Y).

PROOF. If K is compact then K maps X into Y by a well-known result of
Robinson [10, page 119]. Thus the corollary follows from Theorem 1 (ii).

We gave a nonstandard proof that <j>+(X, Y) is open in [11, Corollary 3]. In
fact the methods given there can be modified to show that T has closed range if
and only if f has. Indeed, that f( X) is closed if T( X) is, is shown in Theorem 3
(i) (a) of [11]. The converse implication for standard T follows essentially as in
Theorem 3 (ii) (b). As the alteration is quite straightforward and as the result is
not used in this paper we do not make it explicit here. We also note that
Chadwick and Wickstead [2] have considered semi-Fredholm operators in an
ultrapower setting and that they have obtained a number of interesting related
results.

3. Tauberian transformations

From the nonstandard viewpoint it is natural to think in terms of relaxing one
of the equivalent conditions (ii), (iv), (v) in Theorem 1. Our initial thought was to
relax condition (ii) by requiring that T map finite non weak near-standard points
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of *X into non weak near-standard (or even non near-standard) points of *Y.
Here weak near-standard means near-standard in the weak topology. In fact either
of these conditions is equivalent to the requirement that T"x" G Y implies
x" G X. Such transformations, called Tauberian transformations, have been studied
by Kalton and Wilansky [6]. Our next result proves the equivalence of these
conditions; the equivalence of the standard conditions listed here is established in
[6]. We find it convenient to let ^{X, Y) denote the set of Tauberian transforma-
tions from X into Y.

THEOREM 2. Let X and Y be Banach spaces and suppose T G <S( X, Y). Then the
following conditions are equivalent:

(i) rEJ(XJ);
(ii) T maps finite non weak near-standard points of *X into non weak near-stan-

dard points of *Y;
(iii) a) T( Xx) is closed in Y,

b) ker T" C X;
(iv) T maps finite non weak near-standard points of *X into non near-standard

points of*Y:
(v) &)T(X\) is closed in Y,

b) / / {xn} is a bounded sequence of points in X such that {Txn} is convergent
to 0 in Y then {xn} has a weakly convergent subsequence;

(vi) the only bounded sets which map into compact sets are those whose weak
closures are weakly compact;

(vii) the only bounded sets which map into weakly compact sets are those whose
weak closures are weakly compact.

PROOF. The equivalence of (i), (vi) and (vii) has been established by Kalton and
Wilansky [6, Theorem 3.2]. Therefore it is enough to prove the chain of implica-
tions (i) =» (ii) => (iii) =» (iv) => (v) => (vi).

(i) implies (ii). Assume (i) and suppose p is a finite non weak near-standard
point of *X. Define x" G X" by x"(f) - standard part f(p) for / G X'. Then
x" & X since p is not weak near-standard. Consequently T"x" (£ Y which means
Tp is not weak near-standard since

g(Tp) = (T'g)p = x"(T'g) = (T"x")g for all g G Y'.

(ii) implies (iii). Assume (ii) and suppose y belongs to the closure of T(XX).
Then there exists a point/? G *XX such that Tp = y. Thus Tp is near-standard and
so p is weak near-standard. If p has weak standard part x then Tx = y and so
T(XX) is closed. Next suppose T"x" = 0, and let p be chosen in finite *X so that
*"( / ) —f(P) whenever/G X' (see Luxemberg [9]). It follows that Tp is weak
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near-standard to 0, and consequently p is weak near-standard. If p has weak
standard part x then x" = x and so ker T" C X.

(iii) implies (iv). Assume (iii) and suppose p belongs to finite *X and that Tp
has standard part y. If || />|| =£ S then y belongs to the closure of T(XS) and so
y = Tx for some x with ||x|| =£6. Let q = p — x so that Tq has standard part 0.
Define x" G A"' by x"(f) = standard part/(<7) for/ e A". Then 7"V = 0 and
so x" G X. This means g is weak near-standard and thus that/? is too.

