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1. Introduction. Denote by
oo

E(X)= n a-*™)
m = l

the Euler product, and by
= E(x)"1= £ p(n)x"

the partition generating function. More generally, if k is any integer, put

P_k(n)x",
n = 0

so that p(n) = p_i(n). In [3], Atkin proved the following theorem.

THEOREM 1. Suppose fc>0 and q = 2, 3, 5, 7 or 13. / / 24n = k (mod qr) then
p_k(n) = O (mod q*ar+e), where e = e(q, k) = O(log k), and where a depends on q and the
residue of k (mod 24) according to the following table.

0=2

q = 3

q = 5

q = 7

q = 13

1

2

1

0

2

1

1

0

3

3

1

1

0

4

1

2

0

5

2

1

0

6

2

2

1

0

7

1

1

0

8

3

1

0

1

9

3

1

0

0

10

1

0

0

11

1

1

0

12

2

0

0

0

13

0

0

0

14

0

1

0

15

1

1

0

0

16

3

1

0

0

17

0

0

0

18

2

0

1

0

19

0

0

0

20

1

0

0

21

1

1

1

0

22

0

0

0

23

0

0

0

24

0

0

0

0

0

(An apparent misprint in the last column has been corrected here.)

In this table the non-blank entries are best possible in the sense that each residue
class (mod 24) contains an integer k for which the exponent a(k,q) given in the table
cannot be improved. The blank entries are only known to be non-negative; they are
probably 0.

Atkin remarks that a similar theory undoubtedly exists for q = 11, and in [2] he shows
that a( l , 11) = 2 and e(l, 11) = 0, thereby proving Ramanujan's conjectured congruences
for p(n) modulo powers of 11. He says, however, that his method does not yield the
analogue of Theorem 1 for q = 11 and all k>0. In this paper we show how the method
can be modified to dispose of this general case. Specifically, we prove the following result.
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THEOREM 2. If 24n = k (modllr), then p_k(n) = 0 (mod ll*ar+E), where e = e(fc) =
O(log|fc|) and where, if fc>0, a depends on the residue of k (mod 120) as shown in the
following table.

0

24

48

72

96

1

2

1

1

2

0

2

1

1

1

1

0

3

2

1

2

1

1

4

1

1

2

1

0

5

1

2

1

2

1

6

1

2

1

1

0

7

2

1

1

2

1

8

2

1

0

1

0

9

1

2

1

2

1

10

1

2

0

1

1

11

2

1

1

2

0

12

2

0

0

2

0

13

1

0

0

1

0

14

2

0

1

1

1

15

1

0

1

1

0

16

0

1

0

2

1

17

0

1

0

1

0

18

1

0

1

2

1

19

1

0

0

1

0

20

0

1

1

2

1

21

0

1

0

1

1

22

1

1

1

1

0

23

1

0

0

1

0

24

0

0

0

0

0

Here the entry in the row labelled 24i and the column labelled j is a(24i: + /). For k<0,
the dependence of at on k is the same as in the above table, except that the numbers in the
last column must be changed to 2, 2, 2, 0, 2.

Theorem 2 is best possible in the sense that every residue class (mod 120) contains
both positive and negative values of k for which the above constants a(k) cannot be
improved.

It will be noted that Theorem 2 deals with both positive and negative values of k, in
contrast to Theorem 1. It is easy to see, however, that Theorem 1 can also be extended to
negative k by using the method of proof outlined below. For k <0 the numbers in the last
column of Theorem 1 must be changed to 6, 4, 2, 2, 0.

The case k = -24 is of particular interest, since p24(n) = r(n + l), where r(n) is
Ramanujan's T-function. The proof of the extension of Theorem 1 to negative k yields
the following congruences for r(n):

3r) if n = 0(mod2r);
2r) if n =
r) if n = 0(mod5r);

r(n) = 0(mod7r) if n = 0(mod7r).

All of these congruences are already known from the multiplicative properties of T(H).

