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Spaces of Lorentz Multipliers
Kathryn E. Hare and Enji Sato

Abstract. We study when the spaces of Lorentz multipliers from Lp,t → Lp,s are distinct. Our main
interest is the case when s < t , the Lorentz-improving multipliers. We prove, for example, that the
space of multipliers which map Lp,t → Lp,s is different from those mapping Lr,v → Lr,u if either r = p
or p ′ and 1/s − 1/t �= 1/u − 1/v, or r �= p or p ′. These results are obtained by making careful
estimates of the Lorentz multiplier norms of certain linear combinations of Fejer or Dirichlet kernels.
For the case when the first indices are different the linear combination we analyze is in the spirit of a
Rudin-Shapiro polynomial.

1 Introduction

The Lorentz spaces, Lp,q(G), for G an infinite, compact, abelian group, are Banach
spaces which generalize the classical spaces Lp(G), and are intermediate to them in
the sense that whenever 1 ≤ q ≤ p ≤ r ≤ ∞ then⋃

t>p

Lt (G) ⊆ Lp,q(G) ⊆ Lp(G) = Lp,p(G) ⊆ Lp,r(G) ⊆
⋂
s<p

Ls(G).

By a Lorentz multiplier, or convolution operator, we mean a bounded linear map from
Lp,q(G) to Lr,s(G), for some p, q, r, s, which commutes with translation. The action of
convolution by a measure is an example of a multiplier from Lp,x(G) to Lp,x(G), while
convolution operators of strong (weak) type (p, p) are Lorentz multipliers from Lp,p

to Lp,p (or Lp,∞, respectively). We will denote by M(p, q; r, s) the space of multipliers
from Lp,q(G) to Lr,s(G) (or simply M(p; r) if p = q and r = s).

Many authors have considered the problem of which Lorentz multiplier spaces
are included, or not included, within others. For example, in [5] Gaudry, improving
upon work of Price [12], showed that M(p; q) � M(r; s) if 1 < p < r < 2 and
1/p − 1/q = 1/r − 1/s, while in [15] Zafran proved that for the circle group, (and
certain other locally compact abelian groups) and each 1 < p < 2, there existed
a multiplier of weak type (p, p) which was not of strong type (p, p). This result
was improved by Cowling and Fournier in [4] who showed more generally that if
p �= 1, 2,∞ then M(p, 1; p,∞) � M(p, q; p, r) if r < ∞ or q > 1. In their extensive
investigation they also proved strict inclusions such as

M(p, q; p, r) � M(p, q; p, t)
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when p �= 1, 2,∞, q < 2 and 1 ≤ r < t ≤ q ′ (here q ′ is the conjugate index to q).
Cowling and Fournier mainly derived their results by estimating the norms of

certain operators in M(p, q; p, r) where r ≥ q. In contrast, our primary focus is on
the spaces M(p, q; p, r) with r < q. The operators in these spaces are also known
as Lorentz-improving multipliers, a generalization of the notion of Lp-improving
multipliers. One reason for the current interest in Lorentz multipliers is that they
arise in the study of the smoothing property of measures on flat curves (cf. [1]).

One of our main results is that if 1 < p < ∞ and 0 < 1/s−1/t �= 1/r−1/q then
M(p, t ; p, s) �= M(p1, q; p1, r) if p1 is either p or p ′. In particular, M(p, q; p, r) �
M(p, q; p, t) whenever 1 ≤ r < min(t, q). We also prove that if 1 < p, r < ∞ and
r �= p, p ′, then M(p, t ; p, s) �= M(r, v; r, u) when s ≤ t , u ≤ v.

Our method is constructive: for instance, for any given τ > 0 we produce exam-
ples of integrable functions which belong to M(p, t ; p, s) for all 1 < p < ∞ and
1/s− 1/t = τ , but do not belong to any space M(p, q; p, r) for 1/r− 1/q > τ . These
examples are formed from linear combinations of Fejer or Dirichlet kernels. We also
produce examples to prove the non-equality of multiplier spaces when the first index
is different. These latter examples are analogues of Rudin-Shapiro polynomials or
measures, a key technique used in both [5] and [4]. Norm estimates are found first
for our operators on the circle group in Section 3, and then for groups whose duals
have infinitely many elements of finite order in Section 4. The results for arbitrary
infinite, compact, abelian groups are obtained in section 5 by essentially reducing the
problem to one of the first two cases.

We begin in Section 2 by reviewing facts about Lorentz spaces and Lorentz-
improving multipliers.

2 Lorentz Spaces and Lorentz-Improving Multipliers

2.1 Properties of Lorentz Spaces

Throughout this paper m will denote normalized Haar measure on G and c will de-
note constants which may vary from one line to another.

We will briefly review the basic properties of Lorentz spaces. Most of these defini-
tions and facts can be found in either [10] or [8].

Given a measurable function f on G, the distribution function of f is defined by

m f (y) ≡ m{x ∈ G : | f (x)| > y} for y ≥ 0

and the non-increasing rearrangement of f is the function f ∗ defined by

f ∗(t) ≡ inf{y > 0 : m f (y) ≤ t} for t ≥ 0.

The Lorentz space Lp,q(G) is the space of functions f for which ‖ f ‖∗p,q < ∞ where

‖ f ‖∗p,q ≡

(

q
p

∫ 1
0

(
x1/p f ∗(x)

) q dx
x

) 1/q
if 1 ≤ p, q < ∞

supx x1/p f ∗(x) if 1 ≤ p ≤ ∞, q = ∞.
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As f ∗ and f have the same distribution function, it follows that ‖ f ‖∗p,p = ‖ f ‖p, so
the Lorentz space Lp,p(G) = Lp(G).

Because the function ‖ · ‖∗p,q is not a norm it is useful to define the function

f ∗∗(x) = 1
x

∫ x
0 f ∗(s) ds and the norm

‖ f ‖(p,q) ≡

(∫ 1

0

(
x1/p f ∗∗(x)

) q dx
x

) 1/q
if 1 ≤ p, q < ∞

supx x1/p f ∗∗(x) if 1 ≤ p ≤ ∞, q = ∞.

If p = q = 1, p = q = ∞ or 1 < p < ∞ and 1 ≤ q ≤ ∞, then Lp,q(G) is a Banach
space with dual space Lp ′,q ′

(G) (provided p, q �= ∞) where, as usual, 1/p+1/p ′ = 1.
The space M(p, q; p, r) is a Banach space when given the operator norm

‖T‖M(p,q;p,r) ≡ sup{‖T( f )‖(p,r) : ‖ f ‖(p,q) ≤ 1}.

By duality, M(p, q; p, r) = M(p ′, r ′; p ′, q ′) [7].
The norm and quasi-norm are comparable. Indeed,

(
p

q

)1/q

‖ f ‖∗p,q ≤ ‖ f ‖(p,q) ≤ p ′
(

p

q

)1/q

‖ f ‖∗p,q

(where (p/q)1/q = 1 if q = ∞). If r > q then

‖ f ‖∗p,r ≤ ‖ f ‖∗p,q and ‖ f ‖(p,r) ≤
(

q

p

)1/q−1/r

‖ f ‖(p,q),

while if 1 < p1 < p2 < ∞ and 1 ≤ q < ∞ then

‖ f ‖∗p1,q ≤
(

p2

p2 − p1

)1/q

‖ f ‖∗p2,∞.

From these inequalities it is clear that if we define a total ordering on (1,∞) ×
[1,∞] by (p, t) > (r, s) if p > r or p = r and t < s then

Lp,t (G) ⊆ Lr,s(G) if (p, t) > (r, s).

Moreover, this inclusion is strict. It follows trivially that we have the inclusions

M(p, t ; q, s) ⊆ M(r, u; w, v) if (p, t) ≤ (r, u) and (q, s) ≥ (w, v).

Furthermore, the point mass measure at the identity is not in M(p, t ; q, s) if (p, t) <
(q, s) and this implies, in particular, that M(p, t ; p, s) �= M(p; p) if t > s.