(iv) implies (v). The closure of T( Xx) follows by a similar argument to that used
in the proof of (ii) implies (iii). Now suppose (v)b) does not hold. Then by a
well-known result of James [4, Theorem 3] we can assume we have sequences {xn}
and {/„} of norm one elements in X and X' respectively together with a positive
real r such that

f«(xk)>r for n<k, fn(xk) = 0 for n > k

with the property that {Txn} is a convergent to 0. Then for to G *N \N we have
Txu near-standard whilst, as we now show, xu fails to be weak near-standard. To
see this use the fact that the sequence {/„} has a weak* limit point /. For this
functional we have/(x^) = 0 for k = 1,2,3,... so that f(xa) = 0. Thus if xu has
weak standard part x we must have f(x) = 0. On the other hand fn(xu) > r for
n — 1,2,3,...,« so that fn(x) > r for n = 1,2, 3 , . . . , whence f(x) ^ r, a con-
tradiction.

(v) implies (vi). Suppose B is a subset of the closed ball Xs with the property
that T(B) is relatively compact. If {xn} is a sequence of points from B the
sequence {Txn} has a convergent subsequence. Denote this subsequence by {Tzn}
and suppose Tzn -> y. Then y belongs to the closure of T( Xs) and so, by
condition (a), there is a point x G Xs such that Tx = y. The sequence {T(zn — x)}
is therefore convergent to 0 and so, by (b), {zn — x) has a weakly convergent
subsequence. Thus {xn — x) and {xn} have weakly convergent subsequences and
it follows that B is relatively weakly compact by the Eberlein-Smulian theorem.

We now list a number of properties of Tauberian transformations, the first
three of which have been noted by Kalton and Wilansky.

(1) ^i(X, Y) is closed under perturbation by weakly compact transformations.
Therefore operators of the form W + XI are Tauberian whenever W G
l̂i 5l (X, Y) and A is a real number.

(2) ^{X, Y) equals ®>(X, Y) if X is reflexive. If X is non-reflexive then no
weakly compact transformation can be Tauberian and so if bjj(X, Y) =
%\K( X, Y) then $(X,Y) is empty.

(3) If T G$(X,Y) then ker T is reflexive. However T needn't be Tauberian
even if T is 1:1 and T( Xt) is closed for consider the compact operator T: I' -> /'
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defined by T: {xk} -* {xk/k}. For this operator the kernel is trivial whilst T(XX)
is closed. However, for co G *N — N, Su fails to be weak near-standard even
though T8^ — 0. Here Sn denotes the n th natural basis vector.

(4) If T G <&(X, Y), S G %(Y, Z) and ST G $(X, Z) then r e 5 " ( I , 7). This
follows since 5 is continuous from Y with the weak topology to Z with the weak
topology. Thus if T G %{X, Y) and there is an element S G %(Y, X) such that
ST- 1+ W where W G %%(X, X) then T is Tauberian. It is a consequence of
(5) that the set of T satisfying this condition is, in general, properly contained in
<5{X,X).

(5) ^(X, Y) need not be open in %(X, Y). For n = 1,2,3,... suppose we have
an irreflexive Banach space Xn and operators Tn, Sn on Xn, where the norms \\Tn \\
and IIS,, II are uniformly bounded, with the properties that Tn G <f>+(Xn, Yn) and
a(Tn + Sn/n) = oo. Let X be that subspace of the product space irXn consisting
of those elements x = {xk} for which || x ||2 = 211 xk \\

2 < oo and define operators
T and S on X by T: {xk} -> {Tkxk} and S: {xk} -» {Skxk}. It follows that T is
Tauberian but that, for n = 1,2,3,..., T+ S/n is not Tauberian. The second
statement follows since the kernel of Tn + Sn/n is not reflexive so that neither is
that of T + S/n. This gives the result we want provided we can construct the Tn

and Sn. One simple way of doing this is to let Y = Z = c0 and then set
Xn = Y © Z. For each n let Sn(x) — -x and define Tn by linear extension setting
Tny — y/n when^ G Y and Tnz — z when z G Z.

We comment that since GliS%(X, X) is a closed ideal in %(X, X) the quotient
space %(X, X)/6IS%(X, X) is a Banach algebra with identity. Accordingly, see
Caradus, Pfaffenberger and Yood [1, page 22], the set of left regular elements in
this algebra is open, and so the set of T G%(X, X) such that there is an
S C %{X, X) and W G %%{X, X) with ST = I + W is open. Hence the above
example also shows that this class of operator is in general properly contained in
3"(X, A").

(6) Let q)<!)(X,Y) denote the set of r e * ( I J ) for which Y" equals the
closure of Y + T"(X"). The classes $(X,Y) and ^^(X,Y) have a dual relation-
ship with one another.

PROPOSITION. Let X and Y be Banach spaces and suppose r £ ® ( I , Y). Then:
(i) IfTG ty<5(X, Y) then T G <3"( Y', X');
(ii) IfV G <5(Y\ X') then T G ^(X, Y);
(iii) / / T G ty^Y', X') then T G <5(X, Y).

PROOF, (i) Suppose T'"<j> G X' where <f> G Y'". Then <f> restricted to Y defines
an element g G Y' and we show <f> is in fact g. This just means 4>{y") = y"(g) for
all y" G Y" and so, given the initial assumption, its enough to check the equality
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for y" G T"(X"). First note that since T"^ G A", T'"<j> = T'g because, for
x (EX,

) = 4>(T"x) = 4>(Tx) = g(Tx) =

Thus for x" G X" we have

<j>(T"x") = (T'"4>)(x") = x"(T'"<t>) = x"(T'g) =

(ii) Suppose T & ^(X, Y) where T G 5(Y', X'). Then there exists a non-zero
4> G 7" such that <t>(Y + T"(X")) = 0. In particular (r"<£)( A"") = 0 so T'"4> = 0,
so that <f> G y . But <#>(7) = 0so</> = 0 contradicting the initial assumption on <f>.

(iii) If T G ^(Y', X') then T" G <5{X", Y"). This implies T G <3"(A; Y) as is
easily seen by checking condition (iii) of Theorem 2.

We comment that we have been unable to determine whether T G S"( X, Y)
implies T G ^ ( r , A"'), or equivalently whether TG$(X,Y) implies 7" G
S'CA'", 7"). It is an open question in Kalton and Wilansky to decide the truth of
the latter implication.

4. Super Tauberian transformations

Lebow and Schechter [7] show that the perturbation class of an open semigroup
in a Banach algebra forms a closed two sided ideal. It is for this sort of reason
that we are particularly interested in open subsets of <$>( X, Y). We consider such
a subset contained in ?T(A", Y). We define this second class ip(A", Y) by the
property that T G \p( X, Y) if for all real numbers r satisfying 0 < r < 1 there exists
a positive integer n for which there do not exist finite sequences of norm one elements
{xx, x2,... ,xn} in X and {/,, f2,.. .,/„} in X' for which fj(x,) > r for 1 =£7 < / «£ rc,
/;.(*,.) = 0 for 1 < / <j < n and \\Txk II < \/k for k = 1,2,... ,n. We shall need
use the fact that the phrase "for all real numbers r" may be replaced by the
phrase " for some real number r " and for the purpose of showing this we find it
convenient to let W\p(X, Y) denote the class of transformations satisfying this
formally weaker condition. We also remind the reader that the space X is
superreflexive if any space finitely representable in X is reflexive. However for
clarity we note the characterizations of superreflexivity we use. A Banach space X
is superreflexive if for all r satisfying 0 < r < 1 (equivalently, for some r satisfying
0 < r < 1) there is a positive integer n for which there do not exist finite
sequences of norm one elements {xx, x2,...,xn) in X and {/,, f2,...,/,} in A"
satisfying jf-(-*,-) > r for 1 =£y «£/=£« and /"(*,) = 0 for 1 < / <j < n. These
equivalences were established by James [5], but see also Henson and Moore [3,
Theorem 8.5], in which they show X is superreflexive if and only if X is reflexive.
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THEOREM 3. Let X and Y be Banach spaces and let T G ^(X, Y). Then the
following conditions are equivalent:

(iii)f G ?T(A\ Y);
(iv)TG W^{X,Y);
(v) ker T is superreflexive;
(vi) ker T is reflexive.