But for higher powers of the cusp form A(x) = £ r(n)x", Theorems 1 and 2 (with k <0)
n = l

yield congruences for the coefficients modulo powers of 2, 3, 5, 7 and 11 which appear to
be new.

2. Notation and preliminaries. We will use a mixture of the notation in Atkin's
papers [2] and [3], with some modifications which turn out to be convenient. Let i? be the
complex vector space of all meromorphic Laurent series f(x)= Y. an*" convergent in
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some neighborhood of x = 0, and let U denote the linear transformation of $£ into itself
defined by

u( I anxn) = I aUnxn.

As above, let

and let k be an integer fixed throughout the discussion. Define the function p-k(n) by the
equation

co

i\x) — L> P-k\n)x 11*1 <-•!•.)•
n=0

We define a recursive sequence of "11-dissections" of P(x)k as follows:

D0(x) = P(x)k; 1
D2s_,(x)=t/(x5kD2s_2(x)); \ (1)

D2s(x)=(7(D2s_1(x)) (s>l).J

To write (1) in a more uniform way, we define

f 0 if r is odd,
Vk if r is even.

Then (1) becomes:

D0(x) = P(x)k;

-al).JDr(x)=[/(xsx-Dr_1(x)) (r; JX

It should be clear that the functions Dr(x) are power series of the form

Dr(x)= I P . k ( l l 'm + nr)x"1
) (4)

where nr is an integer depending only on r, and jxr is the least integer m such that
. Substituting (2) into (1), we obtain a recurrence for nr, viz no = 0 and

n2s_i = -5fc-ll2n2s_2, «2s = »2s-i (s^l)-

The solution to this recurrence is easily found to be

n2s-i = »2s = -fc(l l2 s- l) /24, (5)

from which we see that

24nr = fc(modllr) for all r.

Hence the coefficients of Dr(x) are the numbers p_k(n), where 24n = k (mod l l r ) .
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Therefore Theorem 2 can be written in the form

Dr(x) = 0(modll^ r + e ) , (6)

where as usual the congruence

£anx" = 2>nx" (modM)

between Laurent series with integer coefficients means that an = bn (mod M) for all n.
From (3) we see that the integer jxr appearing in (4) satisfies the equations

where \8] denotes the ceiling of 8, i.e. the least integral upper bound for 8. To obtain an
explicit formula for /xr we use the fact, already noted above, that yur is the least integer m
such that lYm + iy^O. If r = 2 s - l , we see from (5) that this is equivalent to

H 2 s - 1 m>k( l l 2 s - l ) /24 ,
i.e.

m>lU/24-fc /24 .11 2 s - \
Therefore

/x2s_, = riU/24-fc/24 . i i * - 1 ] .

It is easily seen from this formula that

iL2s-i=\nki24]+w(k) if l p - ' H H (7)
where

1 if k<0and24|fc,

otherwise.

Similarly, if r = 2s the inequality ll rm + n, sO is equivalent to ll2sm > fc(ll2s -1)/24, and
hence

/x2s = r/c/24-fc/24.112s"|.

In particular,

/x2s=[k/241+o;(k) if Il2s>|fc|. (8)
In order to prove (6) analytically, we replace the functions Dr(x) by a related

sequence Lr(x) of automorphic functions on the group ro( l l ) . These are defined as
follows. Put -.

<f>(x) = x5P(x)/P(x121),

L0(x) = l, ' (9)

Lr(x)=t/(4»(x)x-Lr_1(x)) (r>l)._
It is easy to verify that

L2s_1(x) = D2s_1(x)/P(x11)k,

L2sU) = D2s(x)/P(x)fc ( s s l ) .
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Since the denominators P(xn)fc and P(x)fc here are power series with integer coefficients
and constant term 1, any congruence of the form Dr(x) = 0 (mod M) holds if and only if
Lr(x) = 0 (modM). Hence (6) is equivalent to

e); (10)

it is in this form that we will prove Theorem 2.
Now let x = e2"iT, and recall the definition of the Dedekind TJ-function:

TJ(T) = X1/24 f l ( l - x m ) = x1/24E(x).
m = l

Since E(x) = P(x)~', we have

TI (121T)_X 1 2 1 / 2 4 £ (X 1 2 1 )_ 5 P(x)

T)(T) X1 / 2 4£(X) X P(X1 2 1)

Hence [6, Theorem 1] <f>(x) is a function on ro(121).
For any positive integer N, we denote by R0(N) the Riemann surface of the group

F0(JV), and by K0(N) the field of meromorphic functions on R0{N). For any N, R0(N) has
a cusp at T = I'OO, and x = e2mT is a uniformizing parameter there. If / ( T ) S K 0 ( N ) , its
Laurent expansion about T = i°° therefore has the form /(T) = £ a

nx
n- We call this the

Fourier series of /(T), and commit an abuse of language by also denoting it by f(x).
Clearly io

Hence (see for example [1, pp. 80-82]), if f(x)eK0(121) then Uf(x)eK0(U). It follows
from this that all the functions L^(x) defined above are in K0(ll). We need to know
something about their orders at the cusps 0 and i°° of £0(H); to describe the relevant
function theory we use the following notation. If /(x)e Ko(l21) and P is a point of
i?o(121), we denote by OrdP/(T) the order of f(r) at P. If g(i-)e K0(ll) and p is a point of
i?o(H), we denote by ordp g(r) the order of g(r) at p. We may think of a point of R0(N)
as a place of K0(N), and use the language of valuation theory. In this terminology, the
cusp oo of R0(H) splits completely into the cusps oo and fi/11 ( l<h<10) of Ro(121). On
the other hand the cusp 0 of R0(ll) ramifies completely in the covering i?0(121), with
ramification number [K0(121):K0(ll)] = [r0(ll):r0(121)]= H- (These facts follow easily
from an examination of the stabilizers in F0(ll) and ro(121) of the relevant cusps.) Hence
we have the following result.

LEMMA 1. Suppose g(T)eK0(\l). Then if g(r) is regarded as an element of the
extension field Ko(121), we have

= llord0g(T).
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The next result is a special case of Corollary 1.10 of [5].

LEMMA 2. Suppose f(T)eK0(\2\). Then g(r)= U(f{x))eK0(U), and

ordog(r) min O r d
^h :£ 10 h/11

/(-r).

If fM ' s holomorphic in the interior of the upper half plane, so is g(r).

Now (cf. [6]) the function </>(T) = TJ(121T)/T)(T) e K0(l2l) has a zero of order 5 at oo, a

pole of multiplicity 5 at 0, and is holomorphic and non-zero elsewhere on Ro(121). From
this it follows by repeated application of Lemmas 1 and 2 that the functions Lr(x) defined
in (9) are holomorphic everywhere on i?0(H) except at 0 and oo. Let Y be the vector
space of functions g(T)eiC0(ll) which are holomorphic except possibly at 0 and oo; thus
Lr(x)eY.

Atkin [2] has constructed a basis for Y which we shall use with one small modifica-
tion; however we find it convenient to use a different notation for the basis elements.
Specifically, if v± 0 or - 1 we denote by Jv{r) the element of Atkin's basis whose order at
oo is v. We define J 0 (T) = 1 and J _ , ( T ) = J _ 6 ( T ) J 5 ( T ) . In terms of Atkin's notation,
J_ ! (T) = B ( T ) + 1 2 . The following lemma lists some of the essential properties of the
functions JV(T); these properties are all proved in [2],

LEMMA 3. For all vei, we have:

(ii) {JV(T) I -oo< v<oo} is a basis of Y,
(iii) ordooJ,(T) = v,

!