There is one other inequality relating Lorentz norms with different first indices
which we will need.
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Proposition 2.1 Suppose 1 < p1 < p2 < ∞ and 1 ≤ q1 < q2 < ∞. Then

‖ f ‖∗p1,q1
≤
(

q1

p1

)1/q1
(

p2

q2

)1/q2
(

p1 p2(q2 − q1)

q1q2(p2 − p1)

)1/q1−1/q2

‖ f ‖∗p2,q2
.

Proof As q2/q1 > 1, Hölder’s inequality implies

‖ f ‖∗p1,q1
=
(

q1

p1

∫ 1

0

(
x1/p1 f ∗(x)

) q1 dx

x

) 1/q1

≤
(

q1

p1

)1/q1
(∫ 1

0

(
x1/p2 f ∗(x)

) q2 dx

x

) 1/q2
(∫ 1

0
x

q1q2(p2−p1)
p1 p2(q2−q1)

dx

x

) 1/q1−1/q2

.

Because q1q2(p2 − p1)/p1 p2(q2 − q1) > 0,∫ 1

0
x

q1q2(p2−p1)
p1 p2(q2−q1)

dx

x
=

p1 p2(q2 − q1)

q1q2(p2 − p1)
.

Using the definition of ‖ f ‖∗p2,q2
completes the proof.

As with the classical Lp spaces, the trigonometric polynomials are dense in Lp,q(G)
whenever 1 < p < ∞ and q < ∞. Also, as the spaces Lp,q(G) for 1 < p < ∞, q < ∞
are homogeneous Banach spaces, any bounded approximate identity for L1, say {kα},
satisfies

‖kα ∗ f ‖(p,q) → ‖ f ‖(p,q).

Two very important theorems for the study of the spaces M(p, q; r, s) are the weak
and strong interpolation theorems which are similar to the Riesz-Thorin interpola-
tion theorem for the Lp spaces. We will state them here for the convenience of the
reader. Proofs may be found in [10].

Notation Given p j , q j , r j , s j and 0 ≤ θ ≤ 1 define pθ, qθ, rθ, sθ by

1

pθ
=

1 − θ

p0
+

θ

p1

1

qθ
=

1 − θ

q0
+

θ

q1

1

rθ
=

1 − θ

r0
+

θ

r1

1

sθ
=

1 − θ

s0
+

θ

s1
.

Weak Interpolation Theorem Suppose T is quasi-linear and for p0 < p1, r0 �= r1

we have
‖T f ‖∗ri ,si

≤ Bi‖ f ‖∗pi ,qi
for all f ∈ Lpi ,qi , i = 0, 1.

If q ≤ s then
‖T f ‖∗rθ ,s ≤ Bθ‖ f ‖∗pθ ,q.
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Strong Interpolation Theorem Suppose T is a sublinear operator and

‖T f ‖∗ri ,si
≤ Bi‖ f ‖∗pi ,qi

for all f ∈ Lpi ,qi , i = 0, 1.

Then
‖T f ‖∗rθ,sθ ≤ BB1−θ

0 Bθ
1‖ f ‖∗pθ,qθ

.

An immediate corollary of the weak interpolation theorem is that convolution by
a measure on G is an operator in M(p, x; p, x) for all 1 < p < ∞.

2.2 Lorentz-Improving Multipliers

Multipliers in M(p, t ; q, s) with (p, t) < (q, s) are interesting since not all measures,
or even all L1 functions, belong to these spaces (see [6] and [8]).

When there exists some p > 2 such that the multiplier T maps L2(G) to Lp(G)
then T is said to be Lp-improving. When there exists some 1 < p < ∞ and s < t
such that T maps Lp,t (G) to Lp,s(G) then T is called Lorentz-improving. Lp-improving
multipliers have been studied by many authors. Examples include all Lq functions for
q > 1, Riesz products and some singular measures on curves (cf. [13], [3], [9] and
[2], as well as the references cited therein).

Lorentz-improving multipliers are a refinement of the notion of Lp-improving
multipliers; indeed, all Lp-improving multipliers are Lorentz-improving but not the
converse. In fact, there exist integrable functions which are not Lp-improving, but
belong to M(p,∞; p, 1) for all 1 < p < ∞ [8].

The inclusions of the Lorentz spaces imply that M(r, v; w, u) ⊆ M(r + ε; w − ε)
for all ε > 0, hence if r < w then the operators in M(r, v; w, u) are Lp-improving
multipliers. Together with the previous remark this implies that M(r, v; w, u) �=
M(p, t ; p, s) for any s < t . Hence our interest is in determining when the spaces
M(r, v; r, u) and M(p, t ; p, s) are distinct.

3 Circle Group

In this section we will prove non-equalities of classes of Lorentz space multipliers for
the case when G is the circle group T. But first we obtain a result which is valid for
all compact, abelian groups.

Proposition 3.1 Let G be any compact, abelian group and let P be a trigonometric
polynomial. Suppose that for all 1 < p < ∞ there are constants A(p) and B(p) such
that

‖P‖∗p ′,1 ≤ A(p)| supp P̂|1/p

and P : Lp → Lp has multiplier norm at most B(p). Then for any 1 ≤ s ≤ t ≤ ∞ there
is a constant c = c(p) such that

‖P‖M(p,t ;p,s) ≤ c(log | supp P̂|)1/s−1/t .
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Remark 3.1 Of course, the interest here is not that the polynomials of this proposi-
tion are Lp,t → Lp,s multipliers, as all polynomials are, but rather the estimates on the
magnitude of their multiplier norms in terms of the size of the support of the Fourier
transform.

Proof First assume t < ∞ and let f ∈ Lp,t . We want to use Proposition 2.1 with
p1 = p, q1 = s, p2 > p defined by the equation

1

p
− 1

p2
=

1

log |supp P̂| ,

and q2 = t p2/p. Notice the proposition does indeed apply since 1 < p < p2 < ∞
and 1 ≤ s = q1 ≤ t < q2 < ∞, and hence yields the bound
(3.1)

‖P ∗ f ‖∗p,s ≤
(

s

p

)1/s( p2

q2

)1/q2
(

pp2(q2 − s)

sq2(p2 − p)

)1/s−1/q2

‖P ∗ f ‖∗p2,q2

≤
(

s

p

)1/s( p2

q2

)1/q2
(

1

s
− 1

q2

)1/s−1/q2
(

1
1
p − 1

p2

)1/s−1/q2

‖P ∗ f ‖∗p2,q2
.

Now,
1

s
− 1

q2
=

1

s
− 1

t
+

p

t log |supp P̂|
hence (

1
1
p − 1

p2

)1/s−1/q2

≤ (log |supp P̂|)1/s−1/t ep/t .

Since ( 1
s − 1

q2
) ≤ 1, we may simplify (3.1) to

‖P ∗ f ‖∗p,s ≤
(

s

p

)1/s( p2

q2

)1/q2

(log |supp P̂|)1/s−1/t ep/t‖P ∗ f ‖∗p2,q2
.

Take α = p/p2. Since
(

(P ∗ f )∗
)α

=
(

(P ∗ f )α
)∗

, αp2 = p and αq2 = t , it is a
routine calculation to show

‖P ∗ f ‖∗p2,q2
≤ (sup |P ∗ f |)1−α(‖P ∗ f ‖∗p,t )

α.

It follows from [10] and the hypotheses of the proposition that

sup |P ∗ f | ≤ p ′‖P‖∗p ′,1 ‖ f ‖∗p,∞ ≤ p ′A(p)| supp P̂|1/p ‖ f ‖∗p,t .

The assumption that ‖P‖M(r;r) ≤ B(r) for all r, together with the weak interpolation
theorem, ensures that ‖P ∗ f ‖∗p,t ≤ B1(p)‖ f ‖∗p,t for all p and t . Thus

‖P ∗ f ‖∗p2,q2
≤ c(p)| supp P̂|(1−α)/p ‖ f ‖∗p,t
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for some constant c(p). But (1 − α)/p = (log |supp P̂|)−1, so | supp P̂|(1−α)/p is
bounded. This means

‖P ∗ f ‖∗p2,q2
≤ c(p)‖ f ‖∗p,t .

