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A SMOOTHING METHOD THAT
LOOKS LIKE THE

HODRICK–PRESCOTT FILTER*

HIROSHIYAMADA
Hiroshima University

In recent decades, in the research community of macroeconometric time series
analysis, we have observed growing interest in the smoothing method known as the
Hodrick–Prescott (HP) filter. This article examines the properties of an alternative
smoothing method that looks like the HP filter, but is much less well known. We
show that this is actually more like the exponential smoothing filter than the HP
filter although it is obtainable through a slight modification of the HP filter. In
addition, we also show that it is also like the low-frequency projection of Müller and
Watson (2018, Econometrica 86, 775–804). We point out that these results derive
from the fact that all three similar smoothing methods can be regarded as a type of
graph spectral filter whose graph Fourier transform is discrete cosine transform. We
then theoretically reveal the relationship between the similar smoothing methods
and provide a way of specifying the smoothing parameter that is necessary for its
application. An empirical examination illustrates the results.

1. INTRODUCTION

In recent decades, in the research community of macroeconometric time series
analysis, we have observed growing interest in the Hodrick–Prescott (HP) (1997)
filter. This is now the most prominent smoothing method for economic time series
and recent studies of the filter include Phillips and Jin (2015), de Jong and Sakarya
(2016), Cornea-Madeira (2017), Hamilton (2018), Phillips and Shi (2019), and
Sakarya and de Jong (2020). The smoothing method is defined by

HP : min
x1,...,xT ∈R

T∑
t=1

(yt −xt )2 +λ
T∑
t=3

(�2xt )
2,
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where y1, . . . , yT denote T observations of an economic time series, such as real
gross domestic product (GDP), λ is a positive smoothing parameter that controls
fidelity and smoothness, and� denotes a difference operator such that�xt = xt −
xt−1 and accordingly �2xt = xt − 2xt−1 + xt−2.

In this article, we examine the properties of an alternative smoothingmethod that
looks like the HP filter. It was developed by O’Sullivan (1991), Buckley (1994),
and Garcia (2010) and is defined by

mHP : min
x1,...,xT ∈R

T∑
t=1

(yt −xt )2 +λ
T∑
t=3

(�2xt )
2 +λ{(�x2)2 + (�xT )2

}
,

where “mHP” signifies the “modified Hodrick–Prescott.” The properties of this
somewhat unfamiliar filter are less known in the research community and this
motivates our examination.

Because the mHP filter is obtainable through a slight modification of the HP
filter, it is reasonable to expect that these two filters share common properties.
This is correct to a certain extent, as shown later. However, in the article, we also
show that it is more like the exponential smoothing (ES) filter, which is presented
in King and Rebelo (1993), than the HP filter. Here, the ES filter is defined by

ES : min
x1,...,xT ∈R

T∑
t=1

(yt −xt )2 +ψ
T∑
t=2

(�xt )
2,

where ψ is a positive smoothing parameter.1 In addition, and very interestingly,
it is also like the low-frequency projection (LFP) of Müller and Watson (2018),
which is an orthogonal projection of a time series onto the space spanned by cosine
function based low-frequency periodic column vectors and originates in Phillips
(2005a).2

Why and how is the mHP filter like the ES and LFP filters? In this article, we
address these questions. We show that all of these similar smoothing methods,
that is, the mHP, ES, and LFP filters, can be regarded as a type of graph spectral
filter (GSF) whose graph Fourier transform is discrete cosine transform (DCT) and
therefore exhibit similarities, where GSF is a promising smoothingmethod and has
been developed in the field of graph signal processing.3 Let U ′ denote the T × T
DCT matrix, which is an orthogonal matrix and explicitly expressed by (6). Then,
the minimizers of the mHP and ES filters and the LFP projection are commonly
represented as

x̂i = UH iU
′y, i = mHP,ES,LFP, (1)

1Both the HP and ES filters are a type of Whittaker–Henderson method of graduation. This is a classic smoothing
procedure developed by Bohlmann (1899), Whittaker (1923), Henderson (1924, 1925), Aitken (1927), and others
and is defined by minx1,...,xT ∈R

∑T
t=1(yt − xt )2 + λα

∑T
t=α+1(�

αxt )
2. For a review, see Weinert (2007), Phillips

(2010), and Nocon and Scott (2012).
2Furthermore, the approach explored in Phillips (2005a) relies on Phillips (1998). See also Phillips (2005b).
3For details, see Shuman, Narang, Frossard, Ortega, and Vandergheynst (2013).
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1 2 3 ••• T − 1 T

Figure 1. A path graph whose graph Laplacian is L in (2).

1 2 3 ••• T − 1 T

Figure 2. A cycle graph whose graph Laplacian is Lcycle in (A.2).

where U ′y denotes the DCT of y = [y1, . . . ,yT ]′ [see (5)] and Hi is a T × T
diagonal matrix, as defined later. Subsequently, using (1), we examine theoretically
how they are similar and differ, and provide a way of specifying the smoothing
parameter that is necessary for its application. We then empirically illustrate the
results.

In the article, we also remark that DCT is more appropriate for econometric
time series analysis than the discrete Fourier transform (DFT). The reason is
that the DCT matrix is obtainable from the graph Laplacian of the path graph
(Figure 1), whereas DFT is obtainable from the cycle graph (Figure 2). As
illustrated in Figures 1 and 2, the path graph is more appropriate as an underlying
graph of time series than the cycle graph.

Outline of the paper. The article is organized as follows. Section 2 reveals some
basic properties of the mHP, HP, and ES filters. This section also theoretically
highlights how the mHP filter is like (unlike) the ES (HP) filter. Section 3
provides a review of GSF and DCT, and presents a key matrix factorization in
the form of (7). Section 4 demonstrates that the mHP, ES, and LFP filters are
all a type of GSF based on DCT and we present their properties as derived
from this fact. In addition, we theoretically reveal the relationship between
these similar filters and provide a way of specifying the mHP filter’s smoothing
parameter and present an empirical illustration. Lastly, we remark that DCT is
more appropriate for time series econometrics than DFT. Section 5 concludes the
paper.

Notations. Let x = [x1, . . . ,xT ]′, ι = [1, . . . ,1]′ ∈ R
T , τ = [1, . . . ,T ]′, Π = [ι, τ ],

Iq denote the q × q identity matrix, Qι = I T − ι(ι′ι)−1ι′, and, given η1, . . . , ηT ,
η̄= 1

T

∑T
t=1 ηt .D1 is the (T − 1)× T first-order difference matrix such thatD1x =

[�x2, . . . ,�xT ]′. Similarly, D2 is the (T − 2) × T second-order difference matrix
such thatD2x = [�2x3, . . . ,�

2xT ]′.L is the following T × T symmetric tridiagonal
matrix and is described by D2 as
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L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
f1

−D2

f T

⎤⎥⎥⎦, (2)

where both f1 and fT are T-dimensional row vectors and let F = [f 1
′,f T

′] ∈R
T×2.

