Canad. Math. Bull. Vol. 15 (3), 1972.

A NOTE ON UNCONDITIONAL BASES

BY

J. R. HOLUB AND J. R. RETHERFORD

A sequence (x_i) in a Banach space X is a Schauder basis for X provided for each $x \in X$ there is a unique sequence of scalars (a_i) such that

(1.1)
$$\sum_{i=1}^{\infty} a_i x_i = x,$$

convergence in the norm topology. It is well known [1] that if (x_i) is a (Schauder) basis for X and (f_i) is defined by

$$(1.2) f_i(x) = a_i$$

where $x = \sum_{i=1}^{\infty} a_i x_i$, then $f_i(x_j) = \delta_{ij}$ and $f_i \in X^*$ for each positive integer *i*.

A sequence (x_i) is a *basic sequence* in X if (x_i) is a basis for $[x_i]$, where the bracketed expression denotes the closed linear span of (x_i) .

A series $\sum_{i=1}^{\infty} y_i$ in a Banach space X is unconditionally convergent to y provided

(1.3)
$$\lim_{n \to \infty} \sum_{n=1}^{\infty} y_{p(n)} = y$$

for each permutation p of the positive integers.

It is known that each $f \in [f_i]$ has a representation $\sum_{i=1}^{\infty} f(x_i) f_i$ (i.e. (f_i) is a basic sequence).

By $(n_i) \nearrow$ we mean " (n_i) is an increasing sequence of positive integers" and by $\overline{(n_i)}$ we mean $\omega \setminus (n_i)$. Here ω denotes the positive integers.

Also if (x_i) is a basis for X with coefficient functionals (f_i) and if $x = \sum_{i=1}^{\infty} f_i(x)x_i$ we denote by \bar{x} , the formal series $\sum_{i=1}^{\infty} |f_i(x)| x_i$.

Our first theorem is known. Proofs of the various implications can be found in the references cited below. An excellent general reference is [9].

THEOREM 1. The following are equivalent:

(a) (x_i) is an unconditional basis for X;

(b) \bar{x} exists for each $x \in X$ and there is a $K_1 > 0$ such that $||x|| \le K_1 ||\bar{x}||$ for each $x \in X$;

(c) For each $x \in X$ and $(n_i) \nearrow$, the series $\sum_{i=1}^{\infty} f_{n_i}(x) x_{n_i}$ converges (and there is a $K_2 > 0$ such that

$$\left\|\sum_{i=1}^{\infty} f_{n_i}(x) x_{n_i}\right\| \le K_2 \left\|\sum_{i=1}^{\infty} f_i(x) x_i\right\| \quad for \ each \quad x \in X$$

and each $(n_i) \nearrow$) and,

4

Received by the editors September 29, 1969 and, in revised form, January 31, 1971.

369

(d) (f_i) is an unconditional basis for $[f_i]$. See [1], [2], [5], [6], [10], [11] and [12].

The purpose of this note is to add an equivalence to the above which appears to be new.

THEOREM 2. (a) is equivalent to (e): for each subsequence (x_{n_i}) of (x_i) the associated sequence of coefficient functionals (g_{n_i}) in $[x_{n_i}]^*$ is similar to (f_{n_i}) in X^* (i.e. $\sum_{i=1}^{\infty} a_i f_{n_i}$ converges if and only if $\sum_{i=1}^{\infty} a_i g_{n_i}$ converges).

Proof. Clearly g_{n_i} is the restriction of f_{n_i} to $[x_{n_j}]$ for each *i*. Thus $\sum_{i=1}^{\infty} \alpha_i f_{n_i}$ converges, $\sum_{i=1} \alpha_i g_{n_i}$ converges, since restriction is norm decreasing.