Returning to (3.1) we see this gives

‖P ∗ f ‖∗p,s ≤ c(p)

(
p2

q2

)1/q2

(s)1/s(log |supp P̂|)1/s−1/t‖ f ‖∗p,t

≤ c(p)(log |supp P̂|)1/s−1/t‖ f ‖∗p,t

with the finally inequality resulting from the observation that s1/s ≤ 1 and p2/q2 ≤
p. This proves that if 1 < p < ∞ and s ≤ t < ∞ then

‖P‖M(p,t ;p,s) ≤ c(p)(log |supp P̂|)1/s−1/t .

In particular, if s �= 1 a duality argument proves

‖P‖M(p,∞;p,s) = ‖P‖M(p ′,s ′ ;p ′,1) ≤ c(p)(log |supp P̂|)1−1/s ′ = c(p)(log |supp P̂|)1/s.

It only remains to consider the case t = ∞ and s = 1. For this, note that it is
shown in [8] that ‖ f ‖(p,1) = limsn→1 ‖ f ‖(p,sn) and therefore

‖P ∗ f ‖(p,1) ≤ lim sup
sn→1

‖P‖M(p,∞;p,sn) ‖ f ‖(p,∞)

≤ c(p)(log |supp P̂|)‖ f ‖(p,∞)

which completes the proof.

Interesting classes of examples in the setting of the circle include the Dirichlet,
Fejer and de la Vallée Poussin kernels.

Proposition 3.2 Let G be the circle group. Suppose λ is an integer, 1 < p < ∞ and
1 ≤ s ≤ t ≤ ∞. Let P denote either the Dirichlet kernel of degree λN , the Fejer of degree
λ8N or the de la Vallée Poussin kernel of degree 2λ8N + 1. There is a constant c = c(λ, p)
(but independent of N) such that

‖P‖M(p,t ;p,s) ≤ cN1/s−1/t .

Proof It is well known that for any of these kernels the Lp → Lp multiplier norms
are bounded independently of N , thus we only need check the Lorentz norms, Lp,1.
We will do this for the Fejer kernel, KN , of degree λ8N . The other two kernels are
similar.

Observe that

1

n + 1

(
sin(n + 1)x/2

sin x/2

)2

χ[0,π] ≤
(π

2

)2
(n + 1)χ[0,π/n] +

1

n + 1

(π

x

)2
χ[π/n,π]

≡ f1 + f2.
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Since the function f1 is non-increasing we can easily determine its Lorentz norms:

‖ f1‖∗p,1 ≤ c

∫ π/n

0
t1/p(n + 1)

dt

t

≤ c(n + 1)n−1/p = cn1/p ′
.

The function f2 has the same distribution as the decreasing function

1

n + 1

(
π

x + π/n

)2

χ[0,π−π/n].

Consequently

‖ f2‖∗p,1 ≤
c

n + 1

∫ π−π/n

0
t1/p

(
π

t + π/n

)2 dt

t

≤ c

n + 1

n−2∑
k=0

∫ π(k+1)/n

πk/n
t1/p

(
π

t + π/n

)2 dt

t

≤ c

n + 1

n−2∑
k=0

(
π

π(k + 1)/n

)2(k + 1

n

)1/p

≤ cn1/p ′
n−1∑
k=1

k−2+1/p ≤ cn1/p ′
.

Combining these results and taking n = λ8N shows that ‖KN‖∗p,1 ≤ cλ8N/p ′
=

c| supp K̂N |1/p ′
as required.

Our next goal is to prove that the upper bound given in this proposition is the
order of magnitude of the multiplier KN , for sufficiently large λ. This will be accom-
plished by finding a suitable test function. First we will describe the test function and
establish some basic properties of it.

Test Function Let λ be a large integer (λ = 1000 will suffice) and for convenience set
MN = 2λN + 1. Let DN be the Dirichlet kernel of degree λN . Set x j = 2( j −1)/

√
MN

for j = 1, . . . , 2N and set zk = 3Nk/
√

MN for k = 1, . . . , N . Define D j,k(x) =
DN

(
x − (x j + zk)

)
and

D̃ j,k(x) =

{
D j,k(x) if x ∈ [ −2

MN
, 2

MN
] + x j + zk

0 else.

Notice that if N is sufficiently large than the functions D̃ j,k(x) are disjointly sup-
ported. The test function will be

(3.2) FN (x) =
1

MN

N∑
k=1

2−k/p
2k∑

j=1

D̃ j,k(x).
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Proposition 3.3 Let 1 < p < ∞ and 1 ≤ t ≤ ∞. There is a constant c = c(p) such
that

‖FN‖∗p,t ≤ cN1/tM−1/p
N .

Proof Without loss of generality we may assume N is sufficiently large that the func-

tions D̃ j,k(x) are disjointly supported. As |D̃ j,k(x)| ≤ MN this means that if gk ≡∑2k

j=1 D̃ j,k(x) then |gk| ≤ MN . Also, if n is (temporarily) fixed and x ∈ supp gk for
some k > n, then

|FN (x)| ≤ 2−k/p ≤ 2−(n+1)/p.

Therefore

m{x : |FN (x)| ≥ 2−n/p} ≤ m
( n⋃

k=1

supp gk

)
≤

n∑
k=1

2k 4

MN
≤ 2n+3

MN
.

Furthermore, |FN (x)| ≤ 2−1/p for all x and

m{x : |FN (x)| �= 0} ≤
N∑

k=1

2k 4

MN
≤ 2N+3

MN
.

These calculations show

(1) F∗
N (0) ≤ 2−1/p

(2) F∗
N (2n+3/MN ) ≤ 2−n/p for n = 1, . . . , N

(3) F∗
N (y) = 0 for y > 2N+3/MN .

As F∗
N is a non-increasing function these three properties imply that if t < ∞ then

(‖FN‖∗p,t )
t ≤ c

(∫ 16/MN

0

(
x1/pF∗

N (x)
) t dx

x
+

N−1∑
n=1

∫ 2n+4/MN

2n+3/MN

(
x1/pF∗

N (x)
) t dx

x

)

≤ c

Mt/p
N

(
2−t/p +

N−1∑
n=1

2−nt/p(2(n+4)t/p − 2(n+3)t/p)
)
≤ c24t/pN

Mt/p
N

.

Therefore ‖FN‖∗p,t ≤ cN1/t M−1/p
N .

Similarly,

‖FN‖∗p,∞ ≤ sup
n

2−n/p

(
2n+4

MN

)1/p

=
c

M1/p
N

.

In order to obtain lower bounds on the Lorentz norm of KN ∗ FN we will need to
make delicate estimates which depend upon some elementary facts about the Dirich-
let and Fejer kernels. These are recorded here for the convenience of the reader.

Lemma 3.4 Let dn be the Dirichlet kernel of degree n and kn the Fejer kernel of degree

n8. Let d̃n denote dn restricted to the interval [ −2
2n+1 ,

2
2n+1 ]. For n sufficiently large the

following are true:

https://doi.org/10.4153/CJM-2001-024-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-024-5


574 Kathryn E. Hare and Enji Sato

(1) If |t| ≤ 1/n3 then |dn(x + t) − dn(x)| ≤ 1.
(2) If |t| ≥ 1/n3 then |kn(t)| ≤ π2/n2.
(3) Given 0 < δ < 1 there exists α > 0 such that whenever |t| ≤ α/(2n + 1) then

|dn(t)| ≥ δ(2n + 1).

(4) For |t| ≤ 1/(2n + 1), |d̃n ∗ kn(t) − d̃n(t)| ≤ 2.
(5) Given 1 < p < ∞, there exists α > 0 such that whenever |t| ≤ α/(2n + 1) then

|d̃n ∗ kn(t)| ≥ 2−1/2p(2n + 1).

Proof The first three items are entirely routine exercises involving trigonometric
inequalities.

To prove (4) we use the fact if |t| ≤ 1/(2n + 1) and |x| ≤ 1/n3 then |t + x| ≤
2/(2n + 1), so that d̃n(t + x) = dn(t + x). Since |dn(x + t) − dn(t)| ≤ 1 when
|x| ≤ 1/n3 it follows that∣∣∣∣∫|x|≤1/n3

(
d̃n(t + x) − d̃n(t)

)
kn(x) dm(x)

∣∣∣∣ ≤ ∫ kn = 1.