For a vector η = [η1, . . . ,ηn]′, ‖η‖2 = η′η = η21 +·· ·+η2n. Finally, for a matrix V,
S(V ) and S⊥(V ) denote the column space of V and the orthogonal complement
of S(V ), respectively.

Anote on L in (2). First, L is a familiar matrix to econometricians and statisticians
because

L = D1
′D1 (3)

appears in the Durbin–Watson statistic (Durbin and Watson, 1950, 1951). Second,
and more importantly with respect to this article, L is the graph Laplacian of a
graph whose vertex set and edge set are, respectively, given by

S1 = {1, . . . ,T } and S2 = {{1,2},{2,3}, . . . ,{T −1,T }}, (4)

which is referred to as a path graph of order T (Figure 1).4 In addition, D1
′ is an

incidence matrix of the graph. Third, f1 and fT in L correspond to the Neumann
boundary conditions (O’Sullivan, 1991; Strang and MacNamara, 2014).

2. BASIC PROPERTIES OF THE MHP, HP, AND ES FILTERS

In matrix notation, the mHP, HP, and ES filters are represented as follows:

mHP :min
x∈RT

fmHP(x)= ‖y −x‖2 +λ‖Lx‖2,

HP :min
x∈RT

fHP(x)= ‖y −x‖2 +λ‖D2x‖2,

ES :min
x∈RT

fES(x)= ‖y −x‖2 +ψ‖D1x‖2.

Now, we describe some basic properties of the mHP filter:

PROPOSITION 2.1. Let x̂mHP = (I T + λL′L)−1y [= (I T + λL2)−1y]. (i) (a)
x̂mHP is a unique global minimizer of fmHP(x) and (b) it satisfies ‖Lx̂mHP‖2 <
‖Ly‖2 if y �= x̂mHP. (ii) (a) Each row of the hat matrix of the mHP filter,
(I T +λL′L)−1, sums to unity and (b) the hat matrix is bisymmetric (i.e., symmetric
centrosymmetric). (iii) (a) 1

T
ι′x̂mHP = ȳ and ι′(y − x̂mHP)= 0, (b) limλ→∞ x̂mHP =

ȳι, (c) limλ→0 x̂mHP = y, and (d) if y ∈ S(ι), then x̂mHP = y.

4See, for example, Nakatsukasa, Saito, and Woei (2013).
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Proof. See the Appendix. �
For comparison, we describe the corresponding basic properties of the HP and

ES filters:

PROPOSITION 2.2. Let x̂HP = (I T + λD2
′D2)

−1y. (i) (a) x̂HP is a unique
global minimizer of fHP(x) and (b) it satisfies ‖D2x̂HP‖2 < ‖D2y‖2 if y �= x̂HP. (ii)
(a) Each row of the hat matrix of the HP filter, (I T +λD2

′D2)
−1, sums to unity

and (b) the hat matrix is bisymmetric. (iii) (a) 1
T
ι′x̂HP = ȳ and ι′(y − x̂HP) = 0,

(b) limλ→∞ x̂HP = �(�′�)−1�′y, (c) limλ→0 x̂HP = y, and (d) if y ∈ S(�), then
x̂HP = y.

Proof. For (i)(a), see Danthine and Girardin (1989); for (ii)(b), see Cornea-
Madeira (2017) and Yamada (2019); for (iii)(b), see Yamada (2015); and for
(iii)(c), see Kim, Koh, Boyd, and Gorinevsky (2009). Derive other results as for
Proposition 2.1. �

Remark 2.3. We would like to refer to some papers related to this proposition.
(i)(b) is stated in Weinert (2007) and (iii)(d) is mentioned by Kim et al. (2009).
A related argument to (ii)(a) is given in Yamada (2018a).

PROPOSITION 2.4. Let x̂ES = (I T + ψD1
′D1)

−1y. (i) (a) x̂ES is a unique
global minimizer of fES(x) and (b) it satisfies ‖D1x̂ES‖2 < ‖D1y‖2 if y �= x̂ES.
(ii) (a) Each row of the hat matrix of the ES filter, (I T +ψD1

′D1)
−1, sums to unity

and (b) the hat matrix is bisymmetric. (iii) (a) 1
T
ι′x̂ES = ȳ and ι′(y − x̂ES)= 0, (b)

limψ→∞ x̂ES = ȳι, (c) limψ→0 x̂ES = y, and (d) if y ∈ S(ι), then x̂ES = y.

Proof. This proposition can be proved as Propositions 2.1 and 2.2. �
COROLLARY 2.5. Let τ̂ = �(�′�)−1�′y. x̂mHP, x̂HP, and x̂ES can alter-

natively be represented as (i) x̂mHP = ȳι + (I T + λL′L)−1(y − ȳι), (ii) x̂HP =
τ̂ + (I T + λD2

′D2)
−1(y − τ̂ ), and (iii) x̂ES = ȳι + (I T + ψD1

′D1)
−1(y − ȳι),

respectively.

Proof. (i) From Proposition 2.1 (iii)(d), it follows that (I T + λL′L)−1(ȳι) =
(ȳι). Then, by using the equation, we obtain: ȳι+ (I T +λL′L)−1(y − ȳι)= ȳι+
x̂mHP − ȳι = x̂mHP. (ii) and (iii) can be proved as in (i). �

Remark 2.6. (a) All of these are low-pass filters and thus (I T +λL′L)−1(y −
ȳι), (I T +λD2

′D2)
−1(y − τ̂ ), and (I T +ψD1

′D1)
−1(y − ȳι), respectively, repre-

sent a low-frequency component of (y − ȳι), (y − τ̂ ), and (y − ȳι). (b) The results
highlight that the mHP filter is more like the ES filter than the HP filter. (c)(ii) is
mentioned in Kim et al. (2009) and is empirically illustrated in Yamada (2018b).

Concerning the endpoints, we have the following result:

COROLLARY 2.7. x̂mHP and x̂HP satisfy the following inequality: ‖f1x̂HP‖2 +
‖fT x̂HP‖2 > ‖f1x̂mHP‖2 +‖fT x̂mHP‖2 if x̂mHP �= x̂HP.