—v if v = 0 (mod 5),

-v-l if v = l, 2 or 3 (mod 5),

-v-2 ifv = 4 (mod 5),

(v) the Fourier series of JV(T) has integer coefficients, and is of the form Jv(x) =
The space Y is an algebra; in view of Lemma 3(i), the structure constants of the basis

{Jv} are completely determined by the following multiplication table.

h

h

h

J2+J3 J3+11JS

J4-J5

h

/ s + l l / 6

J6+11J7

J5+12J6+11J7

J6+UJ7+11J8

J7+12JH+ll2710

j 8 + i 2 J 9 + i u 1 0 + n 2 j n

This is equivalent to Table 5 of [2].
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We will also use the fact that

J5(T) = (T,(11T)/T,(T))12. (12)

Finally, we denote the 11-adic order of an integer n by ir(n).

3. The key inequality. From the discussion of the preceding section, we know that
the functions Lr are in the space Y, and that ordra Lr > ixr. Since ord^Jv = v, we can
accordingly write

Lr= I arjv. (13)

From Lemmas 1 and 2, we see that Y is mapped into itself by the linear transformation

for any integer A. Let C(x) = (c^J) be the matrix of Tx with respect to the basis {/„} of Y
(where, following Atkin, we write the elements of V as row vectors and let matrices act
on the right). Thus

%(x)) = Y.^XM. (14)

Here and in the sequel, £ denotes a sum from j/ = -oo to v = <*>, in which only a finite

number of terms are non-zero. By (9), the components ar,v satisfy the recurrence

ar,v= I aT^y^:-'\ (15)
M- = U.,-I

together with the initial conditions

ao,v = 0 if v^O.J

Our plan is to show that the arv are integers, and that

for all v.

In order to do this, we will show that the numbers c ^ are integers, and obtain a lower
bound for their 11-adic orders. Specifically, we will prove that

where 8 = 8((x, v) depends on the residues of (x and v (mod 5) according to the following
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0 1 2 3 4

-1

0

1

2

3

8

9

10

6

7

7

8

4

5

6

6

2

3

4

5

15

11

12

13

9

In the case A = 0, the existence of an inequality of the form (17) with 8 "small and of
irregular behavior" was conjectured by Atkin. From the table we see that 8 > - l in all
cases, and therefore

(18)

To work towards the proof of (17), we note first that by (12) and property (i), we
have

Hence

where we have used the obvious fact that U(f(xn)g(x)) = f(x)U(g(x)). By virtue of (14),
this implies that

V _(\) T -Y r<-K+12) T r - i
Li i-\L+S.vJv ~ L, ^V-.v Jv3 5

V V

_ Y (X + 12)T
L, C(i.v Jv-5
V

_ Y (X + 12)r

Since the Jv form a basis of V, we can equate coefficients and obtain
equivalently

-(X + 12) _ = ^(X)

= c<^^+2), or

(19)
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The next step is to obtain another relation between the numbers c^J,; in this one fi will be
fixed. Let t = <£(x1/n); then as shown in [4], t satisfies an algebraic equation of degree 11
with coefficients in V. In the present notation this equation is

f11-o-1t1° + a2t9 + o-3t8 + a4r7-cr5(6 + o-6t
s-o-7t

4 + o-8(
3-CT9r

2 + cr1o(-o-11 = 0, (20)

where

O " ! = 1 1 2 J

o-2 = - l l j

O"3 =

(T4 =

o-s =

<x7 =

O"8 =

0"9 =

^ + 2 .
rx + 8 .

2 .

2 .

11

11

11

11

%

%

%

,+
:+ 9.

>.+ 4 .

+ 12.

2 .

2 .

114J3 +

H 3 / 3 +

H 3 / 3 +

H 2 / 3 +

1 1 2 J 3 -

11 / 3 -

5

5

11

11

.11

11

11

11

-11

11

%
5J5,

%,
4h,
3J5,

%,
2J5,

• l l / 5 ,

The roots of (20) are ^(e21"1"1^1'11), 0 < h < 1 0 . In (20) we substitute f-
and multiply through by

/Je2ir ih /11x1/11)^(e2ir ih /nx1/11)x-u (0 « h «10).