Also,∣∣∣∣∫|x|>1/n3

(
d̃n(t + x) − d̃n(t)

)
kn(x) dm(x)

∣∣∣∣ ≤ 2(2n + 1)

∫
|x|>1/n3

kn(x) dm(x)

≤ 2(2n + 1)π2/n2 ≤ 1.

Combining these estimates gives

|d̃n ∗ kn(t) − d̃n(t)| ≤
∣∣∣∣∫ ( d̃n(t + x) − d̃n(t)

)
kn(x) dm(x)

∣∣∣∣ ≤ 2.

Item (5) is a corollary of (3) and (4).

We continue to use the notation DN for the Dirichlet kernel of degree λN , KN for
the Fejer kernel of degree λ8N and MN = 2λN + 1.

Lemma 3.5 Let 1 < p < ∞. There is a constant α > 0 such that for any n =
2, . . . , N

m{x : |FN ∗ KN (x)| ≥ 2−n/p} ≥ α2n/MN .

Proof Choose α > 0 as in item (5) such that whenever |t| ≤ α/MN then
|D̃N ∗ KN (t)| ≥ 2−1/2pMN . Without loss of generality we may assume α < 1. Tem-

porarily fix j, k and consider D̃ j,k(x) ∗ KN . If |x − (x j + zk)| ≤ α/MN then by (5) we
must have

|D̃ j,k ∗ KN (x)| ≥ 2−1/2pMN ,

and hence

|FN ∗ KN (x)| ≥ 2−k/p

MN
|D̃ j,k ∗ KN | ≥ 2−(k+1)/p.
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Thus

{x : |FN ∗ KN (x)| ≥ 2−n/p} ⊇
n−1⋃
k=1

2k⋃
j=1

{x : |x − (x j + zk)| ≤ α/MN}

and adding the measure of these disjoint intervals completes the proof of the lemma.

Proposition 3.6 Let 1 < p < ∞ and 1 ≤ s < t ≤ ∞. There is a constant c = c(p)
such that

‖KN‖M(p,t ;p,s) ≥ cN1/s−1/t .

Proof From the lemma we have that (FN ∗ KN )∗(α2n/MN ) ≥ 2−n/p for n =
2, . . . , N . Hence for s �= ∞

(‖FN ∗ KN‖∗p,s)
s ≥ s

p

N−1∑
n=2

∫ α2n+1/MN

α2n/MN

(
x1/p(FN ∗ KN )∗(x)

) s dx

x

≥ cαs/pN

Ms/p
N

.

Combining this with the upper bound on the norm of FN we obtain

‖KN‖M(p,t ;p,s) ≥ ‖FN ∗ KN‖(p,s)

‖FN‖(p,t)
≥ c

N1/sM−1/p
N

N1/t M−1/p
N

= cN1/s−1/t

Together, Propositions 3.2 and 3.6 establish the order of magnitude of the multi-
pliers KN and show that the M(p, t ; p, s) and M(p, q; p, r) norms are not comparable
if 1/s − 1/t �= 1/r − 1/q. This certainly ensures that the spaces are different; indeed,
we now use these kernels to produce examples of multipliers which belong to certain
Lorentz spaces, but not to others.

Theorem 3.7 Let δ > ε > 0. There is an integrable function F, on the circle, such that
whenever 1 < p < ∞, 0 ≤ 1/s − 1/t ≤ ε and 1/r − 1/q ≥ δ then F ∈ M(p, t ; p, s),
but F /∈ M(p, q; p, r).

Proof Set 2τ = δ + ε. Let K2N and dN denote the Fejer and Dirichlet kernels of
degree λ2N 8 respectively, and let K ′

2N (x) = K2N (x)eiLN x for N = 1, 2, . . . where the

integers LN are chosen inductively to ensure that the Fourier transforms K̂ ′
2N have

disjoint support. We take

F =
∑

N

2−τNK ′
2N .
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The function F belongs to L1(T) since
∑

N 2−τN < ∞. If 1/s − 1/t ≤ ε then F
belongs to M(p, t ; p, s) since

‖F‖M(p,t ;p,s) ≤
∑

N

2−τN‖K2N‖M(p,t ;p,s) ≤ c
∑

N

2−τN 2N(1/s−1/t) < ∞

as τ > 1/s − 1/t .
On the other hand, in the proof of the previous proposition we saw that there were

functions F2N satisfying ‖K2N ∗ F2N‖(p,r) ≥ c2N(1/r−1/q)‖F2N‖(p,q). Let f2N = F2N ∗ dN .

Because supp f̂2N ⊆ supp K̂2N and the functions K̂ ′
2N have disjoint support, it follows

that |F ∗ f2N (x)eiLN x| = |K2N ∗ f2N |2−τN . Moreover, as ‖dN‖M(p,q;p,q) ≤ c for some
constant c = c(p) which is independent of N , it follows that ‖ f2N‖(p,q) ≤ c‖F2N‖(p,q).
Thus if F ∈ M(p, q; p, r) then we would have

∞ > ‖F‖M(p,q;p,r) ≥ sup
N

2−τN‖K2N ∗ f2N‖(p,r)

‖ f2N‖(p,q)
≥ c sup

N
2−τN 2N(1/r−1/q),

and this is a contradiction since τ < 1/r − 1/q.

Remark 3.2 It would be interesting to know if this could be done by a shorter
method, perhaps using Young-type convolution inequalities (see [10] or [11]) and
the fact that an even function

∑
an cos nx with an ↓ 0 belongs to L(p, q) for 1 <

p < ∞ if and only if
∑

aq
nnq/p ′−1 < ∞ [14]. For our Lorentz-improving multiplier

problem one would seem to need to study the limiting behaviour as p → 1, in the
latter theorem.

Remark 3.3 In Section 5 we will use this result to help prove the stronger Theo-
rem 5.4 which is valid for all infinite, compact, abelian groups.

Corollary 3.8 M(p, t ; p, s) ∩ L1(T) �= M(p, q; p, r) if 0 < 1/s − 1/t �= 1/r − 1/q.

Proof If r < q then this is obvious from the theorem. If r ≥ q it follows trivially
from the fact that not all integrable functions are Lorentz-improving. (See Section 2.)

Remark 3.4 We do not know if M(p, t ; p, s) = M(p, q; p, r) when 1/s − 1/t =
1/r − 1/q (other than for the trivial case M(2, t ; 2, s) = M(2, s ′; 2, t ′)).

Spaces of Lorentz-improving multipliers can also be shown to be distinct when
the first indices are different. For this we construct Rudin-Shapiro type polynomials
built from Fejer kernels and determine their multiplier norms.

Rudin-Shapiro Type Polynomials Choose y1, . . . , yN such that the intervals

N∑
j=1

ε j y j +

[ −4

λN/3
,

4

λN/3

]
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are disjoint for ε j = 0, 1. Let L(y j ) denote translation by y j . Set ρ0 = σ0 = KN (the
λ8N-Fejer kernel, as before) and inductively define the Rudin-Shapiro polynomials
ρn+1 and σn+1 by

ρn+1 = ρn − L(yn+1)σn

σn+1 = ρn + L(yn+1)σn.

Then ρn is a linear combination of translated Fejer kernels, with coefficients equal to
±1.

Also, let K̃N be KN restricted to [−λ−3N , λ−3N], set ρ̃0 = σ̃0 = K̃N and define ρ̃n

and σ̃n correspondingly.

Lemma 3.9 For ρn, defined as above, the L2 → L2 multiplier norm is at most c2n/2.
For 1 < p < 2 and x ∈ [1,∞] the Lp,x → Lp,x multiplier norm is at most c2n/p.

Proof Since ρn is a sum of 2n trigonometric polynomials of L1 norm one, we clearly
have ‖ρn‖1 ≤ 2n and hence the L1 → L1 multiplier norm is at most 2n. Also, the
parallelogram law gives that

‖ρn ∗ f ‖2
2 + ‖σn ∗ f ‖2

2 ≤ 2n+1‖ρ0‖2
1 ‖ f ‖2

2,

thus the L2 → L2 multiplier norm is at most c2n/2. An application of the weak
interpolation theorem yields the desired result when 1 < p < 2.