Proof. From (2), it follows that ‖Lx‖2 = ‖ f1x‖2 + ‖D2x‖2 + ‖ fTx‖2. Given
Propositions 2.1 (i)(a) and 2.2 (i)(a), if x̂mHP �= x̂HP, then
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‖y − x̂mHP‖2 +λ(‖f 1x̂HP‖2 +‖D2x̂mHP‖2 +‖f T x̂HP‖2
)

> ‖y − x̂HP‖2 +λ(‖f 1x̂HP‖2 +‖D2x̂HP‖2 +‖f T x̂HP‖2
)

> ‖y − x̂mHP‖2 +λ(‖f 1x̂mHP‖2 +‖D2x̂mHP‖2 +‖f T x̂mHP‖2
)
.

Given λ > 0, by subtracting ‖y − x̂mHP‖2 +λ‖D2x̂mHP‖2 from these inequalities,
we obtain the result. �

Remark 2.8. The above result is derived from the fact that (�x2)2 + (�xT )2,
which equals ‖ f1x‖2 + ‖ fTx‖2, is included in the objective function of the mHP
filter. Note that it holds for any finite sample size, T.

Nevertheless, there remains a close relationship between themHP andHP filters,
because the mHP filter is obtainable through a slight modification of the HP
filter. Given the relation between D2 and L shown in (2), we obtain the following
results.

PROPOSITION 2.9. (i) x̂mHP can be represented with x̂HP as x̂mHP = x̂HP −
A−1F (λ−1I 2 +F ′A−1F )−1F ′x̂HP, where A = I T +λD2

′D2. (ii) x̂mHP = x̂HP if
and only if f 1x̂HP = 0 and f T x̂HP = 0.

Proof. See the Appendix. �
Example 2.10. The case where y = [1,2,−2,5,1,2]′ and λ = 1 is an example

such that x̂mHP = x̂HP. In this case, because x̂HP = [1,1,1,2,2,2]′, Proposition 2.9
(ii) ensures that x̂mHP = x̂HP.

3. GSF AND DCT

3.1. GSF

We now review the graph spectral filter (GSF) presented in Shuman et al. (2013).
Let L ∈ R

n×n be a graph Laplacian. L is a real symmetric matrix and thus its
eigenvalues, denoted by κ1, . . . , κT in ascending order, are real and the associated
normalized eigenvectors, denoted by ν1, . . . , νT , are orthogonal to each other.
These are, respectively, referred to as graph spectral eigenvalues and graph spectral
eigenvectors ofL. BecauseL is amatrix such thatLι = 0 andL=D′D, whereD′

is an incidence matrix associated withL, (i)L is a positive semidefinite matrix, (ii)
κ1, which is the smallest eigenvalue ofL, equals 0, (iii) the associated normalized

eigenvector with κ1, denoted by ν1, equals
√

1
T
ι, (iv) the eigenvectors associated

with the other eigenvalues, denoted by ν2, . . . , νT , belong to S⊥(ι), and (v) the
eigenvectors satisfy the following inequality: 0 = ‖Dν1‖2 ≤ ‖Dν2‖2 ≤ ·· · ≤
‖DνT ‖2.

The GSF associated with L is defined by UHU ′y, where U = [ν1, . . . ,νT ] and
H= diag{h(κ1), . . . ,h(κT )}. h inH is a transfer function of the filter that amplifies
or attenuates the entries of U ′y. That is, the GSF consists of the following three
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steps: (i) y is linearly transformed into U ′y, which is referred to as graph Fourier
transform of y, (ii) U ′y is filtered by premultiplying by H, and (iii) HU ′y is
linearly transformed into UHU ′y, which is referred to as inverse graph Fourier
transform ofHU ′y.

3.2. DCT

Ahmed, Natarajan, and Rao (1974) developed the DCT, defined by

c1 =
√

1

T

T∑
t=1

yt, ck =
√

2

T

T∑
t=1

cos {(k−1)θt }yt, k = 2, . . . ,T , (5)

where θt =
(
t− 1

2

)
π

T
for t = 1, . . . , T. Then, by letting c = [c1, . . . ,cT ]′ and

U =

⎡⎢⎢⎢⎢⎢⎢⎣

√
1
T

√
2
T

cos {(2−1)θ1} · · ·
√

2
T

cos {(T −1)θ1}√
1
T

√
2
T

cos {(2−1)θ2} · · ·
√

2
T

cos {(T −1)θ2}
...

...
...√

1
T

√
2
T

cos {(2−1)θT } · · ·
√

2
T

cos {(T −1)θT }

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
T×T , (6)

DCT is represented in matrix notation as c = U ′y and for this reasonU ′ is referred
to as the DCT matrix.5

3.3. Chebyshev Polynomials and DCT

Let Ck(x) = cos (k arccosx) where |x| ≤ 1 and k ∈ N, which are orthogonal
polynomials and are referred to as the Chebyshev polynomials of the first kind.
These are polynomials of degree k and the coefficient of xk equals 2k−1. For
example,C4(x)= 8x4 − 8x2 + 1. It is noteworthy here thatU in (6) can be expressed
with these (Hamming, 1973, pp. 472–473; Ahmed et al., 1974):

U =

⎡⎢⎢⎢⎢⎢⎢⎣

√
1
T
C0(x1)

√
2
T
C1(x1) · · ·

√
2
T
CT−1(x1)√

1
T
C0(x2)

√
2
T
C1(x2) · · ·

√
2
T
CT−1(x2)

...
...

...√
1
T
C0(xT )

√
2
T
C1(xT ) · · ·

√
2
T
CT−1(xT )

⎤⎥⎥⎥⎥⎥⎥⎦,

where xi = cosθi for i = 1, . . . , T are zeros of CT (x) and are referred to as

Chebyshev nodes/roots.6 Recall that θi = (i− 1
2 )π

T
for i = 1, . . . , T.

5There are eight DCTs (DCT-1 through DCT-8) as shown in Strang (1999) and the DCT in (5) is, more precisely,
DCT-2.
6For more details about Chebyshev polynomials of the first kind, see, for example, Mason and Handscomb (2003).
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3.4. DCT as a Type of Graph Fourier Transform

Notably, from vonNeumann (1941), Anderson (1963), Jain (1979), andO’Sullivan
(1991), the spectral decomposition of L in (2) can be described with the DCT
matrix as7

L = UGU ′, (7)

where, by letting gk = 2− 2cos
{
(k−1)π
T

}
= 4sin2

{
(k−1)π

2T

}
for k = 1, . . . , T, G

= diag(g1, . . . , gT ). From the current point of view, the graph Fourier transform
matrix associated with a graph Laplacian, L, is the DCT matrix.