We then sum over all these h; in view of (11) this yields

(21)

Hence from (14),

lO^I^D'-V.Icif-'X (22)
V 1 = 1 y

We next replace the a; by their expressions (21) in terms of the Jv. Using the multiplica-
tion table for the /„ displayed in Section 2, we can then express the right side of (22) as a
linear combination X djv, after which we can equate c ^ with d,,. The details of this are

rather tedious; the final recurrence obtained depends on the residue class of v (mod 5). To
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save space we give only the case v = 0 (mod 5) in full:
(A) _ 112 (x-i) , j i i 3 r ( x ~ 1 ) + 1 0 1 1 3 r ( A ~ l ) + 2 l l 4 r u ~ 1 )

+ llsc<x~n

-90.11V,
+ 2.n2c£;
+4.n5c£;
_U^(X-4)

+ z . 11 c _ 6 -

l 6 (A-l) i
l C(i-V_6+

2 (X-2)
C

-2)_o 11 2 (X-2
- i — 8 . 1 1 CM.il,_

_ • < 2 - 1 3 0 .
_(X-4) , 9 1 12 (X-5) _ n 3 ^ ( X - 5 )
CM-."-6~r -^ • x l '-n.i'-S l x

•6) 1 1 i3_(X-6) n 113 (X-6)
_ 3 " r l l C^ V _5 ~" Z . 11 C(1>/_6

_(A-8) _,_,; 1 1 ^ - 9 ) _11r(X-10)j .^(X-l l )

(23)

Suppose we can prove that for some fixed fi,, the numbers c1^ (-10^A.<0) are
integers. Then from (23) it follows that for v = 0 (mod 5), the c^J are integers for all A >0
as well. Moreover they satisfy the inequality

^ l ) + e^), (24)> t mm t

where the numbers c^p) are given by the following table, in which the blank entries are °°.

1

2

3

4

5

6

1

2

3

3

4

5

6

2

1

2

2

3

5

5

3

2

2

3

4

5

4

1

1

2

4

4

5

2

3

4

6

1

3

3

7

2

8

2

9

1

10

1

11

0

v = 0 (mod 5)

For completeness we give the numbers ê .p) appearing in the analogues of (23) for the
other residue classes of v (mod 5).

X
1

2

3

4

5

1

2

2

4

5

5

2

1

1

3

4

5

3

2

3

4

4

4

1

2

3

4

5

2

3

3

6

1

2

3

7

2

8

2

9

1

10

1

11

0

1

2

3

4

5

1

2

3

3

5

5

2

1

2

2

4

5

3

2

3

4

4

4

1

2

3

4

5

2

3

3

6

1

2

3

7

2

8

2

9

1

10

1

11

0

v = 1 (mod 5) v = 2 (mod 5)
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1

2

3

4

5

1

2

2

4

4

5

2

2

1

3

3

5

3

2

3

3

4

4

1

2

2

4

5

2

2

3

6

1

1

3

7

2

8

2

9

1

10

1

11

0

1

2

3

4

5

1

2

3

4

5

2

1

2

3

5

3

2

3

4

4

1

2

4

5

2

3

6

1

3

7

2

8

2

9

1

10

1

11

0

v = 3 (mod 5) v = 4 (mod 5)

It is now a straightforward though tiresome exercise to verify by induction on A that
if (17) holds for some fixed jz and all A with -10 < A <0, it also holds for that /x and all
A >0. In the same way we can solve (23) and its analogues with v= 1, 2, 3, 4 (mod 5) for
c^.r-51, and show that (17) holds for A <-10 .