Upper bounds on the multiplier norms of ρN are now easy to obtain.

Proposition 3.10 For 1 < p < 2 and 1 ≤ s ≤ t ≤ ∞

‖ρN‖M(p,t ;p,s) ≤ c2N/pN1/s−1/t .

For p = 2 and 1 ≤ s ≤ t ≤ ∞

‖ρN‖M(2,t ;2,s) ≤


c2N/2N1/s−1/t if s ≤ 2 ≤ t

c2N/2N1/2−1/t if 2 ≤ s ≤ t

c2N/2N1/s−1/2 if s ≤ t ≤ 2.

Proof Let VN denote the de la Vallée Poussin kernel of degree λ8N . For any f ∈ Lp,t

Proposition 3.2 implies

‖VN ∗ f ‖∗p,s ≤ cN1/s−1/t‖ f ‖∗p,t .

If 1 < p < 2 the lemma above yields

‖ρN ∗VN ∗ f ‖∗p,s ≤ c2N/p‖VN ∗ f ‖∗p,s.
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As ρN is a trigonometric polynomial with Fourier transform supported on
{−λ8N , . . . , λ8N}, and V̂N = 1 on this set, we have ρN ∗VN = ρN . Hence

‖ρN ∗ f ‖∗p,s = ‖ρN ∗VN ∗ f ‖∗p,s.

The proof is now obvious if p �= 2.
The argument is slightly different if p = 2. Here we observe that ‖ρN‖M(2;2) ≤

c2N/2 means that |ρ̂N(k)| ≤ c2N/2 for all k. Moreover, ρ̂N(k) = 0 if |k| > λ8N . Thus
if f ∈ L2,q for q ≥ 2 then

‖ρN ∗ f ‖∗2,2 =
(∑

k

|ρ̂N (k) f̂ (k)|2
) 1/2

≤ c2N/2‖VN ∗ f ‖∗2,2

≤ c2N/2N1/2−1/q‖ f ‖∗2,q.

With this estimate the remainder of the argument for the case s ≤ 2 ≤ t is similar
to the one above:

‖ρN ∗ f ‖∗2,s = ‖ρN ∗VN ∗ f ‖∗2,s

≤ c‖ρN‖M(2,2;2,s) ‖VN‖M(2,t ;2,2) ‖ f ‖∗2,t

≤ c2N/2N1/s−1/2N1/2−1/t‖ f ‖∗2,t .

When 2 ≤ s ≤ t note that

‖ρN‖M(2,t ;2,s) ≤ ‖ρN‖M(2,t ;2,2) ≤ c2N/2N1/2−1/t .

The case s ≤ t ≤ 2 is similar.

Next, we find lower bounds on the multiplier norms. Notice that these are valid
for all s, t .

Proposition 3.11 For 1 < p ≤ 2 and 1 ≤ s, t ≤ ∞

‖ρN‖M(p,t ;p,s) ≥ c2N/pN1/s−1/t .

Proof We again use the test function FN of Proposition 3.3. Notice that |KN−K̃N | ≤
π2λ−2N (item (2) of Lemma 3.4), thus if N is sufficiently large and if |KN ∗ FN | ≥
2−n/p then |K̃N ∗ FN | ≥ 2−(n+1)/p. By Lemma 3.5

m{x : |K̃N ∗ FN | ≥ 2−n/p} ≥ α2n−1/MN .

Note that for N sufficiently large, supp FN ⊆ [−λ−N/3, λ−N/3]. Thus

supp K̃N ∗ FN ⊆ [−2λ−N/3, 2λ−N/3]
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and hence the choice of y j ensures that ρ̃N ∗ FN is a sum of 2N disjointly supported

translates of K̃N ∗ FN . This means

m{x : |ρ̃N ∗ FN | ≥ 2−n/p} ≥ 2Nm{x : |K̃N ∗ FN | ≥ 2−n/p} ≥ 2Nα2n−1/MN .

Thus (ρ̃N ∗ FN )∗(2Nα2n−1/MN) ≥ 2−n/p and the usual integration estimates give

‖ρ̃N ∗ FN‖∗p,s ≥ c2N/pN1/sM−1/p
N .

Since we already know ‖FN‖∗p,t ≤ cN1/t M−1/p
N it follows that

‖ρ̃N‖M(p,t ;p,s) ≥ c2N/pN1/s−1/t .

As
‖ρN − ρ̃N‖∞ ≤ 2N‖KN − K̃N‖∞ ≤ c2Nλ−2N

it is routine to check that we also have

‖ρN‖M(p,t ;p,s) ≥ c2N/pN1/s−1/t

(for a different constant c).

The previous two propositions show that Lorentz-improving multiplier spaces
with first indices r < p ≤ 2 are distinct. Indeed, we can now obtain the follow-
ing results.

Theorem 3.12 Let G be the circle group, 1 < p ≤ 2 and 1 ≤ s ≤ t ≤ ∞. There exists
a multiplier F ∈ M(p, t ; p, s) which does not belong to M(r, v; r, u) for any 1 < r < p
and 1 ≤ u, v ≤ ∞.

Corollary 3.13 Let G be the circle group. Suppose 1 < r, p < ∞ and 1 ≤ s, t, u, v ≤
∞, with s ≤ t and u ≤ v. If r �= p, p ′ then

M(p, t ; p, s) �= M(r, v; r, u).

Proof This is immediate from the theorem since M(p, t ; p, s) = M(p ′, s ′; p ′, t ′) and
M(r, v; r, u) = M(r ′, u ′; r ′, v ′).

Proof of Theorem Define

F =
∑

N

ρ ′
N N−32−N/p

where the functions ρ ′
N are suitable translates of ρN whose Fourier transforms have

disjoint support. By Proposition 3.10

‖F‖M(p,t ;p,s) ≤
∑

cNαN−3
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for
α = max{1/s − 1/t, 1/2 − 1/t, 1/s − 1/2}.

As α ≤ 1, ‖F‖M(p,t ;p,s) < ∞ and thus F ∈ M(p, t ; p, s).
Similar arguments to those used in the proof of Theorem 3.7 show that if r < p

then

‖F‖M(r,v;r,u) ≥ sup
N

‖ρN‖M(r,v;r,u)N
−32−N/p

≥ sup
N

cN−42−N/p2N/r.

But this supremum is infinite since 1/r − 1/p > 0, and therefore F /∈ M(r, v; r, u) for
any r < p.

This theorem is also strengthened in Section 5.

4 Groups Whose Duals Have Elements of Finite Order

Throughout this section we will assume G is an infinite, compact, abelian group and
X is a finite subgroup of Ĝ. We denote by H the annihilator of X. By replacing the
Dirichlet and Fejer kernels on the circle with the Dirichlet kernel DH = χH/m(H)
we will be able to prove the same non-equalities of Lorentz multiplier spaces.

First we find bounds on the Lorentz multiplier norms of DH which depend on
the size of the finite group X. For this we need to calculate Lorentz norms of an
appropriate test function.

Test Function Assume |X| ≥ 100N . We claim first that there exist

{x1, . . . , xN , z1, . . . , zN} ⊆ G

such that:

(i) {∑N
1 ε j x j + H : ε j = 0, 1} are pairwise disjoint, and

(ii) {∑n
1 ε j x j + zn + H : ε j = 0, 1; 1 ≤ n ≤ N} are pairwise disjoint.

This claim can be proved by induction: To begin, choose any x1 /∈ H. Assume
{x1, . . . , xn−1} ⊆ G, for n ≤ N , are chosen such that the sets {∑n−1

1 ε j x j + H}ε j=0,1

are pairwise disjoint. As |G/H| = |X| > 3N , there exists xn ∈ G with xn /∈
{∑n−1

1 β j x j + H : β j = 0, 1,−1} (here β j = 0, 1 if the order of x j = 2). This
produces {x1, . . . , xN} satisfying (i). Now further assume that {z1, . . . , zn−1} ⊆ G,

for n ≤ N , have been chosen such that {∑k
1 ε j x j + zk + H : ε j = 0, 1; 1 ≤ k ≤ n− 1}

are pairwise disjoint. Since

∣∣∣{ N∑
1

β jx j + zk : β j = 0, 1,−1; 1 ≤ k ≤ n − 1
}∣∣∣ ≤ N3N
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and |G/H| > 10N , there exists zn ∈ G such that

zn /∈
n−1⋃
k=1

{ N∑
1

β j x j + zk + H : β j = 0, 1,−1
}

(where β j = 0, 1 if the order of x j = 2). In this way we obtain {z1, . . . , zN} satisfying
(ii).