Let uk for k = 1, . . . , T denote the kth column of U in (6). From (6), it

is observable that (i) u1 =
√

1
T
ι and (ii) u2, . . . , uT represent cosine curves of

different periods as illustrated in Figure 3. More precisely, the period of uk+1

is 2T
k

for k = 1, . . . , T − 1. For example, the period of u5 is T
2 . See again

Figure 3. Because L is a graph Laplacian, u1, . . . , uT may be referred to as graph
Laplacian eigenvectors. Recall that from 0= g1 < · · · < gT < 4 and gk = uk

′Luk =
uk

′D1
′D1uk = ‖D1uk‖2 = ∑T

t=2(�uk,t )
2, where uk = [uk,1, . . . ,uk,T ]′, for k =

1, . . . , T, eigenvectors, u1, . . . , uT , satisfy

0 =
T∑
t=2

(�u1,t )
2 <

T∑
t=2

(�u2,t )
2 < · · ·<

T∑
t=2

(�uT,t )
2 < 4. (8)

These inequalities indicate that uk is smoother than ul if k < l and we can observe
that these inequalities hold from Figure 3.

Finally, we stress that among the column vectors, u2, . . . , uT , u2 has a special
feature. As depicted in Figure 3, this is a monotonic function of time and thus
u1(u1

′u1)
−1u1

′y +u2(u2
′u2)

−1u2
′y = ȳι+ c2u2 can represent a trend in economic

time series, y. Note that u2 ∈ S⊥(ι).

4. THE THREE FILTER S AS A TYPE OF GSF

4.1. mHP Filter

From (7), it follows that L′L = L2 = (UGU ′)2 = UG2U ′. Then, x̂mHP can be
expressed with the DCT matrix as

x̂mHP = U(I T +λG2)−1U ′y = UHmHPU
′y, (9)

where HmHP = (IT+λG2)−1, and thus it can also be represented as x̂mHP =
IDCT {HmHP DCT(y)}, where DCT and IDCT, respectively, represent DCT and
inverse DCT (Garcia, 2010). Thus, we have the following result:

PROPOSITION 4.1. The mHP filter is a GSF based on the path graph.

Proof. It follows from (9). �

7See also Strang (1999) and Nakatsukasa et al. (2013).
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Figure 3. The first nine columns of U = [u1, . . . , uT ] in (6) for T = 100.

Remark 4.2. Equation (9) implies that x̂mHP can be expressed as a linear
combination of orthonormal vectors, u1, . . . , uT . Of course, this is not so important
because any vectors in T-dimensional euclidean space can be expressed as a linear
combination of them. The HP filter can also be expressed as a linear combination
of these as follows:

x̂HP = U(I T +λU ′D2
′D2U)

−1U ′y. (10)

Equation (10) shows that the HP filter is not a GSF based on the path graph because
U ′D2

′D2U is not a diagonal matrix.

The following proposition is derived from (9).
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PROPOSITION 4.3. Let ξ̂mHP,k = ĉmHP,kuk for k = 1, . . . , T, where ĉmHP,k =
ck

1+λg2
k

. (i) x̂mHP can be decomposed as x̂mHP = ξ̂mHP,1 + ·· · + ξ̂mHP,T , where

ξ̂mHP,k
′̂ξmHP,l = 0 if k�=l and ξ̂mHP,k

′̂ξmHP,l = ĉ2mHP,k if k = l. (ii) (a) ξ̂mHP,1 = ȳι

and thus ξ̂mHP,1 ∈ S(ι) and 1
T
ι′̂ξmHP,1 = ȳ. (b) For k = 2, . . . , T, ι′̂ξmHP,k =

0 and thus ξ̂mHP,k ∈ S⊥(ι) and 1
T
ι′̂ξmHP,1 = 0. (iii) The sum of the squared

deviations from the sample mean of x̂mHP can be represented as ‖Qιx̂mHP‖2 =
‖̂ξmHP,2‖2 + ·· · + ‖̂ξmHP,T ‖2 = ĉ2mHP,2 + ·· · + ĉ2mHP,T . (iv) By denoting the (i, j)-

entry of (I T +λL′L)−1 by ĥmHP,i,j for i, j = 1, . . . ,T, it follows that

ĥmHP,i,j = 1

T
+ 2

T

T∑
k=2

cos{(k−1)θi}cos{(k−1)θj }
1+λg2k

, (11)

ĥmHP,i,j → 2
∫ 1

0

cos{(i− 1
2 )rπ}cos{(j − 1

2 )rπ}
1+λ{2−2cos(rπ)}2 dr (T → ∞), (12)

where θt =
(
t− 1

2

)
π

T
for t = 1, . . . , T.

Proof. See the Appendix. �
Remark 4.4. (a) In contrast, the (i, j)-entry of (I T + λD2

′D2)
−1 is much

more complicated. See de Jong and Sakarya (2016, Thm. 1), Cornea-Madeira
(2017, Cor. 1), and Yamada and Jahra (2019, Cor. 3.2). (b) By recalling that
2cosAcosB = cos(A + B) + cos(A − B) and letting ζ = rπ , (12) can be
alternatively represented as

ĥmHP,i,j → 1

π

∫ π

0

cos{(i+ j −1)ζ }+ cos{(i− j)ζ }
1+λ(2−2cosζ )2

dζ (T → ∞), (13)

which corresponds to equation (9.4) in Strang and MacNamara (2014). In (13),

1

π

∫ π

0

cos{(i− j)ζ }
1+λ(2−2cosζ )2

dζ and
1

π

∫ π

0

cos{(i+ j −1)ζ }
1+λ(2−2cosζ )2

dζ,

respectively, represent “the Toeplitz part” and “the Hankel part” (Strang and
MacNamara, 2014).

The following two propositions provide alternative representations of the mHP.

PROPOSITION 4.5. By letting φ̂mHP = (I T + λG2)−1U ′y, it follows that
x̂mHP = Uφ̂mHP and φ̂mHP is a unique global minimizer of minφ∈RT ‖y −Uφ‖2 +
λ‖Gφ‖2.

Proof. See the Appendix. �
Remark 4.6. Let φ̂mHP = [φ̂mHP,1, . . . ,φ̂mHP,T ]′. Then, given thatU is an orthog-

onal matrix, it follows that φ̂mHP,k = arg minφk∈R ‖y − ukφk‖2 + λ(gkφk)
2 =

ck

1+λg2
k

= ĉmHP,k for k = 1, . . . , T.
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PROPOSITION 4.7. Let E = [g2u2, . . . ,gT uT ]′ ∈ R
(T−1)×T . Then, it follows

that x̂mHP = arg minx∈RT ‖y −x‖2 +λ‖Ex‖2 = (I T +λE′E)−1y.

