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1. Introduction

Let G be a group and let Aut(G) be its automorphism group. It is notorious that
the properties of Aut(G) do not relate well to the properties of G, perhaps the only two
general results being that if G has a trivial centre then the same is true of Aut(G) [2, p.
89] and Baumslag's theorem that if G is finitely generated and residually finite then
Aut(G) is also residually finite [1, Theorem 1, p. 117]. In the paper we shall attempt to
find analogues of these results for the relationship between the properties of R(G), the
group ring of G over a ring R, and the properties of AutR(G), the automorphism of
R(G). We prove that if R(G) has a trivial centre then Aut R(G) has a trivial centre. We
establish the analogue, Theorem 2.3, of Baumslag's theorem by ring-theoretic methods;
our original proof used properties of group rings, the present simplified proof we owe to
the referee. As an example we calculate Aut Z(G) in the case that G is the direct product
of two cyclic groups, one of infinite order and the other of order 5. This calculation will,
it is hoped, give some indication of the difficulties in determining automorphisms of the
group ring of an infinite group.

In our notation it will be assumed that R, S are rings with identities. AutR(G) is the
group of R-linear automorphisms of G and Aut+R(G) is the subgroup of Auti?(G)
consisting of the augmentation-preserving automorphisms (i.e. if e:R(G)-*R is the
augmentation then for all 6e Aut+ R(G) and for all geG, e(9(g)) = 1).

2. Residual finiteness of Aut R(G)

For convenience we state the following definitions for the ring S.

Definition. S is said to be finitely generated if there exists a finite non-empty subset
X of S such that S is spanned as a Z-module by the subset consisting of the products of
the elements of X.

Definition. S is said to be residually finite if for all x e S, x =£ 0, there exists an ideal /
of S such that x$l and S/I is a finite ring.

For example Z is both finitely generated and residually finite.

Lemma 2.1. Let S be finitely generated. Let neN. Then there exist only finitely many
ideals I such that \S/l\^n.

Proof. For any neN there exists at most a finite number of non-isomorphic rings
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each consisting of precisely n elements. Let T be one such ring of n elements. Since S is
finitely generated there exists at most a finite number of homomorphisms of S into T
and so T determines at most a finite number of ideals 7 | , / 2 , . . . , / , (say) such that S/It is
isomorphic to a subring of T ( i= 1,2,...,r). Let 7" be an isomorphic copy of T. Then
the ideals of S determined by T", determined in the same manner as those determined
by T, are again precisely I1,I2,--,Ir- Thus each finite ring and its isomorphic copies
determine in this way at most a finite number of ideals of S. Hence, in conclusion, there
can exist at most a finite number of ideals / for which |S/ / |gn. •

The proof of the next result parallels the proof of Baumslag's original theorem [1,
Theorem 1, p. 117].

Lemma 2.2. Let S be a finitely generated, residually finite ring. Then Aut S, the group
of automorphisms ofS, is residually finite.

Proof. Let </)€AutS, <f>^i. Then there exists xeS such that

By hypothesis there exists an ideal 7 of S such that y £ I and S/I is a finite ring. Suppose
|S/ / | = n. Then there exists at most a finite number of ideals J such that S/J^n. Let 70

be the intersection of these ideals J. Then y $ 70, S/Io is finite and / 0 is a characteristic
ideal of S. We define a map AutS->Aut(S//0) as follows. For 0e AutS let S be defined by

9:s + I0->8(s) + I0 (VseS).

Since 70 is a characteristic in S#eAut(S/70) and the map 9-*8 (VfleAutS) is a
homomorphism. Let W be the kernel of this homomorphism. Then (Aut S)/W is
isomorphic to a subgroup of the finite group Aut(S/70). Further as y£l0, $^i- Thus
cj)£ Wand hence the result is proved. •

Theorem 2.3. Let G be a finitely generated, residually finite group. Let R be a finitely
generated residually finite ring. Then AutR(G) is residually finite.

Proof. Let S = R(G). Then certainly S is finitely generated. It suffices to prove that S
is residually finite for then the result will follow from Lemma 2.2. Let xeR(G),
Suppose

where gi,g2,---,gr
 a r e distinct elements of G and kt eR, Atj=O ( i= 1,2,...,r). By

assumption on G there exists a normal subgroup H of finite index in G such that
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By assumption on R there exists an ideal I of R for which R/I is finite and

The composite homomorphism

R(G) -+ R(G/H)

maps R(G) into a finite ring and, by the construction of H and /, x is not in the kernel
of this composite homomorphism. The result is now established. •

Corollary 2.4. Let G be a finitely generated, residually finite group. Then Aut Z(G) is
residually finite.

3. An example

Throughout this section we study the example to which allusion was made above.

Example 3.1. (We are indebted to Don Passman for drawing the group G below to
our attention.) Let G = <x> x <y> be the direct product of the subgroups <x> and <y>
where x has infinite order and ys = l. We shall calculate Aut(G) and AutZ(G) and we
begin by calculating the former group.

Let 0eAut(G). Since [0(>)]5 = l we have

Since 6(x) has infinite order and 9 has, of course, to be surjective we have

6(x) e {x, xy, xy2, xy3, xy4, x~l,x~ ly,x~iy2, x~ ly3, x~ *y4}.

It follows that |Aut(G)|^40. We shall prove that |Aut(G)| = 40 by constructing a system
of generators and relations for Aut(G). We shall define our automorphisms as mappings
on the generators x,y of G which will extend appropriately and unambiguously to
automorphisms of G.