PROOF. We show (i) => (ii) => (iii) ^> (iv) => (v) => (vi) =» (i).
(i) implies (ii). Suppose there is a real number r with 0 < r < 1 such that for all

positive integers n there exist finite sequences of norm one elements
{p,, p2,... ,pn} in X, {<J>,, <p2,...,</>„} in ^ ' satisfying the conditions that <fy( pt)> r
for 1 <7 =s j < n, <t>j{Pi) -0 for 1 ^ / <j < «, and ||r(/>fc)|| < I/A: for A: =
1,2,...,n. Now it follows as in Henson and Moore [3, Lemma 8.2], that for

j - l ,2 , . . . ,n there is an element/; G * X' with ||jf.|| < 1 such thatjj•(/'/) - <#>/A-)
for / = 1,2,...,«. We thus have fJ(pi)>r for 1 < _ / < / < « , fjip^-O for
1 < / ' < _ / < « , and Il7]p£ II < 1/fc for A: = 1,2,...,«. It therefore follows by trans-
fer that T <£ $(X, Y).

(ii) implies (iii). We check conditions (v) of Theorem 2. First we observe that
f(X{) is closed in Y for any T G <S(X, 7) . Suppose 7pn ^ ^ where || /?J| *£ 1 for
« = 1,2, Since *'D1L is assumed to be S ,-saturated we can extend the sequence
of points {pn: n G N} to an internal sequence of points in *X} {pn: n e *N}. If
we assume ||7/>n — q\\ < 1/n for n G N it follows that there must be an u G
* N \ N such that ||7>u - ^|| < 1/w. This implies q ( = f^w) £ /"( I , ) . Now
suppose (v) b) doesn't hold for f. Then by the previously used result of James we
can assume we have sequences {pn} and {(>„} of norm one elements in X and X'
respectively and a real number r, 0 < r < 1 such that for k = 1,2,3,.. . we have
<>n(Pk) > r (n^ k), cj>n(pk) = 0 (n > k) and l|f(^^)| | < \/k. This implies f ^

(iii) implies (iv). Suppose T ^ H/^( Â , Y). Then for any (standard) real number
r satisfying 0 < r < 1 and u G *N — N there exist * finite sequences
{/>,, p2,... ,pu) and {/,, f2,. •. X } of norm one elements in *X and *A"' respec-
tively such that fj(Pj) > r for 1 <_/' < / < w, /)(/?,) = 0 for 1 =£ / <j < <o and
such that IITp^|| < \/k for A: = 1,2,.. .,<o. But then the sequences {pn: n G N}

and {/n: « G N} satisfy /j( A) ^ r f° r 7 ^ ' a n d Ĵ ( A) = 0 f° r ' "̂ V s o t n a t a s

||7)5J| < l/A:f'^faT(X, Y).
(iv) implies (v). Suppose ker T" is not superreflexive. Then for all real numbers r

such that 0 < r < 1 and positive integers n there exist finite sequences of norm
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one elements {/?,, p2,... ,pn} in ker f and {</>,, <J>2,... ,<#>„} in (ker 71)' satisfying
<t>j(pj) > r for 1 <y < / < « and fy(p,) = 0 for 1 < i <j < «. Extend the func-
tionals </>,, <£2). • •></>„ to all of A!" without increase in norm and, as before, define
/, , f2,•••,/„ G *A^ such that j^(/?,) = 4>j(Pi) f° r ' = 1,2,...,«. Consequently for
such r and n there are finite sequences of norm one elements {/>,, />2,... ,pn] in
*A"and {/„ / 2 , . . . ,/„} in *A" satisfying#/>,.) > r for 1 <y < i < « and/;(/>,) = 0
for 1 < i <j < n with \\Tpk\\ < I/A: for A: = 1,2,...,«. By transfer these ele-
ments can be chosen in X and X' and consequently T £ W^( A", 7 ) .