Proof. See the Appendix. �
Remark 4.8. (a) E is of full row rank and is a matrix such that Eι = 0. (b)

By applying the Sherman–Morrison–Woodbury formula (Seber, 2008) to (I T +
λE′E)−1, we obtain x̂mHP = y −E′(λ−1I T−1+EE′)−1Ey = y −E ′̂δ, where δ̂ =
(λ−1I T−1 + EE′)−1Ey. Thus, ε̂mHP(= y − x̂mHP) = E ′̂δ. It is of interest that δ̂

is a unique global minimizer of the following penalized least squares problem:
minδ∈RT−1 ‖y −E′δ‖2 +λ−1‖δ‖2. Likewise, we can derive several closely related
least squares problems as shown in Yamada (2018a).

4.2. ES Filter

As with (9), x̂ES can be alternatively expressed as

x̂ES = U(I T +ψG)−1U ′y = UH ESU
′y, (14)

where HES = (IT+ψG)−1, and thus it can also be represented as x̂ES =
IDCT {H ES DCT(y)}. Thus, we have the following result:

PROPOSITION 4.9. The ES filter is a GSF based on the path graph.

Proof. It follows from (14). �
Accordingly, we obtain the following results.

PROPOSITION 4.10. Let ξ̂ES,k = ĉES,kuk for k= 1, . . . , T, where ĉES,k = ck
1+ψgk .

(i) x̂ES can be decomposed as x̂ES = ξ̂ES,1 + ·· · + ξ̂ES,T , where ξ̂ ′
ES,k ξ̂ES,l = 0

if k�=l and ξ̂ ′
ES,k ξ̂ES,l = ĉ2ES,k if k = l. (ii) ξ̂ES,1 = ȳι and thus 1

T
ι′̂ξES,1 = ȳ,

whereas 1
T
ι′̂ξES,k = 0 for k = 2, . . . , T. (iii) The sum of the squared deviations

from the sample mean of x̂ES can be represented as ‖Qιx̂ES‖2 = ‖̂ξES,2‖2 +·· ·+
‖̂ξES,T ‖2 = ĉ2ES,2+·· ·+ ĉ2ES,T . (iv) By denoting the (i, j)-entry of (I T +ψD1

′D1)
−1

by ĥES,i,j for i, j = 1, . . . , T, it follows that

ĥES,i,j = 1

T
+ 2

T

T∑
k=2

cos{(k−1)θi}cos{(k−1)θj }
1+ψgk ,

ĥES,i,j → 2
∫ 1

0

cos{(i− 1
2 )rπ}cos{(j − 1

2 )rπ}
1+ψ{2−2cos(rπ)} dr (T → ∞),

where θt =
(
t− 1

2

)
π

T
for t = 1, . . . , T.

Proof. This proposition can be proved as for Proposition 4.3. �
Remark 4.11. (a) Yamada and Jahra (2018, Cor. 2.2) provided an alternative but

more complex representation of ĥES,i,j in Proposition 4.10(iv). In deriving it, they
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applied not the spectral decomposition of D1
′D1(= L) but that of D1D1

′, which is
a tridiagonal symmetric Toeplitz matrix. (b) As with (13), we obtain

ĥES,i,j → 1

π

∫ π

0

cos{(i+ j −1)ζ }+ cos{(i− j)ζ }
1+ψ(2−2cosζ )

dζ (T → ∞).

PROPOSITION 4.12. Let φ̂ES = (I T +ψG)−1U ′y. Then, it follows that x̂ES =
Uφ̂ES and φ̂ES is a unique global minimizer of minφ∈RT ‖y −Uφ‖2 +ψφ′Gφ.

Proof. This proposition can be proved as for Proposition 4.5. �
Remark 4.13. Let φ̂ES = [φ̂ES,1, . . . ,φ̂ES,T ]′. Then, because U is an orthogonal

matrix, it follows that φ̂ES,k = arg minφk∈R ‖y −ukφk‖2+ψgkφ2
k = ck

1+ψgk = ĉES,k
for k = 1, . . . , T.

4.3. LFP Filter

The LFP of Müller and Watson (2018) is similar to the mHP and ES filters. Let
� = T

1
2 [u2, . . . ,uq+1] ∈ R

T×q . Recall that uk denotes the kth column of U in (6).
By the definition of �, it follows that S(�)⊆ S⊥(ι) and � ′� = T I q .8 Then, the
LFP filter can be described as

LFP : x̂LFP = �(� ′�)−1� ′y = c2u2 +·· ·+ cq+1uq+1 = UH LFPU
′y, (15)

where H LFP = diag(0, 1, . . . ,1︸ ︷︷ ︸
q

,0, . . . ,0) ∈ R
T×T , and thus it can also be rep-

resented as x̂LFP = IDCT{H LFP DCT(y)}. Accordingly, we have the following
result:

PROPOSITION 4.14. The LFP filter is a GSF based on the path graph.

Proof. It follows from (15). �
Because the period of uq+1, which is the last column in �, is 2T

q
, the LFP filter

is designed to isolate variation in the series with periods longer than 2T
q

(Müller
and Watson, 2018). See again Figure 3.

4.4. Relationship Between the Three Filters

Recall that x̂mHP, x̂ES, and x̂LFP are GSFs based on the path graph. These are,
respectively, represented as a linear combination of T-dimensional column vectors,
c1u1, c2u2, . . . , cTuT , as follows:

x̂i =
T∑
k=1

wi,kckuk, i = mHP,ES, (16)

8The equality in S(�)⊆ S⊥(ι) holds if and only if q = T − 1.
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x̂LFP + ȳι =
T∑
k=1

wLFP,kckuk, (17)

where wmHP,k = (1+λg2k )−1 and wES, k = (1+ψgk)−1 for k = 1, . . . , T and

wLFP,k =
{
1, k = 1, . . . ,q+1,

0, k = q+2, . . . ,T .
(18)

Recall that both λ and ψ are positive. In addition, the inequalities, 0 = g1 < g2 <
· · · < gT < 4, hold. Accordingly, we obtain

1 = wmHP,1 >wmHP,2 > · · ·>wmHP,T > 0, (19)

1 = wES,1 >wES,2 > · · ·>wES,T > 0. (20)

Thus, it could be expected that x̂LFP + ȳι

is roughly similar to x̂mHP and x̂ES if λ and ψ are specified so that wmHP,q+1 = 1
2

and wES,q+1 = 1
2 . Note that these λ and ψ are explicitly expressed as

λ= 1

g2q+1

and ψ = 1

gq+1
, (21)

where gq+1 = 2−2cos
(
qπ

T

)= 4sin2
(
qπ

2T

)
. Concerning (21), we have the following

results.