We define <x, a, x by

a(x) = x, o(x) = xy, T(X) = x ~1

(*)

and note that a, a, T do extend to automorphisms of G.
Evidently we have
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Thus Aut(G) = <a,cr, T> is a soluble group of order 40 with <a> as a normal 5-Sylow
subgroup and with <a, T> as an abelian 2-Sylow subgroup.

We now consider Z(G) and calculate Aut Z(G). There is an obvious inclusion, namely,

Aut(G) g Aut+ Z(G) g Aut Z(G).

Let AeAutZ(G) be defined by A(x)= -x, k(y) = y. We claim that |AutZ(G):Aut+ Z(G)| = 2
and that in fact

Aut Z(G) = Aut + Z(G) u Aut + Z(G)A.

To see this let 0eAutZ(G). Now for any unit t of Z(G) we have e(t)=±l and so, in
particular, e(6(x))=±l and, as [0(y)]s = l, e(6(y)) = l. From this it follows that either
0eAut+Z(G) or 02eAut+Z(G) and so we obtain the above coset decomposition. In
fact, as we shall establish below,

AutZ(G) = Aut+Z(G)x<A>.

For the present we shall calculate Aut+ Z(G).
As is well known Z(<x» has only the trivial units +x"(«eZ) but Z « y » has non-

trivial units, e.g. 1 — y2 + y4 is a unit of infinite order for which E(1 — y2 + yA) = 1 — 1 + 1 = 1.
By a theorem of Sehgal [4, Theorem 3.1, p. 54] the group units of Z « y » is iso-
morphic to

where F, in this case, is a free abelian group of rank 1. Let u be a generator of F for
which e(u) = l. Let 0EAut+ Z(G). Since [%)]5 = l, 6(y) is a unit of order 5 and so

e(y)e{y,y2,y3,y*}.

Since 6(x) has infinite order and 6 is surjective we have

9(x)e{xw,x~1w:w is a unit of Z«y»}.

Thus we obtain a, a, z as before but we have another generator p of Aut+ Z(G) given by

p(x) = xu, p(y) = y. (**)

We claim that we may suppose that u has been chosen so that u(u)=yu~l, a relation
which is convenient for subsequent calculations. Clearly a acts as an augmentation-
preserving automorphism on the group of units Z«_y». Thus <x(u) = yiu±1 for some
<5e{0,1,2, 3,4}. For the sake of argument suppose that a(u) = yiu. From our remarks
above
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and so there exist p, q such that

1 -y2+y*=ypw.

Then

1 - / + y3 = «(1 - y2 + / ) = a(ypu«)

= yp+6'>(l-y2 + y4)

which is impossible and consequently tx(u) = ytu~l. Let

V = y2^-S)u.

Then

and

Hence we may suppose that originally we have chosen an infinite generator u of
+ <y> x F such that

a(u) = yM-1. (***)

We now claim that Aut+Z(G) = <a,a,T,p>. First of all from (*), (**), (***) we deduce
that

To prove that Aut+ Z(G) = <a, a, T, p> we have to show that if 7teAut+Z(G) then
7ie<a, cr, T,p>. From remarks above we have n(x) = x±lz, n(y) = y* where z is some unit
of Z « y » for which e(z) = l and /ie{\,2,3,4}. But z = MBy" for some m, n and there exists
ve {0,1,2,3,4} such that d\y) = y* and hence if 7t(x) = xz we have n = p"amaC and if
TI(X) = X ~ I Z we have n = xp"amcC. Hence, indeed, we have
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We now consider relations in Aut+ Z(G) additional to those of Aut(G). We claim that
p~la.2pa.2 = o. To see this we have

(p ~ ia2paz)(x) = p ~ 1a2p(x) = p~ ia2(xu) = p~l(xyu)

= xu~lyu = xy

giving the desired result. Let // = <a, p, <r> = <<x, p}. We may verify that p centralizes a
and so <<x> is a normal subgroup of H of order 5. Further, again by direct calculation,
we have

Thus H/<CT> is a non-trivial extension of an infinite cyclic group by an element of order
4. Collecting together our information on Aut+ Z(G) we have finally

where

x2 = i, T-1aT = a, T ~ V T = cr4

a 4 = i , o = p~i<x2pa.2, <T5 = i,

We remark that Aut+ Z(G) and AutZ(G) are both polycyclic and so are both residually
finite. In fact we may now prove, although we do not need the result, that AutZ(G) =
Aut+Z(G)x<2>. •

4. The centre of R(G)

The centre, Z(R(G)), of R(G) is the i?-linear subspace spanned by the class-sums of
finite classes. Thus Z(R(G)) is trivial if and only if no element of G, other than the
identity, has a finite number of conjugates (see [3], pp. 113-115). We denote the centre
of Aut R(G) by Z(Aut R(G)) and utilise essentially the proof of the result to which we
wish to find the analogue. We reproduce the modified proof for the sake of
completeness.

Theorem 4.1. Let Z(R(G)) be trivial. Then Z(Aut R(G)) is also trivial.
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Proof. Let 0eZ(AutR(G)). Let xeG and let px:g^>x~lgx (geG) be the inner auto-
morphism of G induced by x. Then for all aeR(G) we have (6px)(6~l{a)) = (
and thus {6(x))~1 a6(x) = x~l ax from which we conclude that 6(x)x~i eZ(R(G)) and so
0(x) = x. Since x is an arbitrary element of G we have 8(w) = w for all weR(G) and
so 6 = 1. •
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