From (19) we see that c^i is invariant under the map A—»A + 12, /x^>/x —5,
v —* v + 5. The right side of (17) is also invariant under this map. From this fact, together
with the above remarks, we see that it suffices to prove that the c£J are integers satisfying
(17) for -10<A <0 and five values of /x, one in each residue class (mod 5). For ease of
computation we do this for - 4 < / x < 0 . The case /x = 0 is somewhat special; evidently it
involves computing C/(<£x) for - 1 0 < A < 0 . This can be done by applying Newton's
identities for power sums to the reciprocal equation of the modular equation (20).
Alternatively, it can also be done by the method described below, and then the Newton
identities can be used to give a new derivation of (20). We will discuss only the case
ju. = - 2 in detail, as the other cases are quite analogous. Consider then the function <^KJ-2

on the Riemann surface JR0(121). As already noted, Ord0<£ = - 5 , Ordco<l> = 5, and
OrdP<£ = 0 for all other points P of Ro(121). By Lemma 3, we have ord0J_2=l,
ord*, JL2 = - 2 , and ordpJ_22:0 for all other points p of R0(H)- Hence by Lemma 1, on
the surface J?o(121) we have Ord0 J_2= 11, Ordoo/_2 = Ordh/i1 J_2 = - 2 (l<fi<10), and
Ordp J_2 aO for all other points P. Since OrdP(/g) = OrdP/+OrdP g, it follows that

OrdP(4>\7_2)>0 for all other Pei?0(121). By Lemma 2, this implies that
ord0 (7(4>\7_2)>min(-5A + 11, -2), ord^ 1/(<J>XJ_2) > [(5A — 2)/ll"|, and ordp (J(^x/_2) >0
for all other points peR0(ll). In particular, if A<0, we have ord0 U(4>kJ-z) — ~2,
ord^ t/(4>\T2)> r(5A-2)/ll"|, and ordp t/(4>xJ_2)>0 for all other points peR0{\\). By
Lemma 3(iv), Jx has a double pole at 0, while for all v>2, /„ has a pole of multiplicity at
least 3 at 0. Therefore if A<0, all the coefficients c^l,v in the equation

[/(</)xJ"_2) = X c^iJv, (25)
1/

vanish if either v< f(5A -2 ) / l l ] or v>2. Hence (25) has the following form for A<0:

(26)
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Thus the number of non-zero coefficients c^.-for A <0 is at most 2 - f(5A-2)/ll], which
in the range —10s A ^ 0 under consideration is at most 6. It is accordingly quite easy to
find c(-2.v for any fixed A in this range by equating the first 2 - |"(5A -2) / l l ] coefficients in
the Fourier series of the two sides of (26). This leads to a system of linear equations for
C( 2̂.K whose matrix is triangular, since ord^ Jv = v. In this way the following expressions are
obtained:

. H 4 /_ 2 +14.

(27)

U(<t>~4J-2) = J-2

/_2) = 2 .
. H2/_, +12 . 112JO +10 . 113JU

. 11JO+ 11 3 JI ,

_2) = - 1 2 - H J 1 .

It is now trivial to check that (17) holds if jx = —2 and -10=sA <0. As explained above,
this implies its validity for /x = —2, A arbitrary. The cases n = 0, — 1, —3, —4 are dealt with
similarly.

Some of the initial conditions (27) and their analogues for the other values of fi are
rather interesting identities. We mention for example the complete results for A = -10:

(28)

To return to the main problem, we recall from (14) that

It follows from Lemma 3(v) that the Fourier series of
by 11 if and only if

c<£ = 0 (mod 11) for all v.

If (29) holds we put 0(A, p,) = 1; otherwise we put 0(A, /x)

has all coefficients divisible

(29)

. From the recurrence (23)
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The analogous recurrences for the other residue classes of v (mod 5) yield this same
congruence. As a result we have

(30)

(31)

Equations (30) and (31) show that the function 0(A, y.) is completely determined by its
values in the range 0<A <10, 0</x<4. These values can be read off from (27) and its
analogue for the other /x. They are listed below.