Conversely, if $\sum_{i=1}^{\infty} \alpha_i g_{n_i}$ converges, the convergence is uniform over

$$\left\{\sum_{i=1}^{\infty} b_i x_{n_i} \in [x_{n_i}] \colon \|\sum_{i=1}^{\infty} b_i x_{n_i}\| \leq K\right\}$$

for any K>0. Since (x_i) is unconditional there is a K>0 such that if $\|\sum_{i=1}^{\infty} b_i x_i\| \le 1$ then $\|\sum_{i=1}^{\infty} b_{n_i} x_{n_i}\| \le K$ (by (c)). Thus $\sum_{i=1}^{\infty} \alpha_i f_{n_i}$ converges and (f_{n_i}) and (g_{n_i}) are similar.

Conversely if (f_{n_i}) and (g_{n_i}) are similar for $(n_i) \not\nearrow$ then for $f = \sum_{i=1}^{\infty} \alpha_i f_i \in [f_i]$, there is an M > 0 such that for all p, q,

$$\left|\sum_{i=p}^{q} \alpha_{n_i} f_{n_i}\right| \leq M \left\|\sum_{i=p}^{q} \alpha_{n_i} g_{n_i}\right\|$$

(Since the mapping $T(\sum_{i=1}^{\infty} \alpha_{n_i} g_{n_i}) = \sum_{i=1}^{\infty} \alpha_{n_i} f_{n_i}$ is continuous.) But

$$\left\|\sum_{i=p}^{q} \alpha_{n_i} g_{n_i}\right\| = \operatorname{Sup}\left\{\left|\sum_{j=p}^{q} \alpha_{n_i} f_{n_i}(y)\right| : y \in [x_{n_i}], \|y\| \le 1\right\} \le \left\|\sum_{i=n_p}^{n_q} \alpha_i f_i\right\|$$

and this goes to zero as $p, q \rightarrow \infty$. Thus (by (c) and (d)) (x_i) is unconditional.

As mentioned previously, (a) \Leftrightarrow (e) seems to be new. However, our proof of the implication (a) \Rightarrow (e) has as a corollary a lemma of Kadec and Pelczynski [8]. Our proof is similar to theirs.

We now make some comments on the conditions (b) and (e).

We first consider (b). If (x_i) is an unconditional basis for X it follows from (b) that $(*)\bar{x} \in X$ for $x \in X$. In the same paper [10] Veic asserts (see [11, p. 437] for the translation) that the non-unconditional basis (x_n) for c_0 (the sequences tending to 0 with the sup norm) given by $\sum_{i=1}^{n} e_i$ where $e_i = (\delta_{ij})_{i=1}^{\infty}$ has property (*), and thus (*) alone does not characterize unconditional bases. While it is true that (*) does not characterize unconditional bases, the example does not have property (*). For, clearly there is an $h \in l^1 = c_0^* = \{\xi = (\xi_i) : ||\xi|| = \sum_{i=1}^{\infty} |\xi_i| < +\infty\}$ such that $h(x_n)=1$ for all n (e.g. $h=e_1$). Let $x=((-1)^{n+1}n^{-1}) \in c_0$. Then observe that if

370

$$f_n(x_m) = \delta_{nm}, f_n = e_n - e_{n+1} \text{ and so } |f_n(x)| x_n = 1/n + 1/n + 1.$$
 Thus
 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$

$$h\left(\sum_{i=1}^{n} |f_n(x)| x_n\right) = \sum_{i=1}^{n} \left(\frac{1}{n} + \frac{1}{n+1}\right)$$

so $\sum_{i=1}^{\infty} |f_n(x)| x_n$ cannot possibly converge, i.e. $\bar{x} \notin c_0$.

Consider the following example. In l^1 let $y_1 = e_1$ and for $n \ge 2$, let $y_n = e_{n-1} - e_n$. Also, let $f_1 = (1, 1, 1, ...) \in l^{\infty} = (l^1)^*$, the bounded sequences with the sup norm. For n > 2 let $f_n = (0, 0, ..., 0, -1, -1, -1, ...)$, where all terms after the (n-1)-st are -1. Then (y_n, f_n) is a basis for l^1 . Since (x_n, y_{n+1}) are biorthogonal $((x_n)$ the basis for c_0 above), it follows from (a) \iff (d) that (y_n) is a non-unconditional basis for l^1 . We show that (*) is satisfied. If $a = (a_i) \in l^1$ then $|f_n(a)| = |\sum_{i=n}^{\infty} a_i|$ if $n \ge 2$ and $|f_1(a)| = |\sum_{i=1}^{\infty} a_i|$. Thus,