PROPOSITION 4.15. Let f = 2π
p
, where p= 2T

q
. Then, (21) can be represented

as follows:

λ=
{
2sin

(
f

2

)}−4

and ψ =
{
2sin

(
f

2

)}−2

. (22)

Proof. We only provide the former equation of (22). From (21), it follows that
λ = {

2sin
(
qπ

2T

)}−4
. Then, from f = 2π

p
= 2π × q

2T = qπ

T
, we obtain the former

equation of (22). �
Remark 4.16. Very interestingly, the equations in (22) are equivalent to the

ways of specifying the smoothing parameters for the HP and ES filters based on
the gain functions shown by King and Rebelo (1993). See, for example, G’omez
(2001) and Yamada (2012) for details.

Example 4.17. Consider the case where T = 100 and p = 40 (quarters). Then,
the corresponding values of the parameters are λ = 1649.3 ≈ 1600, ψ = 40.6,
and q = 5.

On the coefficients in (16) and (17), there are the following relationships:

PROPOSITION 4.18. (i) Let λ = 1
g2
q+1

and ψ = 1
gq+1

. Then, it follows that

wLFP, k = wmHP, k = wES, k = 1 if k = 1, 1 = wLFP,k > wmHP,k > wES,k >
1
2 if
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k = 2, . . . , q, 1 = wLFP,k > wmHP,k = wES,k = 1
2 if k = q + 1, and 1

2 > wmHP,k >

wES,k >wLFP,k = 0 if k= q+ 2, . . . , T. (ii) For k= 1, . . . , T− 1, wmHP, k >wmHP, k+1

and wES, k > wES, k+1.

Proof. See the Appendix. �
Consequently, when λ = 1

g2
q+1

and ψ = 1
gq+1

, it follows that (i) x̂LFP + ȳι is

roughly similar to x̂mHP and x̂ES, (ii) x̂LFP + ȳι is smoother than x̂mHP and x̂ES,
and (iii) x̂mHP is smoother than x̂ES. Among them, (ii) is, for example, due to the
fact that x̂LFP + ȳι does not consist of a linear combination of vectors, uq+2, . . . ,
uT , whereas both x̂mHP and x̂ES depend on the vectors.

4.5. Empirical Illustration

See Figures 4 and 5. In Figure 4 (Figure 5), y denotes the growth rates of US
real GDP (real consumption) used in the empirical analysis in Müller and Watson
(2018). LFP represents x̂LFP+ ȳι. It is estimated by setting q= 12. Thus, given that
T = 272, in this case, the LFP filter is designed to isolate variation in the series
with periods longer than 2×272

12 ≈ 45quarters ≈ 11.3years (Müller and Watson,
2018). We remark that LFP in Figure 4 (Figure 5) is identical to the solid (dashed)
line depicted in Figure 1(c) of Müller and Watson (2018). ES (mHP) denotes

1950 1960 1970 1980 1990 2000 2010 2020
-15

-10

-5

0

5

10

15

y
ES
LFP
mHP

Figure 4. y denotes growth rates of U.S. real GDP used in the empirical analysis in Müller and
Watson (2018). LFP represents x̂LFP + ȳι estimated by setting q= 12. We remark that it is identical to
the solid line depicted in Figure 1(c) in Müller and Watson (2018). ES (mHP) represents x̂ES (̂xmHP)
estimated by setting ψ = 51.8 (λ = 2678.9).
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Figure 5. y denotes growth rates of U.S. real consumption used in the empirical analysis inMüller and
Watson (2018). LFP represents x̂LFP + ȳι estimated by setting q= 12. We remark that it is identical to
the dashed line depicted in Figure 1(c) in Müller andWatson (2018). ES (mHP) represents x̂ES (̂xmHP)
estimated by setting ψ = 51.8 (λ = 2678.9).

x̂ES (̂xmHP) estimated by setting ψ = 51.8 (λ = 2678.9). Here, these values of
parameters are calculated by (22). From these figures, we can empirically confirm
the theoretical results shown in Section 4.4, that is, (i) x̂LFP + ȳι is roughly similar
to x̂mHP and x̂ES, (ii) x̂LFP + ȳι is smoother than x̂mHP and x̂ES, and (iii) x̂mHP is
smoother than x̂ES.

4.6. DCT is More Appropriate Than DFT for Econometric Time Series
Analysis

As an alternative LFP to (15), we may consider the following orthogonal
projection:

x̂LFP2 = 
(
∗
)−1
∗y = d2v2 +·· ·+dq+1vq+1 = WH LFPW
∗y, (23)

whereW = [v1, . . . ,vT ] ∈C
T×T is defined in (A.1),
 = T

1
2 [v2, . . . ,vq+1] ∈C

T×q ,
W ∗y = [d1, . . . ,dT ] ∈ C

T , which is the DFT of y, and 
* denotes the conjugate
transpose of 
. DFT has a much longer history than DCT and the form of LFP
given by (23) and its variant have appeared in econometrics, for example, in Engle
(1974), Harvey (1978), and Corbae, Ouliaris, and Phillips (2002).

As DCT is a graph Fourier transform, DFT is also a graph Fourier transform.
The former is based on the path graph (Figure 1), whereas the latter is based on
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the cycle graph (Figure 2).9 We believe that the path graph is more appropriate
than the cycle graph as an underlying graph of economic time series, and for this
reason, we consider the DCT more appropriate than the DFT for econometric time
series analysis.

5. CONCLUDING REMARKS

This article originated in the discovery of a somewhat familiar smoothing method
that looks like the popular HP filter, denoted as the mHP filter in this article,
and a remarkable matrix factorization of a graph Laplacian corresponding to
the path graph shown in (7). Further investigation led to the realization that the
path graph is more appropriate than the cycle graph as an underlying graph of
economic time series. These discoveries provided a strong motivation to pursue
this project.

The theoretical results of our examinations are summarized in Propositions 2.1,
2.9, 4.1, 4.3, 4.5, 4.7, 4.9, 4.10, 4.12, 4.14, 4.15, and 4.18 and Corollaries 2.5
and 2.7 and the empirical results are illustrated in Figures 4 and 5. In short, our
findings revealed that the mHP filter is a GSF based on the DCT as for the ES
and LFP filters and that it is more like the ES filter even though it appears like the
HP filter. In addition, we provided a way of specifying the mHP filter’s smoothing
parameter, λ, by (22), which is necessary for its application.
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APPENDIX A

A.1. Proof of Propositions 2.1, 2.9, 4.3, 4.5, 4.7, and 4.18

A.1.1. Proof of Proposition 2.1.