On the other hand, we see from (19) that

0(A + 12, m-5) = 0(A, V-)-

0

0

1

1

1

1

1

1

1

1

0

0

2

0

0

1

1

1

3

1

1

0

0

0

4

0

0

0

1

1

5

1

0

0

0

0

6

0

0

0

0

1

7

1

1

1

1

1

8

1

1

1

1

0

9

0

0

0

0

0

10

0

0

0

0

0

4. Proof of Theorem 2. For any Laurent series

/(x) = I ex"

with integer coefficients, define

Put Ao = 0, and

ir(f) = min Tr(cn).
2

Ar = X 0(Af, m)
i=O

(32)

for r > l . We will prove by induction on r that

(33)

In view of (13) and Lemma 3(v), it suffices to prove that

i r l O ^ A . for all j/>(xr. (34)

To facilitate the induction, it is convenient to prove an inequality stronger than (34), viz

for v ^ (35)
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From (16) we see that (35) holds for r = 0. Suppose r s l , and that

T K O ^ . J S A ^ + I X V - H ^ J ) ^ ] for v>^ r _ , (36)

has been shown to hold. From the recurrence (15) we have

T K O S min (•n(ar^) + Tr(c(b->>)).

Thus in order to complete the induction, it suffices to prove that
) for all ^ > ^ _ 1 ; v > ^ r . (37)

First suppose v>/xr + 2. Then by (18) and the induction hypothesis (36), the left side of
(37) is at least equal to

This expression cannot decrease if (x is increased by 2, so its minimum occurs when
/j, = /xr_i + l, and it is therefore at least equal to

Ar_t + [(11 v - ^_ ! - 5Ar_, - 2)/10]. (38)

Since fir = [(5Ar_1 + /j.r_1)/ll], we have y,r >(5A.r_1 + (xr_1)/H; so (38) is at least equal to

This in turn is at least Ar + [(v-ju,r)/2] in view of the obvious inequalities Ar_l + \>Ar

and [(lln-12)/10]>[n/2] for all integers n>2 . Thus (37) is proved for v>iir + 2.
Next suppose v = /xr or /xr +1. Thus (37) reduces to

J ' 1 ) ^ (39)
This inequality holds for jz = ju,r_1 since 7r(ar_! ^_)> Ar_j and •7r(c( '̂_-1J)^0(Ar_i, (xr-i)- It
also holds for jx>(xr_1 + 2, since by the induction hypothesis (36), we have

T ( a r . 1 j £ A r . 1 + [ ( n - j t r ) / 2 ] > A r . 1 + l > A P (40)

This leaves only the case fA = fi,r_1 + l to be disposed of. In this case we have

where 8 = S(/xr_! +1, v) is the function tabulated after (17). Since v = jzr or /xr +1, in order
to prove (39) it suffices to show that

[ ( l l ^ - l x ^ - S ^ - l + SGv-i + l ^ / l O l s l (41)
and

[ ( lK^ + D - ^ ^ - S A ^ - l + S ^ . + l.Mr + DVlOlal (42)

whenever 6{kr^u fir_!) = 1. By (30) and (31), the function 6(\r_u î,r_1) is invariant under
each of the maps

Ar_1^Ar_1 + l l , flr_!->(*,_!
and
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Under these maps, fir = \(5XT-1 + fir-1)lll'\ is increased by 5, and so the quantities on the
left sides of (41) and (42) are unchanged. (Recall that 8(/LI, V) has period 5 in its
arguments.) Hence it suffices to prove that (41) and (42) hold under the hypotheses that
0^Ar_!<10, 0<fi,r_,<4, and d(Ar_1; fj,r_,)= 1. There are 25 cases where these condi-
tions are satisfied, and a straightforward check of the table of S(/x, v) shows that (39)
holds in all of them. This completes the proof of (37) and hence of (35).