$$\begin{split} \left\|\sum_{i=1}^{\infty} |f_i(a)| \ y_i \right\| &= \left| \left|\sum_{i=1}^{\infty} a_i\right| + \left|\sum_{i=2}^{\infty} a_i\right| + \left|\sum_{i=2}^{\infty} |f_i(a)|\right| \sum_{j=i+1}^{\infty} a_j\right| - \left|\sum_{j=i}^{\infty} a_i\right| \right| \\ &\leq 3\sum_{i=1}^{\infty} |a_i| = 3 \|a\|; \\ &\text{ i.e. } \sum_{i=1}^{\infty} |f_i(a)| \ y_i \in l^1. \end{split}$$

Finally we consider (e). It is interesting that in the case where (x_i) is not necessarily an unconditional basis the following result is valid.

REMARK. Let (x_i, f_i) be a basis for X with $\inf_n ||x_n|| > 0$ such that there is a subsequence (x_{n_i}) which is similar to the unit vector basis (e_i) of c_0 . Then (f_{n_i}) is similar to the unit vector basis for l^1 .

Proof. If (g_{n_i}) is as in (e), then if $\sum_{i=1}^{\infty} a_i g_{n_i}$ converges then $\sum_{i=1}^{\infty} |a_i| < +\infty$. Hence if $\sum_{i=1}^{\infty} a_i f_n$ converges then $\sum_{i=1}^{\infty} |a_i| < +\infty$. Since $\sup_n ||f_n|| < +\infty$ (since $\inf_n ||x_n|| > 0$), it follows that (f_{n_i}) is similar to (e_i) in l^1 .

It is somewhat surprising that the result is false if the roles of c_0 and l^1 are interchanged. For, if (x_i, h_i) denotes the universal basis [7] of Pelczynski for C[0, 1], the continuous functions on [0, 1] with the sup norm, then there is a subsequence (z_{n_i}) similar to (e_i) in l^1 . However (h_{n_i}) cannot be similar to (e_1) in c_0 since c_0 would then be embedded in the weakly sequentially complete space $(C[0, 1])^*$, a contradiction [2].

Also, using the fact that $[h_i] = l^1$, the unit vector basis (e_i) of c_0 may not be replaced by a basis (ω_i) for any reflexive space.

BIBLIOGRAPHY

1. S. Banach, Théorie des opérations linéaires, Monografje Matematyczne, Warszawa, 1932.

- 2. M. M. Day, Normed linear space, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1958.
- 3. B. R. Gelbaum, Notes on Banach spaces and Bases, An. Acad. Brasil Ci. 30 (1958), 29-36.

4. M. Grinblyum, Sur la théorie des systèmes biorthogonaux, C. R., Dokl. Akad. Nauk SSSR (NS), (1947), 287–290.

5. W. Orlicz, Uber unbedingte Konvergenz in Funktionenraumen I, Studia Math. 4 (1933), 33-37.

6. ----, Beitrage zur Theorie der Orthogalentwicklungen, II, Studia Math. 8 (1929), 241-255.

7. A Pelczynski, Universal Bases, Studia Math. 32 (1969), 247-268.

8. — and M. I. Kadec, Bases, lacunary sequences and complemented subspaces in the spaces L_p , Studia Math. 21 (1962), 161–176.

9. I. Singer, Bases in Banach spaces I, Springer-Verlag, Heidelberg, 1970.

10. B. E. Veic, Some characteristic properties of unconditional bases, Dokl. Acad. Nauk, SSSR 155 (1964), 509-512.

11. —, Translation of 10, Soviet Math. Dokl. (3) 5 (1964), 436-439.

12. —, On some properties of unconditional convergence bases, Uspehi Mat. Nauk 17 (1962), 135–142.

LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA