ON THE VECTOR SUM OF CONTINUA

J. W. GREEN anxp W. GUSTIN

I~ this note we investigate certain properties of a set formed as the vector sum
of continua. Our interest in this subject arose in connection with the preceding
paper Quasiconvex sets where we use, but do not prove, item 3 below.

Let X be a normed real vector space of dimension » with the » vectors aa as
a basis (M representing a variable index ranging over the » indices 1, . . ., »).
The parallelepipedal lattice consisting of all integral linear combinations
a= Y axax of the basis vectors a», the coefficients a) being integers, will be
denoted by 4.

Consider » continua Qx in X such that the Ath continuum Q) contains the
origin 0 and the basis vector a). Let Q = > QO be the vector sum of these »
continua Q,, that is, the set of all vector sums ¢ = Y g» with gxC Q». A simple
example of such a set is the solid parallepiped P = }_ P, where P, is the line
segment joining 0 and a,.

We shall prove that any vector sum Q, formed as above described, possesses
the following properties:

(1) Qs a continuum, 2 X=4+0¢,
(8) Q has interior points, @) wP)S w0,

where p is a measure on the space X invariant under translation.

1. We are to show that Q is a continuum: compact and connected.

We first demonstrate that Q is compact. To this end let ¢*= Y ¢\* with
¢\YC Qh be a sequence of points in Q, v running through the sequence T of posi-
tive integers. It is required to find a point ¢ C Q with g*— ¢ as v runs through
some subsequence of I'. Consider the sequence of points ¢i” in Q; as vy runs
through TI. Since Q; is compact a point ¢:C Q; and a subsequence I'; of T exists
with ¢;¥ — ¢1 as y runs through T;. Since Qs is compact a point ¢2CQ» and
a subsequence TI'; of T'; exists with ¢ — ¢» as v runs through I's. Continuing
this process recursively to the »th stage we obtain » points ¢xC Qx and »
sequences I'y,..., I', each a subsequence of the preceding one such that
@\Y — ¢ as vy runs through T, and hence also as v runs through I',. Putting
g = 2_¢» we have ¢ C Q, since ¢xC Q», and

= 2= T =g

as v runs through T',. This proves Q compact.
We next demonstrate that Q is connected by constructing for each point
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¢ C Q a connected set C containing the origin 0 and the point ¢. Let ¢ = 3¢
with ¢xC Q»; and define the points ¢, and sets Cy as follows:

co = 0, o = o1t g, Cv= a1t Oy, C = UG.

We note that Cy, being a translation of Q,, is connected and, since Q, contains
0 and ¢, contains ¢x_; and ¢). Consequently the set Cis connected and contains
¢o= 0 and ¢, = ¢. This proves Q connected.

2. Since the vectors a, constitute a basis for the » dimensional vector space
X, every vector x in the space may be expressed uniquely in the form

x = 2E(x)a,
the coordinate functionals £\ (x) being linear. Thus the function
w(x) = max | £(x)]

has the properties of a norm. Now any two norm topologies on X are topo-
logically equivalent, so we shall for convenience assume that w is the norm on
X and write w(x) = |x|. Observe that with this norm we have |p| <1 for all
p CP.

Every real number £ can be uniquely partitioned into an integer a and a
remainder 6 with 0 < @ < 1 so that £ = a + 6. Let this partition for the co-
ordinate functional £\ (x) be

H(x) = an(x) + O\(x)
and define

a(x) = Yan(x)an, px) = 20n(x)ax .
*  Then e(x)C A4, p(x)C P, and
x = a(x) + p(x),

(which shows X = 4 + P).

Fix the positive number ¢ > 0. Since Q, is connected, any two of its points
may be connected in it by an e chain. Thus there exists an € chain Cy¢ of points
of Qx running from 0 to ¢x. Consider the path Q¢ obtained by drawing the line
segments joining consecutive points along the chain Cy¢ This path begins at 0
and ends at @y, and is at all of its points within e distance of some point of Q»,
namely a point of C,¢. Clearly a continuous mapping ¢,¢ can be constructed
which maps the closed real unit interval I: 0 £ 6 < 1 onto the path Qy¢so that
¢2¢(0) = 0 and ¢»*(1) = ax. Let £ = a -+ @ be the partition of the real number
f into its integral part a and remainder 6; and define

HE®) = fAila + 0 = aart ¢4(0).

We note that the mapping fi¢ is continuous for all real ¢ This is obvious for
non-integral £ and also for integral £ approached from above, since ¢»¢ is con-
tinuous on I and the integral part of ¢ becomes constant. Furthermore for
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integral £ = a 4+ 1 (not a partition) f,¢ is also continuous from below; for, as
6 — 1 from below, we have

f)\‘(a. -+ 0)= aarx+ Q)“(e) — aar+ Q)\e(l) = (a + 1)a)\= f)“(a + 1).

Thus fA¢ is continuous.
Now define the mapping f¢ of the space X into itself as follows:

fix) = 2 AH(aE®) = alx) + ¢(x)
g4(x) = 2Zr(0n(x)).