By (2), (7) and (8), we have

I—!

i = 0 " ^ I l k k ( 4 ^
= 2̂  0(Aj, jz^ + Njflf 0, | -^7- \ + w(k) ) + N2d\ k, I — | + &>(fc)),

Osislog,,|k| ^

^l+w(fc))+N2e(fc,[;£
24 I / \ 124

where Nl is the number of odd integers i in the interval logn | k | < i < r — 1, and N2 is the
number of even integers in this interval. If r<Iogn |fc| +1 then Nl = N2 = 0, and (42)
yields

A r <log n |k | + 1. (43)

If r>logu | fc |+l then

Hence if we set

a = 0(0, [Ilk/241+<o(fc)) + 0(fc, \k/24)+o)(k)), (44)

we see from (42) that

Therefore
|k|. (45)

Regardless of whether (43) or (45) holds, we have Ar = ^ar + O(\og\k\). In view of (33),
this proves that if 24n = k (mod l l r ) then p_k(n) = 0 (mod ll^"r+e), where e = e(fc) =
O(log|fc|), and where a is defined by (44). We now have to show that a is a periodic
function of k with period 120. For definiteness we do this for the case where k is not a
negative multiple of 24, so that w(k) = 0. The case <o{k) = 1 is handled similarly. If k is
increased by 120, fllfc/241 is increased by 55, and so by (30) and (31), 0(0, ["Ilk/241)
does not change. On the other hand, 0(fc, fk/241) is replaced by 6(k +120, [fc/241 +5)
which by (31) is equal to 0(fc + 132, [k/24l). Since 132 = 0 (mod 11), this is in turn equal
to 6(k, ffc/241) by (30). Thus a(k +120) = a(k).

The final task is now to compute a(fc) from (44) for l<fc<120, and for k = -24,
-48, -72, -96, -120. This yields the table described in the statement of Theorem 2, and
the proof is complete.
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5. Best possible nature of Theorem 2. It is clear that if

TT(ZJ = Ar for all r (46)

then the constant a defined by (44) cannot be improved. Since

and the Fourier series of Jv has the form x" +..., we have

7r(Lr) = min arv.

Now (46) certainly holds if

\Lr) for v = [(5Ar + [iT
} (47)

for v>r(5Ar + ur)/lll for all r. I
Indeed it is easily proved by induction on r that (47) implies

7r(ar^)s Ar + 2 for all v>/xr.

To determine completely the set S of all pairs (A, /x) for which

i r ( O = 0(A,0) for y=

77(O>0(A,n) + 2 for v>

requires a study of c(^ (mod II3). However, a study (mod II2) shows that S contains at
least the following pairs, which are enough for our purposes:

(A,0) for A = 5, 6, 9, 10 (mod 11) but A # - 6 (mod II2),

(A, 1) for A = 5, 6, 8, 9, 10 (mod 11) but A#-14 (mod II2),

(A, 2) for A = 5, 6, 9, 10 (mod 11),

(A, 3) for A = 4, 5, 6, 9 (mod 11) but A#-18 (mod II2),

(A, 4) for A = 5, 9 (mod 11).

Moreover, by (19); S is invariant under the map (A, JX)-» (A + 12, /x-5). It is now a
simple though lengthy matter to find in each residue class (mod 120) both positive and
negative values of k for which all the pairs (Ar, ju,r) belong to S, and for which the constant
a in Theorem 2 can therefore not be improved.

6. Conclusion. Although our proof of Theorem 2 contains elements from both [2]
and [3], it is mostly in the spirit of [3]. In particular we have totally avoided the canonical
involution T^> - 1 / 1 1 T of R0(H)> and have made almost all our calculations at the point
oo of J?0(ll), around which the 17-operator is in a sense built. Nevertheless it is quite clear
that the crucial inequality (17) is really a consequence of the 11-adic behavior of the
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coefficients of the Puiseux expansions about T = 0 of the roots <M(T+H)/11) of the
modular equation (20). A direct attack on these coefficients (which are algebraic numbers,
but in general irrational for 1 < h < 10) would be desirable, since it might obviate the
numerical computations used in the above proof of (17), and ease the development of an
analogous theory for larger primes.
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