(i) (a): fmHP(x) can be represented as fmHP(x) = x′(IT + λL2)x − 2y′x + y′y.
Because fmHP(x) is a quadratic function whose Hessian matrix, 2(IT + λL2), is
positive definite, it has a unique global minimizer. More directly, the following
inequality holds: fmHP(x)−fmHP(̂xmHP)= (x − x̂mHP)

′(IT +λL2)(x − x̂mHP) >

0 if x �= x̂mHP. (b): Given that x̂mHP is a unique global minimizer of fmHP(x) and
y �= x̂mHP, it follows that λ‖Ly‖2 = fmHP(y)> fmHP(̂xmHP)>λ‖Lx̂mHP‖2. Given
λ > 0, we obtain the result.

(ii) (a): From Lι = D1
′D1ι = 0, we have (IT + λL2)ι = ι. Premultiplying it by

(IT+λL2)−1 yields (IT+λL2)−1ι = ι. (b): Since (IT+λL2)−1 is obviously symmet-
ric, we only show that (IT+λL2)−1 is centrosymmetric. Let J be an exchange matrix
such that [eT , eT−1, . . . , e1], where ek for k = 1, . . . , T denote the kth column of IT .
From (2), it is clear that L is centrosymmetric, that is, L = JLJ. Then, given J−1 =
J, we obtainL2 = (JLJ)2 = JL2J and thus (IT + λL2)= J(IT + λL2)J. Accordingly,
it follows that J(IT+λL2)−1J = {J(IT+λL2)J}−1 = (IT+λL2)−1, which indicates
that (IT+λL2)−1 is centrosymmetric. Therefore, (IT+λL2)−1 is bisymmetric (i.e.,
symmetric centrosymmetric).

(iii) (a): Given ι′L = 0, premultiplying (IT + λL2)̂xmHP = y by ι′ yields ι′x̂mHP =
ι′(IT + λL2 )̂xmHP = ι′y and from which we obtain ι′(y − x̂mHP) = 0 and
T −1ι′x̂mHP = ȳ. (b): From (9), we obtain x̂mHP = ȳι+U2(IT−1 +λG2

2)
−1U2

′y,

https://doi.org/10.1017/S0266466619000379 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466619000379


SMOOTHING METHOD THAT LOOKS LIKE HP FILTER 979

whereU2 = [u2, . . . , uT ] andG2 = diag(g2, . . . , gT ). GivenU2
′U2 = IT−1, it follows

that ‖x̂mHP − ȳι‖2 = y′U2
{
(IT−1 +λG2

2)
−1

}2
U2

′y. Thus, if y = 0, ‖x̂mHP −
ȳι‖ = 0. Otherwise, we have the following inequalities: 0≤ ‖x̂mHP− ȳι‖2/‖y‖2 ≤{
(1+λg22)−1

}2
. Here,

{
(1+λg22)−1

}2 → 0 as λ → ∞ and therefore ‖x̂mHP −
ȳι‖ → 0 as λ → ∞. (c): From y − x̂mHP = λL2x̂mHP = λL2(IT + λL2)−1y,
we obtain ‖x̂mHP − y‖2 = λ2y′(IT + λL2)−1L4(IT + λL2)−1y = λ2y′U(IT +
λG2)−1G4(IT + λG2)−1U ′y. Thus, if y = 0, ‖x̂mHP − y‖ = 0. Otherwise, we
have the following inequalities: 0≤ ‖x̂mHP−y‖2/‖y‖2 ≤ λ2g4T /(1+λg2T )2. Given
λ2g4T /(1+λg2T )2 → 0 as λ → 0, it thus follows that ‖x̂mHP −y‖ → 0 as λ → 0.
(d): It is evident from (IT+λL2)−1(kι) = (kι) for any k ∈ R.

A.1.2. Proof of Proposition 2.9.

(i) From L′L = D2
′D2 + f 1

′f 1 + f T
′f T = D2

′D2 + FF ′, it follows that x̂mHP =
(IT + λL′L)−1y = (IT + λD2

′D2 + λFF ′)−1y = (A + λFF ′)−1y. Applying
the Sherman–Morrison–Woodbury formula (Seber, 2008) to (A+λFF ′)−1 yields
x̂mHP = (A+λFF ′)−1y = A−1y−A−1F (λ−1I 2+F ′A−1F )−1F ′A−1y = x̂HP−
A−1F (λ−1I 2 +F ′A−1F )−1F ′x̂HP.

(ii) Let � = A−1F (λ−1I 2 + F ′A−1F )−1 ∈ R
T×2. Then, from x̂HP − x̂mHP =

A−1F (λ−1I 2 + F ′A−1F )−1F ′x̂HP = �F ′x̂HP, we obtain ‖x̂HP − x̂mHP‖2 =
(F ′x̂HP)

′�′�(F ′x̂HP). F has full column rank and thus � also has full column
rank, which indicates that �′� is positive definite. Hence, x̂HP = x̂mHP if and only
if F ′x̂HP = [x̂1 − x̂2,x̂T − x̂T−1]′ = 0.

A.1.3. Proof of Proposition 4.3.

(i) From (9), it follows that x̂mHP = u1u1
′y

1+λg21
+ ·· · + uT uT

′y
1+λg2T

= c1
1+λg21

u1 + ·· · +
cT

1+λg2T
uT = ĉmHP,1u1 + ·· · + ĉmHP,T uT = ξ̂mHP,1 + ·· · + ξ̂mHP,T . Then, given

that uk
′ul = 0 if k �= l and uk

′ul = 1 if k = l, we obtain that ξ̂mHP,k
′̂ξmHP,l =

ĉmHP,k ĉmHP,luk
′ul = 0 if k �= l and ξ̂mHP,k

′̂ξmHP,l = ĉmHP,k ĉmHP,luk
′ul = ĉ2mHP,k

if k = l.

(ii) (a):Given that g1 = 0 andu1 = T − 1
2 ι, it follows that ξ̂mHP,1 = c1

1+λg21
u1 = u1u1

′y =
T −1ιι′y = ȳι, which indicates that ξ̂mHP,1 ∈ S(ι). In addition, from ξ̂mHP,1 = ȳι,
we obtain T −1ι′̂ξmHP,1 = ȳT −1ι′ι = ȳ. (b): For k = 2, . . . , T, given u1

′uk = 0, we

obtain ι′̂ξmHP,k = T
1
2 u1

′ ck
1+λg2k

uk = 0, which indicates that ξ̂mHP,k ∈ S⊥(ι) and

T −1ι′̂ξmHP,k = 0.