Since f* and £, are continuous mappings, f¢ is also continuous. Every point of
Q»¢ is within e distance of some point of Q\, so we see that ¢¢(x) is within ve
distance of some point of Q. Now

x = fx) = px) — ¢*x),

where

SO

lx —f@)] < 14+vets

where § = max lql (g C Q). Thus x — f*(x) is uniformly bounded for all x in X.
Let S be the open unit sphere: ls‘ < 1. The mapping % defined by the formula

x
s = hx) = ——
1+ ]
is a homeomorphism contracting X onto .S whose inverse mapping is

N

x = h(s)= T ‘Sl

, lsl <L

With several applications of the triangle inequality it may be shown that the
homeomorphism % satisfies the following norm inequality which we shall call
the h-inequality:

|5@) — k@) € e =] . @ =[2@)] . [EGD)]).

Consider now the mapping g¢ of the closed sphere S :|s| € 1 into itself

defined by
hfh™(s), Isl < 1,
gi(s) =

S, \s\ = 1.

This mapping g¢ is, as we shall demonstrate, continuous on S. It is clearly
continuous when confined either to S or to its boundary. Thus it remains to
show that g¢(s*) — g¢(s) as s — s, the points s” being in .S and the point s on
the boundary of S. Let
= W),
o= f),
v = st — g(s") = Rh(x) — h(y).
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Since, as we have already noted, the vectors x*— f¢«(x?) = xY— »? are uni-
formly bounded independently of v, and s* — s (so that |s7] — [s| = 1), we
have lx"l — o and ly"l — . Therefore lh(x‘f)l — 1 and \h(y")l — 1, so
it follows from the %-inequality that ld"l — 0 and hence that ¥ — 0. Con-
sequently

ge(s?) — g(s) = s7—s —d"— 0,

which proves g¢ to be a continuous mapping of the closed sphere .S into itself
leaving the boundary fixed. According to a variant form of the Brouwer fixed
point theorem for the closed sphere S the mapping g¢ is then an onto mapping:
g:(S) = S, whence g¢«(S) = S. Therefore f¢is also an onto mapping:

JX) = fR7S) = B7'g(S) = K7H(S) = X.

Our present task is to show that X = 4 + Q; that is, for any point x C X
the equation x = a 4 ¢ is solvable with a C 4 and ¢ C Q. Choose a sequence
of positive numbers ¢ such that ¢ — 0 as v runs through the sequence T' of
positive integers. Since f¢(X) = X there exists a point x? such that

x = ) = a(e) + ¢

Put a(x”) = a?; and, since ¢¥'(x7) is within »e* distance of Q, replace it by
q¢"+ e, where ¢"C Q and le‘fl < ve'. Thus

x = a‘)‘—'— q‘Y—l— e.

Since the ¢” and e are bounded so also are the a”. But any bounded subset
of A is finite so a” is constant, say a, for infinitely many integers v, say for the
sequence I'y,. Q being compact, a point ¢ C Q and a subsequence I',, of T,
exist with ¢ — ¢ as vy runs through T'y,. Therefore

x=a‘7+g‘¥+e‘7__)a+q

as vy runs through T',,, since a¥ = a, ¢" — ¢, and ¢ — 0. This proves
x =a+q.

3. We have shown that X = A 4+ Q. Thus the space X is the union as a
ranges over the countable set A of the translatesa + Q of Q. Since the entire
space X is of second category, at least one of these translates of Q, and hence
Q itself, is somewhere dense. Therefore the set Q, being closed, contains
interior points.

4. The set Q is closed and hence measurable, so every translate a + Q of Q
is measurable, and has the measure u(Q); similarly every translate a + P of
P is measurable and has measure u(P).

Define 4# for each integer 8 2 0 to be that subset of A consisting of the
(28 + 1)’ integral linear combinations @ = Y axax of the basis vectors a,, the
coefficients a) being integers such that l"-ki < B. Observe that by our selection
of norm we have |al < Bfor every a C A8. Let Q8= AP+ Q and PP= AP+ P.
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The set (¥ is the union as a ranges over the set 4% of the (28 4+ 1)” measur-
able sets @ + Q each having measure u(Q). Therefore Qf is measurable and

r(Q8) £ (28 + 1)"u(Q).

Every plane, being closed, is measurable. Suppose that every plane has
measure zero. The intersection of any two translates of P by distinct vectors
of A being a planar set (possibly null) then has measure zero. Two such sets
may be called p-disjoint. Consequently Pf is the union as a ranges over A4# of
the (28 + 1)” measurable pairwise u-disjoint sets @ + P each having measure
w(P); so P is measurable and has measure

w(PP) = (28 + 1)’u(P).

We now show that PPC Qf", where v is any fixed integer 2 6 + 1 and
8 = max \q‘ (g C Q). Suppose, to the contrary, that some point x exists with
x C PPand x Z Qf*. Since x C P? we have x = a, + p where ¢, C 4f and
p C P, whence

le] = lap+ 5| € lag| + o] € B+ 1.

Now X =4 +Q so x =a, + g where a, CA and ¢ C Q. However
a, ¢ A" since x Z QFt, so

x| = la,+ gl 2 la) = ldd > 8+7v—-528+1L
in contradiction to the preceding inequality. This contradiction proves
PsC Qftr. Therefore
(26 + 1)u(P) = w(P)S w(@)< @8 + 2v + 1)'u(Q).

Dividing this inequality through by (28 4 1)’ and letting 8 — « we obtain
the desired inequality u(P) £ w(Q).

If, finally, some plane has positive measure, then it is possible by suitable
translation to insert into any sphere infinitely many disjoint parallel planar
portions all having the same positive measure, so that every set with interior
points, in particular P and Q, has infinite measure.
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