For 1 ≤ n ≤ N define a function Jn(x) on G by

Jn(x) =
2n∑

k=1

χvk+H where {v1, . . . , v2n} = {
n∑

j=1

ε j x j : ε j = 0, 1}.

By (i), Jn is a sum of 2n disjoint translates of χH . As

χ̂vk+H(γ) = m(H)γ(vk)χX,

Jn(x) is a trigonometric polynomial on G. We also define

J ′n(x) = Jn(x − zn) for 1 ≤ n ≤ N

and finally, our test function,

(4.1) FN (x) =
N∑

n=1

2−n/p J ′n(x).

It is useful to note that the sets {supp J ′n}1≤n≤N are pairwise disjoint by (ii), and

supp F̂N ⊆ X.

Lemma 4.1 For the function FN defined above, there are constants A(p) and B(p)
such that for 1 < p < ∞ and 1 ≤ q ≤ ∞ we have

A(p)m(H)1/pN1/q ≤ ‖FN‖(p,q) ≤ B(p)m(H)1/pN1/q.

Proof This is a straightforward calculation: Since

m{|FN | > t} =

{∑n
k=1 2km(H) if 2−(n+1)/p ≤ t < 2−n/p

0 if t ≥ 2−1/p,

we obtain

F∗
N (u) =


2−1/p if u < 2m(H)

2−n/p if
∑n−1

k=1 2km(H) ≤ u <
∑n

k=1 2km(H)

0 if u ≥∑N
k=1 2km(H).
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Thus if q < ∞ then ‖FN‖∗p,q equals

(
q

p

(∫ 2m(H)

0
(t1/p2−1/p)q dt

t
+

N∑
n=2

∫ Pn
k=1 2km(H)

Pn−1
k=1 2km(H)

(t1/p2−n/p)q dt

t

)) 1/q

while
‖FN‖∗p,∞ = sup

1≤n≤N
2−n/p(2n+1 − 2)1/pm(H)1/p.

Simplifying gives the stated result.

The Lorentz multiplier norms of the Dirichlet kernels DH = χH/m(H) can now
be easily calculated.

Proposition 4.2 Let 1 < p < ∞ and 1 ≤ s < t ≤ ∞. There are constants c1 and c2

which depend on p (but not s, t or X) such that

c1(log |X|)1/s−1/t ≤ ‖DH‖M(p,t ;p,s) ≤ c2(log |X|)1/s−1/t .

Proof We will show first that the right hand inequality follows from Proposition 3.1.
As ‖DH‖1 = 1, the Lp multiplier norms are certainly bounded independently of H.

Because

m{x : DH(x) > t} =

{
m(H) if 0 ≤ t < m(H)−1

0 if t ≥ m(H)−1

we have D∗
H(y) = m(H)−1 if 0 ≤ y < m(H) and D∗

H(y) = 0 if y ≥ m(H). Thus

‖DH‖∗p,1 = m(H)−1/p ′
= | supp D̂H |1/p ′

= |X|1/p ′
.

By Proposition 3.1 we obtain

‖DH‖M(p,t ;p,s) = ‖DH‖M(p ′,s ′ ;p ′,t ′) ≤ c2(log |X|)1/s−1/t .

To prove the left hand inequality we set N = [ 1
7 log |X|] so that |X| ≥ 100N

(without loss of generality N is very large) and use the test function FN defined above.
Recall that supp F̂N ⊆ X and D̂H = χX , thus DH ∗ FN = FN . Hence by the previous
lemma

‖DH‖M(p,t ;p,s) ≥ ‖DH ∗ FN‖(p,s)

‖FN‖(p,t)
=

‖FN‖(p,s)

‖FN‖(p,t)
≥ A(p)

B(p)
N1/s−1/t .

As N ≥ c log |X| this completes the proof.

We are now ready to prove the non-equality of certain Lorentz spaces when Ĝ
contains infinitely many elements of finite order.
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Theorem 4.3 Let G be an infinite, compact, abelian group and suppose that Ĝ con-
tains infinitely many elements of finite order. Let δ > ε > 0. There is an f ∈ L1(G) such
that whenever 1 < p < ∞, 1/s − 1/t ≤ ε and 1/r − 1/q ≥ δ, then f ∈ M(p, t ; p, s)
but f /∈ M(p, q; p, r).

Remark 4.1 This theorem, which parallels Theorem 3.7, is also used to prove the
stronger Theorem 5.4.

Proof Since Ĝ contains infinitely many elements of finite order there exist finite
subgroups Xn of Ĝ such that |Xn| ↑ ∞ as n → ∞. Without loss of generality we may
assume that {kn} is a strictly increasing sequence of positive integers with kn > n and

22kn ≤ |Xn| < 22kn+1

. Let Hn be the annihilator of Xn and choose {γn} ⊆ Ĝ such that
{Xn + γn} are disjoint. We define D ′

Hn
by

D̂ ′
Hn

(γ) = D̂Hn (γ − γn)

and set 2τ = δ + ε. The desired function is

f (x) =
∞∑

n=1

2−τkn D ′
Hn

.

In fact, since ‖D ′
Hn
‖1 = ‖DHn‖1 = 1, it is easy to see that f ∈ L1(G), and as

‖D ′
Hn
‖M(p,t ;p,s) = ‖DHn‖M(p,t ;p,s),

Proposition 4.2 implies that for any 1 ≤ s < t ≤ ∞

‖ f ‖M(p,t ;p,s) ≤
∞∑

n=1

2−τkn‖D ′
Hn
‖M(p,t ;p,s) ≤

∞∑
n=1

2−τkn B(p)(log |Xn|)1/s−1/t

≤ c
∞∑

n=1

2(1/s−1/t−τ )kn .

The final sum is finite since kn > n and τ > 1/s − 1/t , and hence f ∈ M(p, t ; p, s).
On the other hand, for n suitably large and N(n) = [log |Xn|/7] we consider the

test functions FN(n) defined in (4.1) (with X = Xn) and define F ′
N(n) by

F̂ ′
N(n)(γ) = F̂N(n)(γ − γn).

Since supp F̂N(n) ⊆ Xn it follows from the choice of {γn} that

| f ∗ F ′
N(n)| = 2−τkn |D ′

Hn
∗ F ′

N(n)| = 2−τkn |DHn ∗ FN(n)|.
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Thus if f ∈ M(p, q; p, r) then

∞ > ‖ f ‖M(p,q;p,r) ≥ sup
n

2−τkn‖DHn ∗ FN(n)‖(p,r)

‖FN(n)‖(p,q)

≥ sup
n

c2−τkn N(n)(1/r−1/q)

from Lemma 4.1. But this is a contradiction because N(n) ≥ c2kn , kn → ∞, and
τ < 1/r − 1/q.

Corollary 4.4 If G is as in the theorem and 0 < 1/s − 1/t �= 1/r − 1/q then
M(p, t ; p, s) ∩ L1(G) �= M(p, q; p, r).

Next we consider the spaces M(p j , t j ; p j , s j) for j = 1, 2 and p1 �= p2, p ′
2.

Proposition 4.5 Let G be an infinite, compact, abelian group, 1 < p < 2 and let XN

be a finite subgroup with |XN | ≥ 100N. There exist constants c1 and c2 depending on p,
s, t and a trigonometric polynomial ρN such that

c12N/pN1/s−1/t ≤ ‖ρN‖M(p,t ;p,s) ≤ c22N/pN1/s−1/t .