(iii) Given that ξ̂mHP,1 ∈ S(ι) and ξ̂mHP,k ∈ S⊥(ι) for k = 2, . . . , T, it follows that
Qι̂ξmHP,1 = 0 andQι̂ξmHP,k = ξ̂mHP,k for k= 2, . . . ,T. Thus, we obtainQιx̂mHP =
Qι(̂ξmHP,1 + ξ̂mHP,2 +·· ·+ ξ̂mHP,T ) = ξ̂mHP,2 +·· ·+ ξ̂mHP,T , which leads to the
following result: ‖Qιx̂mHP‖2 = ‖̂ξmHP,2‖2 + ·· · + ‖̂ξmHP,T ‖2 = ĉ2mHP,2 + ·· · +
ĉ2mHP,T .

(iv) By denoting the ith row of U by [ui,1, . . . , ui,T ] for i = 1, . . . , T, it follows
that ĥmHP,i,j = (1 + λg21)

−1ui,1uj,1 + ·· · + (1 + λg2T )
−1ui,T uj,T = ui,1uj,1 +
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∑T
k=2

ui,kuj,k

1+λg2k
, where the second equality follows from g1 = 0. From (6), because

ui,1uj,1 = 1
T
and ui,kuj,k = 2

T
cos{(k− 1)θi}cos{(k− 1)θj } for k = 2, . . . , T, we

obtain (11). Recalling θi = (i− 1
2 )π

T
for i= 1, . . . , T and gk = 2−2cos

{
(k−1)π
T

}
for

k = 1, . . . , T, ĥmHP,i,j can be rewritten as

ĥmHP,i,j = 1

T
+ 2

T

T∑
k=2

cos
{
(k−1)

(i− 1
2 )π

T

}
cos

{
(k−1)

(j− 1
2 )π

T

}
1+λ

[
2−2cos

{
(k−1)π
T

}]2
= 1

T
+2

⎛⎝ 1

T

T−1∑
l=1

cos
{
l
T
(i− 1

2 )π
}
cos

{
l
T
(j − 1

2 )π
}

1+λ{2−2cos
(
l
T
π
)}2

⎞⎠,
where l = k − 1, from which we obtain (12).

A.1.4. Proof of Proposition 4.5.

Given that L2 = UG2U ′ and U is an orthogonal matrix, it follows that x̂mHP =
(IT +λUG2U ′)−1y = U(IT +λG2)−1U ′y = Uφ̂mHP, which leads to x̂ ′

mHPL2x̂mHP =
x̂ ′
mHPUG2U ′x̂mHP = φ̂ ′

mHPG2φ̂mHP. Consequently, we obtain ‖y − x̂mHP‖2 +
λx̂ ′

mHPL2x̂mHP = ‖y − Uφ̂mHP‖2 + λφ̂ ′
mHPG2φ̂mHP. Likewise, by letting φ be

such that x = Uφ, it follows that x′L2x = x′UG2U ′x = φ′G2φ. Thus, we obtain
‖y − x‖2 + λx′L2x = ‖y − Uφ‖2 + λφ′G2φ. Because U is nonsingular, x = x̂mHP if
and only if φ = φ̂mHP. Then, combining these results yields the following inequality:
‖y − Uφ‖2 + λφ ′G2φ = ‖y − x‖2 + λx′L2x > ‖y − x̂mHP‖2 + λx̂ ′

mHPL2x̂mHP =
‖y −Uφ̂mHP‖2 +λφ̂ ′

mHPG2φ̂mHP if φ �= φ̂mHP.

A.1.5. Proof of Proposition 4.7.

Given that g1 = 0, it follows thatUG2U ′ =∑T
k=2 g

2
k
ukuk

′ = E′E, which leads to x̂mHP =
(IT +λUG2U ′)−1y = (IT +λE′E)−1y = arg minx∈RT ‖y −x‖2 +λ‖Ex‖2.
A.1.6 Proof of Proposition 4.18.

(i) Let rk = gk
gq+1

for k = 1, . . . ,T. Then, it follows that wmHP,k = (1+λg2k )−1 = (1+
r2k )

−1 and wES, k = (1+ψgk)−1 = (1+rk)−1. Given the inequalities, 0 = g1 < g2
< · · · < gT < 4, it follows that if k = 1, then rk = 0; if k = 2, . . . , q, then 0 < rk
< 1; if k = q+ 1, then rk = 1; and if k = q+ 2, . . . , T, then rk > 1. Accordingly, we
obtain that if k= 1, then (1+r2k )= (1+rk)= 1; if k= 2, . . . , q, then 1< (1+r2k ) <
(1+ rk) < 2; if k = q + 1, then (1+ r2k ) = (1+ rk) = 2; and if k = q + 2, . . . , T,
then (1+ r2k ) > (1+ rk) > 2. Inverting these (in) equalities leads to the result.

(ii) It follows from (19) and (20).

A.2. DFT as a Type of Graph Fourier Transform

DFT is defined by

d1 =
√

1

T

T∑
t=1

yt, dk =
√

1

T

T∑
t=1

e
−i

(
2π
T

)
(t−1)·(k−1)

yt, k = 2, . . . ,T ,
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where i denotes the imaginary unit. By letting d = [d1, . . . ,dT ]′ and

W =
√

1

T

⎡⎢⎢⎢⎣
ω0·0 ω0·1 · · · ω0·(T−1)

ω1·0 ω1·1 · · · ω1·(T−1)

...
...

...
ω(T−1)·0 ω(T−1)·1 · · · ω(T−1)·(T−1)

⎤⎥⎥⎥⎦ ∈ C
T×T , (A.1)

where ω = e
i
(
2π
T

)
, DFT is represented in matrix notation as d = W∗y ∈ C

T . Here, W*

denotes the conjugate transpose ofW.
Let Lcycle be the following circulant graph Laplacian:

Lcycle =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0 −1

−1 2 −1
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . . −1 2 −1

−1 0 · · · 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
f cycle,1

−D2

f cycle,T

⎤⎥⎥⎥⎦ ∈ R
T×T . (A.2)

More precisely, Lcycle is the graph Laplacian of a cycle graph of order T (Figure 2). The
vertex set of the graph equals S1 in (4) and the edge set is defined by adding an edge
{T, 1} to S2: {{1, 2}, {2, 3}, . . . , {T − 1, T}, {T, 1}}. For this reason, Lcycle and L in
(2) are the same except for the first and the last rows. Let � = diag(γ1, . . . , γT ), where

γk = 2− 2cos
{
(k−1) 2π

T

}
= 4sin2

{
(k−1) π

T

}
for k = 1, . . . , T. As Lcycle = W�W*

(Strang, 1999), DFT is a type of graph Fourier transform.10

10GivenW ∈C
T×T , the definition of graph Fourier transform defined in Section 3.1 should be modified accordingly.
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