Since (v) trivially implies (vi) we are finished once we have shown (vi) implies
(i). Suppose T £ 4>(X, 7 ) . Then for some (standard) r satisfying 0 < r < 1 there
exist, for u G *N — N, finite sequence of norm one elements {/?,, p2,... ,p2u]

 m

*A-and {/„ f2,... , / 2 J in *X' for which#/>,.) > r for 1 <y < / < 2u,#/>,.) = 0
for 1 < / < y < 2 w and | |7>J| < I/A; for A; = l ,2 , . . . ,2w. For A: = 1,2,3,... let
Â: = fu+k a n d 9A: = Pu+k- Then the sequence of norm one elements quq2,q^,...

belongs to kerf1 and we have <fy(4;) > r for j < / and <fy(#,-) = 0 for r <j.
Consequently ker T is not reflexive.

In [11] we said an element T G %(X, Y) was super weakly compact if for all
positive reals r there exists a positive integer n such that there do not exist finite
sequences {x,, x2,... ,xn} and {/,, f2,. ..,/„} of norm one elements in X and Y'
respectively such that fj(Txt) > r for 1 < y < / < n and fj(Txj) = 0 for 1 < /' <j
< «. We were interested in such transformations since T is super weakly compact
if and only if f G 6W9C( Z, 7) . Therefore given the equivalence of (i) and (iii) and
the truth of the analogous results for ^{X, Y) we can note:

(1) \p( X, 7 ) is closed under perturbations by super weakly compact transforma-
tions from X into 7.

(2) If T G <$>(X, 7 ) , S G <$>(Y, Z) and ST G 4>(X, Z) then T<E*P(X, 7 ) .
(3) \p(X,Y) equals %(X, 7 ) if X is superreflexive. If A' is non-superreflexive

then \f>(X,Y) doesn't contain any super weakly compact transformations, and so
is empty if 7 is superreflexive.

Our final result that ip(X, 7 ) is open depends upon the observation that the
proof of (ii) implies (iv) given in Theorem 3 does not depend on T being standard.
That is to say if S G finite *<S>(A\ 7 ) and S G ^(X, 7 ) then S G *W^{X, 7 ) =
*^(X, 7 ) . A direct proof proceeds as follows. Suppose S £*i//(A', 7 ) so that
S &*WTI/{X, 7 ) . Then for each (standard) r satisfying 0 < r < 1 and (standard)
positive integer n there exist finite sequences of norm one elements {/>,, p^,---,p^\
in *X and {/„ / 2 , . . . ,/„} in *X' for which f^p,) > r for 1 <y ^ i <n,fj(pt) = 0
for 1 < y ' < / < n , and ||5pfc|| < I/A: for A: = 1,2,...,«. But then /)(;?,) ^ / - for
1 <_/ m^njjipi) = 0 for 1 < i<j<n and ||5p^|| « I/A: for A: = 1,2,...,«.
This implies S G 4>(X, 7) .
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THEOREM 4. Let X and Y be Banach spaces. Then the class \p(X, Y) forms an
open subset of9d(X,Y).

PROOF. Suppose T G ip(X, Y) and consider a transformation S G *%(X, Y)
with infinitesimal norm. Then (T + S) = T G ^p{X, Y) by Theorem 3, and so
r + S £ * p , Y) by the above remark. Thus the set {e > 0 | VS G *%(X, Y),
|| SII < e implies T + S G *\p(X, Y)} is an internal set containing the positive
infinitesimals. Hence it contains a standard positive e, and we consequently have
our result.

This result shows that at least from this point of view \p(X, Y) has an analogous
role to that of 4>+(X, Y). Given this it is natural to define a class \p(X, Y) of
generalized Fredholm transformations by the property that

TE\P(X, Y) if and only if TE\},(X,Y) and T'G^(Y',X').

Such a class is then open and is closed under perturbation by super weakly
compact transformations. There are of course other ways of generalizing Fred-
holm transformations. Yang ([12], [13]) has done this in two ways; namely he has
considered transformations with closed range and reflexive kernel and cokernel,
and transformations invertible modulo the weakly compact transformations.
These transformations in general do not share the stability properties of our

, Y) but the three classes are closely related.
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