Proof As usual let HN denote the annihilator of XN . The same type of arguments
as used in the construction of the test function allow one to show there exist

{x1, . . . , xN , y1, . . . , yN , z1, . . . , zN} ⊆ G

such that { n∑
1

ε j x j + zn +
n∑
1

ε ′
j y j + HN : ε j , ε

′
j = 0, 1; 1 ≤ n ≤ N

}
are pairwise disjoint. Construct Rudin-Shapiro type polynomials as in Section 3 with
this choice for {y1, . . . , yN} and taking ρ0 = σ0 = DHN . Then for

{u1, . . . , u2N} =
{ N∑

1

ε j y j : ε j = 0, 1
}

and a suitable choice of signs, rk = ±1, we have

ρN (x) =
1

m(HN )

2N∑
k=1

rkχuk+HN (x).

Notice ρN is a trigonometric polynomial and supp ρ̂N ⊆ XN . As in Proposition 3.10,

‖ρN‖M(p,t ;p,s) ≤ c22N/pN1/s−1/t .
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For the left hand inequality we again make use of our test function FN of (4.1).
Since χHN ∗ χHN = m(HN )χHN , it follows that

ρN ∗ FN =
N∑

n=1

2−n/p
2n∑

k=1

2N∑
l=1

rkχzn+vk+ul+HN (x)

where

{v1, . . . , v2N} =
{ n∑

1

ε j x j : ε j = 0, 1
}

.

The choice of zi , x j and yk ensures that the sets

{zn + vk + ul + HN : 1 ≤ k, l ≤ 2N , 1 ≤ n ≤ N}
are pairwise disjoint. Thus

m{|ρN ∗ FN | > t} =

{∑n
k=1 2k+N m(HN ) if 2−(n+1)/p ≤ t < 2−n/p

0 if t ≥ 2−1/p,

and so we obtain

(ρN ∗ FN )∗(u) =


2−1/p if u < 21+Nm(HN )

2−n/p if
∑n−1

k=1 2k+N m(HN ) ≤ u <
∑n

k=1 2k+N m(HN )

0 if u ≥∑N
k=1 2k+Nm(HN ).

Similar calculations to those in the proof of Lemma 4.1 show that

‖ρN ∗ FN‖(p,s) ≥ cm(HN )1/p2N/pN1/s.

But we previously saw that

‖FN‖(p,t) ≤ cm(HN )1/pN1/t ,

thus

‖ρN‖M(p,t ;p,s) ≥ ‖ρN ∗ FN‖(p,s)

‖FN‖(p,t)
≥ c2N/pN1/s−1/t .

Therefore ρN is the desired function.

Remark 4.2 Note that the lower bound,

‖ρN‖M(p,t ;p,s) ≥ c2N/pN1/s−1/t

remains true when p = 2. For the upper bound one can show, as was done in the
circle group case (Proposition 3.10), that

‖ρN‖M(2,t ;2,s) ≤


c2N/2N1/s−1/t if s ≤ 2 ≤ t

c2N/2N1/2−1/t if 2 ≤ s < t

c2N/2N1/s−1/2 if s < t ≤ 2.
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Armed with these results we can now prove the following corollary in essentially
the same manner as the proof of Theorem 3.12.

Corollary 4.6 Let G be an infinite, compact, abelian group and suppose that Ĝ con-
tains infinitely many elements of finite order. Suppose 1 < r, p < ∞ and 1 ≤
s, t, u, v ≤ ∞ with s ≤ t and u ≤ v. If r �= p, p ′ then

M(p, t ; p, s) �= M(r, v; r, u).

5 Non-Inclusions for Arbitrary Compact Abelian Groups

The key step needed to obtain similar results for general compact abelian groups is
the following proposition about homomorphic images.

Proposition 5.1 Let G and H be compact abelian groups and π : G → H a continuous,
onto homomorphism. Let F ∈ L1(H) and define a function F̃ on G by F̃ = F ◦ π. Then
F̃ ∈ L1(G) and for any p, q, r, s,

‖F̃‖Lp,q(G) = ‖F‖Lp,q(H) and ‖F‖M(p,q;r,s) ≤ ‖F̃‖M(p,q;r,s).

Proof In [7] it is shown that for any measurable function f on H we have ‖ f ‖Lp,q(H)

= ‖ f ◦ π‖Lp,q(G). Thus F̃ ∈ L1(G) and ‖F̃‖Lp,q(G) = ‖F‖Lp,q(H).
Suppose g ∈ Lp,q(H). Set f = g ◦ π. A change of variables argument proves that

F̃ ∗ f = (F ∗ g) ◦ π and hence

‖F ∗ g‖Lr,s(H) = ‖F̃ ∗ f ‖Lr,s(G) ≤ ‖F̃‖M(p,q;r,s) ‖ f ‖Lp,q(G).

But ‖ f ‖Lp,q(G) = ‖g‖Lp,q(H) and this certainly suffices to prove ‖F‖M(p,q;r,s) ≤
‖F̃‖M(p,q;r,s).

This proposition enables us to transfer results from the circle group to certain
other compact, abelian groups.

Corollary 5.2 Suppose G is a compact abelian group and π : G → T is a continuous,
onto homomorphism. If F ∈ L1(T) and F /∈ M(p, q; p, r) then F̃ ≡ F ◦ π ∈ L1(G) and
F̃ /∈ M(p, q; p, r).

Corollary 5.3 Suppose G is a compact abelian group whose dual contains an element
of infinite order. Let δ > ε > 0. There is a function F̃ ∈ L1(G) such that if 1 < p < ∞
and 1/s−1/t ≤ ε then F̃ ∈ M(p, t ; p, s), while if 1/r−1/q ≥ δ then F̃ /∈ M(p, q; p, r).

Proof Since the dual of G contains an element of infinite order the circle group T is
a homomorphic image of G. Let π be the canonical map from G to T. Let F be the
integrable function on T constructed in the proof of Theorem 3.7 and set F̃ = F ◦ π.
Clearly F̃ ∈ L1(G), and if 1 < p < ∞ then F̃ /∈ M(p, q; p, r) since F /∈ M(p, q; p, r)
for any p.
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Now F̃ =
∑

N 2−τNK ′
2N ◦ π for 2τ = δ + ε. Because K ′

2N ◦ π has the same Lorentz
norms as K2N , Proposition 3.1 implies that ‖K ′

2N ◦ π‖M(p,t ;p,s) ≤ c2N(1/s−1/t). As
τ > 1/s − 1/t ,

‖F̃‖M(p,t ;p,s) ≤
∑

N

2−τN‖K ′
2N ◦ π‖M(p,t ;p,s) ≤

∑
N

2−τN2N(1/s−1/t) < ∞

and hence F̃ ∈ M(p, t ; p, s) for every 1 < p < ∞.

We can now improve Theorems 3.7 and 4.3.

Theorem 5.4 Let G be an infinite, compact, abelian group and let 0 < τ < 1. There
is a function f ∈ L1(G) such that

f ∈
⋂

1<p<∞,
1/s−1/t=τ

M(p, t ; p, s) but f /∈
⋃

1<p<∞,
1/r−1/q>τ

M(p, q; p, r).

Proof Choose a sequence {pk} dense in (1,∞). Let {(qn, rn)} be a listing of the
rational pairs satisfying 1/rn − 1/qn > τ . Form a sequence {(Qn, Rn)} such that
each (Qn, Rn) equals some (qm, rm), and each pair (qm, rm) occurs infinitely often in
{(Qn, Rn)}. Take u such that 1 − 1/u = τ .

If the dual of G has an element of infinite order then Corollary 5.3 implies that for
every n there is a function fn ∈ L1(G) such that fn ∈ M(p, u; p, 1) for all 1 < p < ∞,
but fn /∈ M(p, Qn; p, Rn) for any p. Otherwise, all elements of Ĝ are of finite order
and Theorem 4.3 implies such a sequence of functions exist.

Let c1(n) = ‖ fn‖1 and let

c2(n) = max
1≤k≤n

‖ fn‖M(pk,u;pk,1).

Without loss of generality we may assume c1(n) and c2(n) ≥ 1.
Since fn /∈ M(pk, Qn; pk, Rn), for each n, k we can choose trigonometric polyno-

mials Pn,k of Lpk,Qn norm one such that

‖ fn ∗ Pn,k‖(pk,Rn) > n2nc1(n)c2(n).

Let { Jn} be a bounded approximate identity with finite support of Ĵn, ‖ Jn‖1 ≤ C and

‖ fn ∗ Jn ∗ Pn,k‖(pk,Rn) > n2nc1(n)c2(n) for all k ≤ n.

Multiply by appropriate characters γn so that the functions Fn = ( fn ∗ Jn)γn have
disjoint Fourier transforms and let

f =
∑

n

Fn

2nc1(n)c2(n)
.
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Since ‖ fn ∗ Jn‖1 ≤ Cc1(n) it is clear that f ∈ L1(G). Temporarily fix k. If n ≥ k then

‖ fn ∗ Jn‖M(pk,u;pk,1) ≤ C‖ fn‖M(pk,u;pk,1) ≤ Cc2(n),

and thus ∥∥∥∥ ∞∑
n=k

Fn

2nc1(n)c2(n)

∥∥∥∥
M(pk,u;pk,1)

≤ C.

As
∑k−1

n=1 Fn/
(

2nc1(n)c2(n)
)

is a trigonometric polynomial it follows that f ∈
M(pk, u; pk, 1) for all k. Since the sequence {pk} is dense, interpolating gives that
f ∈ M(p, u; p, 1) for all 1 < p < ∞. By duality f ∈ M(p,∞; p, u ′) for all p, and a
further interpolation argument yields that f ∈ M(p, t ; p, s) whenever 1/s−1/t = τ .

Because the Fourier transforms of the functions Fn are disjointly supported it fol-
lows that if k is fixed and n ≥ k,

‖ f ‖M(pk,Qn ;pk,Rn) ≥ ‖ fn ∗ Jn ∗ Pn,k‖(pk,Rn)

2nc1(n)c2(n)
> n.

Since (qm, rm) = (Qn, Rn) for infinitely many n ′s, f /∈ M(pk, qm; pk, rm) for any k, m.
Now suppose (q, r) is any pair with 1/r − 1/q > τ . Choose (qm, rm) such that

r ≤ rm, q ≥ qm, but still 1/rm − 1/qm > τ . Since f /∈ M(pk, qm; pk, rm) and
M(pk, qm; pk, rm) ⊇ M(pk, q; pk, r) it follows that f /∈ M(pk, q; pk, r) for any k.

Finally, assume f ∈ M(p, q; p, r) for some p and pair q, r satisfying 1/r−1/q > τ .
Pick pk > p such that if p/pk = β then β(1/r− 1/q) > τ . Since f ∈ L1 we have f ∈
M(∞,∞;∞,∞), and interpolating gives f ∈ M(pk, ak; pk, bk) for r/bk = q/ak = β.
But as 1/bk − 1/ak > τ this contradicts the previous paragraph. Hence f does not
belong to M(p, q; p, r) for any 1 < p < ∞ and (r, q) such that 1/r − 1/q > τ .

Corollary 5.5 Suppose G is any infinite, compact, abelian group, 1 < p < ∞ and
0 < 1/s − 1/t �= 1/r − 1/q. Then M(p, t ; p, s) �= M(p, q; p, r) and M(p, t ; p, s) �=
M(p ′, q; p ′, r).

Proof We only need observe that M(p ′, q; p ′, r) = M(p, r ′; p, q ′), 1/r − 1/q =
1/q ′ − 1/r ′, and then argue as in Corollary 3.8.

Corollary 5.6 Suppose G is any infinite, compact, abelian group and 1 < p < ∞.

(1) If 1 ≤ r < min(t, q) ≤ ∞ then M(p, q; p, r) � M(p, q; p, t).
(2) If 1 ≤ max(r, q) < v ≤ ∞ then M(p, v; p, r) � M(p, q; p, r).

Proof For (1), suppose r1 is chosen such that r < r1 < min(t, q). We clearly have
the inclusions

M(p, q; p, r) ⊆ M(p, q; p, r1) ⊆ M(p, q; p, t),

and the theorem proves M(p, q; p, r) �= M(p, q; p, r1).
The proof for (2) is similar.
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Remark 5.1 The reader should see [4, Theorems 24–26] for related results.

Corollary 5.7 Let G be an infinite, compact, abelian group and suppose 1 < p < ∞.
If 1 < q, r, u, v < ∞, 1/u − 1/v > 1/r − 1/q ≥ 0, v/u > q/r and u ′/v ′ > r ′/q ′,
then

M(p, v; p, u) ∩ L1(G) � M(p, q; p, r).

Proof The theorem clearly shows that M(p, v; p, u) ∩ L1(G) �= M(p, q; p, r) thus we
need only prove the inclusion. Observe that this is obvious from the inclusions of the
Lorentz spaces if both q ≤ v and r ≥ u, so we assume otherwise.

Let F ∈ M(p, v; p, u) ∩ L1(G) and choose α ∈ (0, 1] such that

1/r − 1/q = (1 − α)(1/u − 1/v).

First we claim that 1/q > (1 − α)/v. To see this observe that

1

q
− 1 − α

v
=

1

q
−
(

1

r
− 1

q

)
/
( v

u
− 1
)

=
1

q

( v

u
− q

r

)
/
( v

u
− 1
)

> 0

by the assumptions.
If q ≥ v then choose x > 0 satisfying 1/q = α/x + (1 − α)/v. The choice of α

ensures that 1/r = α/x + (1 − α)/u and x ≥ q ≥ 1. Certainly F : Lp,x → Lp,x and
hence by interpolating it follows that F maps Lp,q to Lp,r .

Otherwise q < v. But then r < u and consequently, r ′ > u ′. Similar arguments
show we can choose y ≥ 1 such that 1/r ′ = α/y + (1 − α)/u ′ and 1/q ′ = α/y +
(1 − α)/v ′. By duality F ∈ M(p ′, u ′; p ′, v ′), and again an interpolation argument
shows that

F ∈ M(p ′, r ′; p ′, q ′) = M(p, q; p, r).

Corollaries 3.13 and 4.6 also generalize to the case of an arbitrary compact abelian
group.

Theorem 5.8 Let G be an infinite, compact, abelian group. Suppose r, p ∈ (1,∞) and
s, t, u, v ∈ [1,∞] with s ≤ t and u ≤ v. If r �= p, p ′ then

M(p, t ; p, s) �= M(r, v; r, u).

Proof We argue in a similar way to Theorem 5.4: either T is a homomorphic image
of G, or Ĝ contains infinitely many elements of finite order. In the second case the
result is immediate from Corollary 4.6.

In the first case we consider the functions ρN and F used in the proof of Theo-
rem 3.12 and let VN denote the de la Vallée Poussin kernel of degree 2λ8N + 1. Let
π : G → T be the canonical map and define ρ̃N = ρN ◦ π, ṼN = VN ◦ π and
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F̃ = F ◦ π. As the Lorentz norms of VN and ṼN are the same, Proposition 3.1 im-
plies that ‖ṼN‖M(p,t ;p,s) ≤ cN1/s−1/t . Similar arguments to those used in the proofs
of Lemma 3.9 and Proposition 3.10 now show that if 1 < p ≤ 2 and 1 ≤ s ≤ t ≤ ∞
then

‖ρ̃N‖M(p,t ;p,s) ≤ c2N/pNα for α = max{1/s − 1/t, 1/s − 1/2, 1/2 − 1/t}.

Thus ‖F̃‖M(p,t ;p,s) < ∞. Since F /∈ M(r, v; r, u) the same is true for F̃.

When a measure µ is a Lorentz-improving multiplier then it follows by a standard
interpolation argument that µ improves all Lorentz spaces, in the sense that for every
1 < q < ∞ and 1 ≤ s ≤ ∞ there is some t = t(p, q, s) > s such that µ ∈
M(q, t ; q, s). Our last result illustrates that this fails to be true, in a very strong way,
for arbitrary Lorentz-improving multipliers.

Corollary 5.9 If 1 < p ≤ 2 then

M(p,∞; p, 1) �
⋃

1<r<p

M(r, 1; r,∞).

Proof This is part of the content of Theorem 3.12 for the circle group. For groups
which contain infinitely many elements of finite order, or arbitrary compact, abelian
groups, the argument is similar.
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